CN105693249B - 一种钕锶掺杂氟化钙激光陶瓷及其制备方法 - Google Patents

一种钕锶掺杂氟化钙激光陶瓷及其制备方法 Download PDF

Info

Publication number
CN105693249B
CN105693249B CN201610043975.1A CN201610043975A CN105693249B CN 105693249 B CN105693249 B CN 105693249B CN 201610043975 A CN201610043975 A CN 201610043975A CN 105693249 B CN105693249 B CN 105693249B
Authority
CN
China
Prior art keywords
neodymium
preparation
calcirm
microemulsion
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610043975.1A
Other languages
English (en)
Other versions
CN105693249A (zh
Inventor
梅炳初
朱春辉
李威威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610043975.1A priority Critical patent/CN105693249B/zh
Publication of CN105693249A publication Critical patent/CN105693249A/zh
Application granted granted Critical
Publication of CN105693249B publication Critical patent/CN105693249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Lasers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钕锶掺杂氟化钙激光陶瓷,它为锶离子和钕离子与氟化钙基体通过化学反应形成的置换式固溶体,再经烧结形成致密度接近99.97%的陶瓷块体,其制备方法具体如下:首先配制溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F的微乳液;将溶有Ca2+、Sr2+、Nd3+的微乳液倒入含有F的微乳液中,在磁力搅拌条件下进行反应后静置;再将所得产物依次进行离心分离、洗涤、干燥、研磨、烧结,得所述钕锶掺杂氟化钙激光陶瓷。本发明结合微乳法和真空无压烧结方法制备透明陶瓷,涉及的工艺简单、成本较低、制备周期短,且制备的透明陶瓷光学性能优异。

Description

一种钕锶掺杂氟化钙激光陶瓷及其制备方法
技术领域
本发明属于新材料领域,具体涉及一种钕锶掺杂氟化钙激光陶瓷及其制备方法。
背景技术
近年来稀土掺杂氟化钙材料因其优异的光学性能和物理性能被广泛应用于激光介质材料。这种材料的优点包括禁带宽度大(-12ev),透光范围广(125nm~10μm),折射率小(~1.434,Vis~NIR),声子能量低(~390cm-1)等。其格位点阵对称多样性允许稀土离子高浓度掺杂,存在不同形式的电荷补偿,容易形成宽广而平滑的吸收和发射光谱,从而有利于产生超短的脉冲激光。
Nd3+作为掺杂离子的激光材料,以Nd:YAG和Nd:YVO4晶体为代表,是目前最常用的一类固体激光器。国际著名的激光材料学家A.Kaminskii从20世纪60年代广泛地研究Nd3+掺杂的萤石型晶体的光谱和激光性能。然而Nd3+团簇效应使得Nd3+离子1μm激光的上能级4F3/2的浓度淬灭严重,大大降低了Nd3+的荧光效率。20世纪90年代,科学家提出通过在Nd:CaF2晶体中掺入所谓缓冲离子如M2+(Sr,Ba)和M3+(Y,La,Gd,Sc)来效抑制Nd3+离子的团簇效应,提高发光量子效率,改善激光性能。
目前以Nd3+为发光离子,以Sr2+掺杂CaF2晶体为基质的激光材料拥有优异的光谱性能从而引起了广泛的兴趣。但是与CaF2-SrF2混晶体系相比,很少有关对CaF2-SrF2陶瓷的制备和性能进行研究的报道。2007年T.T.Basiev提出对CaF2-SrF2-YbF3混晶采用热压的方式促使其发生晶格断裂和畸变(参见文献Basiev T,Voronov V,Konyushkin V,etal.Optical lithium fluoride ceramics[J].Doklady Physics.2007,52(12):677-680.),从而得到多晶陶瓷,但其起始材料仍为单晶。这就依然面临制备具有生产周期长(1~2个月),成本高,需采用特殊设备(如钼坩埚)等缺点。
发明内容
本发明的目的是提供一种钕锶掺杂氟化钙激光陶瓷及其制备方法,结合微乳法和真空无压烧结方法制备透明陶瓷,涉及的工艺简单、成本较低、制备周期短,且制备的透明陶瓷光学性能优异。
为实现上述目的,本发明采用的技术方案为:
一种钕锶掺杂氟化钙激光陶瓷的制备方法,包括以下步骤:
1)按硝酸钙、硝酸锶、硝酸钕溶于水中配制混合液I;将氟化钾溶于水中配制混合液II;
2)将油份、表面活性剂和助表面活性剂混合均匀,制成两份混合液III;向两份混合液III中分别滴加步骤1)所配制的混合液I和混合溶液II,分别形成溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F-的微乳液;
3)将步骤2)所得溶有Ca2+、Sr2+、Nd3+的微乳液滴入含有F-的微乳液中,在磁力搅拌条件下进行反应后静置;
4)将步骤3)所得产物进行离心分离,将所得物体产物进行洗涤、干燥、研磨,得粉体产物;
5)将所得粉体产物进行烧结,得所述钕锶掺杂氟化钙激光陶瓷。
上述方案中,所述油分为环己烷;表面活性剂为辛基苯基聚氧乙烯醚;助表面活性剂为正己醇。
上述方案中,所述硝酸钙、硝酸锶、硝酸钕、氟化钾的摩尔比为(70~94):(5~25):(1.0~5.0):(220~240)。
上述方案中,所述混合液I和混合液II的浓度均为1~2mol/L。
上述方案中,所述油分、表面活性剂和助表面活性剂的质量比为1:(1~3):(1~3)。
上述方案中,步骤3)中所述滴入速度为50~250ml/min。
上述方案中,步骤3)所述反应时间为20~60min,静置时间为12~24min。
上述方案中,所述步骤5)所述烧结步骤为:以10~20℃/min的速率升温至600~1100℃,保温30~120min,其中真空度为9×10-3Pa以下。
根据上述方案制备的钕锶掺杂氟化钙激光陶瓷,它为锶离子和钕离子与氟化钙基体通过化学反应形成的置换式固溶体,再经烧结形成致密度接近99.97%的陶瓷块体;其中氟化钙、锶离子和钕离子的摩尔比为(70~94):(5~25):(1.0~5.0)。
根据上述方案制备的钕锶掺杂氟化钙激光陶瓷经打磨抛光后,其致密度接近于理论密度;其在可见光、近红外波段透过率约为85%;在796nm处有很强的吸收峰和较宽的吸收带宽,有利于激光的泵浦;在1060nm附近的峰有较大的半高宽,有利于超短脉冲激光的产生,荧光强度高。
本发明结合微乳法和真空无压烧结方法制备透明陶瓷,首先采用微乳法制备粉体,生成的粒子表面因包裹一层(或多层)表面活性剂分子,同时,包裹的表面活性剂分子可以对粒子表面进行修饰,起到改性作用,使粒子不易发生聚结,提高粉体的烧结活性;然后进一步采用真空无压烧结法制备陶瓷,涉及的工艺简单、成本较低、制备周期短,制备的透明陶瓷光学性能优异。
本发明的有益效果为:
1)本发明采用微乳法纳米材料合成技术制备高纯纳米粉末晶粒细小(粉末粒径为20~40nm)、尺寸分布较窄、无团聚(或团聚现象很少)的粉体作为陶瓷烧结的原始材料,能显著提高所述陶瓷产物的烧结活性,降低烧结温度,缩短烧结时间,并获得高光学性能的陶瓷产物。
2)本发明所用原料均为化学纯试剂,涉及的工艺操作简单、效率较高、不需要严苛的反应条件,适合推广应用。
附图说明
图1为本发明实施例1所得钕锶掺杂氟化钙激光陶瓷的XRD图。
图2为本发明实施例1所得钕锶掺杂氟化钙激光陶瓷的形貌图。
图3为本发明实施例1所得钕锶掺杂氟化钙激光陶瓷的透过率。
图4为本发明实施例1所得钕锶掺杂氟化钙激光陶瓷的吸收光谱。
图5为本发明实施例1所得钕锶掺杂氟化钙激光陶瓷的光致发光强度。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
以下实施例如无具体说明,采用的试剂市售化学试剂或工业产品。
实施例1
一种钕锶掺杂氟化钙激光陶瓷,其制备方法包括如下步骤:
1)将0.094mol硝酸钙(Ca(NO3)2·4H2O)、0.005mol硝酸锶(Sr(NO3)2)、0.001mol硝酸钕(Nd(NO3)3·6H2O)溶于100ml水中配制混合液I;将0.22mol氟化钾(KF·2H2O)溶于200ml水中配制混合液II;
2)将油份(环己烷)、表面活性剂(TX-100)和助表面活性剂(正己醇)按1:1:1的质量比混合均匀,制成两份混合液III;分别向两份混合液III中滴加步骤1)所配制的混合液I和混合溶液II,分别形成溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F-的微乳液;
3)将步骤2)所得溶有Ca2+、Sr2+、Nd3+的微乳液以50ml/min的速度滴入含有F-的微乳液中,在磁力搅拌条件下进行反应20分钟后静置12小时;
4)将步骤3)所得产物在11000r/min条件下进行离心分离(15min,3次),将所得物体产物去离子水和无水乙醇分别洗涤,然后置于烘箱内干燥后用玛瑙研钵进行研磨,得粉体产物;
5)将所得粉体产物约2.0g放入石墨模具中混合均匀,然后置于真空烧结炉中进行烧结,得所述钕锶掺杂氟化钙激光陶瓷;其中烧结工艺为:以10℃/min的速度升温至600℃保温30分钟,真空度为9×10-3Pa;再以25℃/min的速度降温至室温。
将本实施例所得钕锶掺杂氟化钙激光陶瓷进行双面抛光,测得其致密度>99.9%,透光率>80%。本实施例所得钕锶掺杂氟化钙激光陶瓷的XRD图见图1,从图中可以看出样品的XRD图是典型的氟化钙相,说明掺杂钕离子和锶离子后没有形成杂相。图2为本实施例所得产品的形貌图,可以看出所得陶瓷样品的透过率很高,可以清晰的看到陶瓷样品下的文字。图3是所得产品的透过率图,在200到1400nm波段最大透过率达到85%。图4是所得产品的吸收光谱图,每个吸收带分别对应相应的能级跃迁,在796nm处有很强的吸收峰和较宽的吸收带宽,有利于二极管的泵浦。图5为产品的荧光光谱图:在850-900nm、1000-1200nm和1300-1400nm处的发射峰分别对应4F3/2-4I9/24F3/2-4I11/24F3/2-4I13/2能级跃迁。产品的荧光强度较高;在1060nm附近的峰有较大的半高宽,有利于超短脉冲激光的产生。
实施例2
一种钕锶掺杂氟化钙激光陶瓷,其制备方法包括如下步骤:
1)将0.090mol硝酸钙(Ca(NO3)2·4H2O)、0.005mol硝酸锶(Sr(NO3)2)、0.005mol硝酸钕(Nd(NO3)3·6H2O)溶于100ml水中配制混合液I;将0.230mol氟化钾(KF·2H2O)溶于200ml水中配制混合液II;
2)将油份(环己烷)、表面活性剂(TX-100)和助表面活性剂(正己醇)按1:2:1的质量比混合均匀,制成两份混合液III;分别向两份混合液III中滴加步骤1)所配制的混合液I和混合溶液II,分别形成溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F-的微乳液;
3)将步骤2)所得溶有Ca2+、Sr2+、Nd3+的微乳液以100ml/min的速度滴入含有F-的微乳液中,在磁力搅拌条件下进行反应30分钟后静置18小时;
4)将步骤3)所得产物在11000r/min条件下进行离心分离(15min,3次),将所得物体产物去离子水和无水乙醇分别洗涤,然后置于烘箱内干燥后用玛瑙研钵进行研磨,得粉体产物;
5)将所得粉体产物约2.0g放入石墨模具中混合均匀,然后置于真空烧结炉中进行烧结,得所述钕锶掺杂氟化钙激光陶瓷;其中烧结工艺为:以12℃/min的速度升温至700℃保温60分钟,真空度为8×10-3Pa;再以12℃/min的速度降温至室温。
将本实施例所得钕锶掺杂氟化钙激光陶瓷进行双面抛光,测得其致密度>99.9%,透光率>85%。其在796nm处有很强的吸收峰和较宽的吸收带宽,有利于激光的泵浦;且荧光强度较高,在1060nm附近的峰有较大的半高宽,有利于超短脉冲激光的产生。
实施例3
一种钕锶掺杂氟化钙激光陶瓷,其制备方法包括如下步骤:
1)将0.075mol硝酸钙(Ca(NO3)2·4H2O)、0.020mol硝酸锶(Sr(NO3)2)、0.005mol硝酸钕(Nd(NO3)3·6H2O)溶于100ml水中配制混合液I;将0.22mol氟化钾(KF·2H2O)溶于200ml水中配制混合液II;
2)将油份(环己烷)、表面活性剂(TX-100)和助表面活性剂(正己醇)按1:2:2的质量比混合均匀,制成两份混合液III;分别向两份混合液III中滴加步骤1)所配制的混合液I和混合溶液II,分别形成溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F-的微乳液;
3)将步骤2)所得溶有Ca2+、Sr2+、Nd3+的微乳液以150ml/min的速度滴入含有F-的微乳液中,在磁力搅拌条件下进行反应40分钟后静置12小时;
4)将步骤3)所得产物在11000r/min条件下进行离心分离(15min,3次),将所得物体产物去离子水和无水乙醇分别洗涤,然后置于烘箱内干燥后用玛瑙研钵进行研磨,得粉体产物;
5)将所得粉体产物约2.0g放入石墨模具中混合均匀,然后置于真空烧结炉中进行烧结,得所述钕锶掺杂氟化钙激光陶瓷;其中烧结工艺为:以15℃/min的速度升温至700℃保温90分钟,真空度为5×10-3Pa;再以15℃/min的速度降温至室温。
将本实施例所得钕锶掺杂氟化钙激光陶瓷进行双面抛光,测得其致密度>99.9%,透光率>85%。其在796nm处有很强的吸收峰和较宽的吸收带宽,有利于激光的泵浦;且荧光强度较高,在1060nm附近的峰有较大的半高宽,有利于超短脉冲激光的产生。
实施例4
一种钕锶掺杂氟化钙激光陶瓷,其制备方法包括如下步骤:
1)将0.085mol硝酸钙(Ca(NO3)2·4H2O)、0.012mol硝酸锶(Sr(NO3)2)、0.003mol硝酸钕(Nd(NO3)3·6H2O)溶于100ml水中配制混合液I;将0.24mol氟化钾(KF·2H2O)溶于200ml水中配制混合液II;
2)将油份(环己烷)、表面活性剂(TX-100)和助表面活性剂(正己醇)按1:3:3的质量比混合均匀,制成两份混合液III;分别向两份混合液III中滴加步骤1)所配制的混合液I和混合溶液II,分别形成溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F-的微乳液;
3)将步骤2)所得溶有Ca2+、Sr2+、Nd3+的微乳液以200ml/min的速度滴入含有F-的微乳液中,在磁力搅拌条件下进行反应50分钟后静置24小时;
4)将步骤3)所得产物在11000r/min条件下进行离心分离(15min,3次),将所得物体产物去离子水和无水乙醇分别洗涤,然后置于烘箱内干燥后用玛瑙研钵进行研磨,得粉体产物;
5)将所得粉体产物约2.0g放入石墨模具中混合均匀,然后置于真空烧结炉中进行烧结,得所述钕锶掺杂氟化钙激光陶瓷;其中烧结工艺为:以18℃/min的速度升温至1000℃保温120分钟,真空度为3×10-3Pa;再以18℃/min的速度降温至室温。
将本实施例所得钕锶掺杂氟化钙激光陶瓷进行双面抛光,测得其致密度>99.9%,透光率>80%。其在796nm处有很强的吸收峰和较宽的吸收带宽,有利于激光的泵浦;且荧光强度较高,在1060nm附近的峰有较大的半高宽,有利于超短脉冲激光的产生。
实施例5
一种钕锶掺杂氟化钙激光陶瓷,其制备方法包括如下步骤:
1)将0.080mol硝酸钙(Ca(NO3)2·4H2O)、0.015mol硝酸锶(Sr(NO3)2)、0.005mol硝酸钕(Nd(NO3)3·6H2O)溶于100ml水中配制混合液I;将0.23mol氟化钾(KF·2H2O)溶于200ml水中配制混合液II;
2)将油份(环己烷)、表面活性剂(TX-100)和助表面活性剂(正己醇)按1:2:3的质量比混合均匀,制成两份混合液III;分别向两份混合液III中滴加步骤1)所配制的混合液I和混合溶液II,分别形成溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F-的微乳液;
3)将步骤2)所得溶有Ca2+、Sr2+、Nd3+的微乳液以250ml/min的速度滴入含有F-的微乳液中,在磁力搅拌条件下进行反应60分钟后静置24小时;
4)将步骤3)所得产物在11000r/min条件下进行离心分离(15min,3次),将所得物体产物去离子水和无水乙醇分别洗涤,然后置于烘箱内干燥后用玛瑙研钵进行研磨,得粉体产物;
5)将所得粉体产物约2.0g放入石墨模具中混合均匀,然后置于真空烧结炉中进行烧结,得所述钕锶掺杂氟化钙激光陶瓷;其中烧结工艺为:以20℃/min的速度升温至1100℃保温120分钟,真空度为1×10-3Pa;再以20℃/min的速度降温至室温。
将本实施例所得钕锶掺杂氟化钙激光陶瓷进行双面抛光,测得其致密度>99.9%,透光率>75%。其在796nm处有很强的吸收峰和较宽的吸收带宽,有利于激光的泵浦;且荧光强度较高,在1060nm附近的峰有较大的半高宽,有利于超短脉冲激光的产生。
以上所述仅为本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,做出若干改进和变换,这些都属于本发明的保护范围。

Claims (6)

1.一种钕锶掺杂氟化钙激光陶瓷的制备方法,其特征在于,包括以下步骤:
1)按硝酸钙、硝酸锶、硝酸钕溶于水中配制混合液I;将氟化钾溶于水中配制混合液II;
2)将油份、表面活性剂和助表面活性剂混合均匀,制成两份混合液III;向两份混合液III中分别滴加步骤1)所配制的混合液I和混合溶液II,形成溶有Ca2+、Sr2+、Nd3+的微乳液和溶有F-的微乳液;
3)将步骤2)所得溶有Ca2+、Sr2+、Nd3+的微乳液滴入含有F-的微乳液中,在磁力搅拌条件下进行反应后静置;
4)将步骤3)所得产物进行离心分离,将所得物体产物进行洗涤、干燥、研磨,得粉体产物;
5)将所得粉体产物进行烧结,得所述钕锶掺杂氟化钙激光陶瓷;
所述油分为环己烷;表面活性剂为辛基苯基聚氧乙烯醚;助表面活性剂为正己醇;
所述硝酸钙、硝酸锶、硝酸钕、氟化钾的摩尔比为(70~94):(5~25):(1.0~5.0):(220~240);
所述油分、表面活性剂和助表面活性剂的质量比为1:(1~3):(1~3)。
2.根据权利要求1所述的制备方法,其特征在于,所述混合液I和混合液II的浓度均为1~2mol/L。
3.根据权利要求1所述的制备方法,其特征在于,步骤3)中所述滴入速度为50~250ml/min。
4.根据权利要求1所述的制备方法,其特征在于,步骤3)所述反应时间为20~60min,静置时间为12~24min。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤5)所述烧结步骤为:以10~20℃/min的速率升温至600~1100℃,保温30~120min,其中真空度为9×10-3Pa以下。
6.权利要求1~5任一项所述制备方法制得的钕锶掺杂氟化钙激光陶瓷。
CN201610043975.1A 2016-01-22 2016-01-22 一种钕锶掺杂氟化钙激光陶瓷及其制备方法 Active CN105693249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610043975.1A CN105693249B (zh) 2016-01-22 2016-01-22 一种钕锶掺杂氟化钙激光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610043975.1A CN105693249B (zh) 2016-01-22 2016-01-22 一种钕锶掺杂氟化钙激光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN105693249A CN105693249A (zh) 2016-06-22
CN105693249B true CN105693249B (zh) 2018-05-25

Family

ID=56228434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610043975.1A Active CN105693249B (zh) 2016-01-22 2016-01-22 一种钕锶掺杂氟化钙激光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN105693249B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477539A (zh) * 2022-08-02 2022-12-16 桂林电子科技大学 一种氟化钙透明陶瓷及低温制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388057A (zh) * 2002-07-09 2003-01-01 中国科学院长春应用化学研究所 氟化物及复合氟化物纳米粒子的制备方法
CN104862779A (zh) * 2015-05-29 2015-08-26 中国科学院上海硅酸盐研究所 一种Nd掺杂氟化锶钙晶体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1388057A (zh) * 2002-07-09 2003-01-01 中国科学院长春应用化学研究所 氟化物及复合氟化物纳米粒子的制备方法
CN104862779A (zh) * 2015-05-29 2015-08-26 中国科学院上海硅酸盐研究所 一种Nd掺杂氟化锶钙晶体及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication and optical characterizations of CaF2–SrF2–NdF3 transparent ceramic;Chunhui Zhu et al.;《Materials Letters》;20151229;第167卷;第115页右栏第3段-第116页左栏倒数第1段 *
铽掺杂氟化钙绿色荧光粉的合成及发光性;廖金生 等;《光学学报》;20140530;第31卷(第5期);实验部分2.1、2.2 *

Also Published As

Publication number Publication date
CN105693249A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
Zheng et al. Facile hydrothermal synthesis and luminescent properties of large-scale GdVO4: Eu3+ nanowires
Wang et al. Controllable synthesis of NaLu (WO4) 2: Eu3+ microcrystal and luminescence properties for LEDs
Jiang et al. Citric acid-assisted hydrothermal synthesis of α-NaYF 4: Yb 3+, Tm 3+ nanocrystals and their enhanced ultraviolet upconversion emissions
CN105883909B (zh) 一种CsPbBrxI3‑x纳米棒的制备方法
Devaraju et al. Eu3+: Y2O3 microspheres and microcubes: A supercritical synthesis and characterization
Li et al. Near-infrared emitting microspheres of LaAlO3: Mn4+: Defects engineering via Ge4+ doping for greatly enhanced luminescence and improved afterglow
Zhu et al. Inhibited long-scale energy transfer in dysprosium doped yttrium vanadate inverse opal
CN1760157A (zh) 一种氧化镥基透明陶瓷的制备方法
CN106753371A (zh) 一种钬镱共掺杂钨酸铋荧光粉及其制备方法
Guan et al. YF3: RE3+ (RE= Dy, Tb, Eu) sub-microstructures: controllable morphology, tunable multicolor, and thermal properties
CN105384189A (zh) 一种卤化铯铅纳米棒的制备方法及所得产品
Xiuli et al. Controlled synthesis and tunable luminescence of NaYF4: Eu3+
Zheng et al. Enhancement of three-photon near-infrared quantum cutting in β-NaYF4: Er3+ nanoparticles by Ag nanocubes
CN105693249B (zh) 一种钕锶掺杂氟化钙激光陶瓷及其制备方法
CN106957065B (zh) 一种N、Ti3+共掺杂多孔TiO2纳米片的超快速制备方法
CN107082571A (zh) 一种掺杂ito纳米粒子的上转换发光玻璃及其制备方法和应用
CN105753060B (zh) 一种纺锤形钨酸铁微米晶体的制备工艺
CN108165269A (zh) 一种相变延迟且上转换发光强度大幅提高的氟化镥钾纳米晶及其制备方法
Som et al. Microwave-assisted hydrothermal synthesis of Eu2O3-coated spherical Y2O3 ceramic particles
Jiao et al. Preparation and properties of Nd: YAG ultra-fine powders
Liu et al. Facile synthesis and multicolor luminescence properties of Gd4O3F6: Ln3+ (Ln= Eu, Tb, Dy, Sm, Ho, Tm, Yb/Er, Yb/Ho) microcrystals
Vukovic et al. The gadolinium effect on crystallization behavior and luminescence of β‐NaYF4: Yb, Er phase
Zhang et al. Transition metal ions doped cesium lead halide perovskite nanocrystals: doping strategies and luminescence design
CN105255496B (zh) 一种上转换发光材料及其制备方法
CN108456925A (zh) 掺镱铝酸锶镧晶体及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant