CN105679985B - 一种醌多卤化物液流电池 - Google Patents

一种醌多卤化物液流电池 Download PDF

Info

Publication number
CN105679985B
CN105679985B CN201410653131.XA CN201410653131A CN105679985B CN 105679985 B CN105679985 B CN 105679985B CN 201410653131 A CN201410653131 A CN 201410653131A CN 105679985 B CN105679985 B CN 105679985B
Authority
CN
China
Prior art keywords
electrolyte
flow battery
anode
quinone
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410653131.XA
Other languages
English (en)
Other versions
CN105679985A (zh
Inventor
赖勤志
张华民
程元徽
李先锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201410653131.XA priority Critical patent/CN105679985B/zh
Priority to EP15861860.3A priority patent/EP3223354B1/en
Priority to AU2015349218A priority patent/AU2015349218B2/en
Priority to US15/302,440 priority patent/US10446867B2/en
Priority to PCT/CN2015/092059 priority patent/WO2016078492A1/zh
Priority to JP2016566261A priority patent/JP6247778B2/ja
Publication of CN105679985A publication Critical patent/CN105679985A/zh
Application granted granted Critical
Publication of CN105679985B publication Critical patent/CN105679985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明为一种醌多卤化物液流电池,包括:正负极端板、正极、多孔隔膜、负极、储液罐、管路、泵。其中正负极由集流体和正负极催化材料组成;充放电时,电解液经由泵从储液罐输送至正、负极,正极发生溴与溴单质的氧化还原反应,负极发生醌与蒽醌的氧化还原反应。

Description

一种醌多卤化物液流电池
技术领域
本发明涉及一种液流电池***。
背景技术
日前随着世界能源供应日趋短缺,人们开始对风能、太阳能等可再生能源的开发和利用广泛关注,但要保证太阳能、风能等可再生能源发电***的稳定供电,就必须结合高效、廉价、安全可靠的储能技术与其配合,纵观各种储能技术,其中化学储能方式的液流储能电池以其独特的优势而成为目前最适宜大规模储能的蓄电池之一。
目前发展较好的液流电池体系主要有全钒液流电池及锌溴液流电池两种。全钒液流电池通过电解液中不同价态钒离子在惰性电极上的电化学反应来实现电能和化学能的可逆转化。正极为VO2+/VO2 +电对,负极为V2+/V3+电对,硫酸为支持电解质。因为正负极两侧是不同价态的钒离子,避免了离子互串对电解液的污染,影响电池的性能和寿命。另外,钒电解质溶液可以恢复再生,进一步提高了电池***的寿命,降低运行成本。但是全钒液流电池电解液成本和质子交换膜成本较高、正负极仍存在一定程度的交叉污染问题。
锌溴液流电池正负半电池由隔膜分开,两侧电解液为ZnBr2溶液。在动力泵的作用下,电解液在储液罐和电池构成的闭合回路中进行循环流动。锌溴液流电池存在的主要问题为溴的污染无法解决。
醌溴液流电池在文献中已有报道,但是由于文献中使用质子交换膜,并且采用硫酸作为支持电解质,成本及电池电压均偏低,该发明使用多孔膜并使用盐酸作为支持电解质,成本得到了降低,电压得以提高。
发明内容
一种醌多卤化物液流电池***,包括:正负极端板、正极、多孔隔膜、负极、储液罐、管路、泵。其中正负极由集流体和正负极催化材料组成;充放电时,电解液经由泵从储液罐输送至正、负极,正极发生溴与溴单质的氧化还原反应,负极发生醌与蒽醌的氧化还原反应。为实现上述目的,本发明的具体技术方案如下:
电池***由电池模块、电解液储液罐、循环泵、循环管路组成;电池模块由一节或一节以上单电池串联而成,单电池包括正负极端板、正极、负极、隔膜。正负极电极均为活性炭毡。正极电解液盐酸与溴化钠的混合溶液,盐酸浓度为:0.5-2M盐酸,0.5-2M溴化钠。负极电解液盐酸与蒽醌的混合溶液,盐酸浓度为:0.5-2M盐酸,0.5-1M蒽醌。述隔膜为多孔膜或致密膜。
本发明的有益效果:
本专利通过技术改进,提出了醌多卤化物液流电池的概念,改善了醌溴液流电池成本偏高,电池电压较低的问题。
附图说明
图1为实施例电池循环稳定性图;
图2为对比例电池循环稳定性图。
图3为实施例和对比例电池充放电对比曲线图。
具体实施方式
实施例1
电解液配置及电池组装:
正极电解液:40mL的1MHCl+1M溴化钠溶液;负极电解液:40mL的1MHCl+1M蒽醌溶液单电池依次正极端板、正极3x3cm2、碳毡、隔膜、碳毡、负极3x3cm2石墨板、负极端板。
电池测试:
电解液流速:5mL/min;充放电电流密度20mA/cm2;电池循环稳定性见图1。
对比例1
电解液配置及电池组装:
正极电解液:40mL的0.5M硫酸+1M溴化钠溶液;负极电解液:40mL的0.5M硫酸+1M蒽醌溶液单电池依次正极端板、正极3x3cm2、碳毡、隔膜、碳毡、负极3x3cm2石墨板、负极端板。
电池测试:
电解液流速:5mL/min;充放电电流密度20mA/cm2;电池循环稳定性见图2。
实施例和对比例电池充放电对比曲线见图3。
本发明醌多卤化物液流电池,包括:正负极端板、正极、多孔隔膜、负极、储液罐、管路、泵。其中正负极由集流体和正负极催化材料组成;充放电时,电解液经由泵从储液罐输送至正、负极,正极发生溴与溴单质的氧化还原反应,负极发生醌与蒽醌的氧化还原反应。
由图可以看出:盐酸作为支持电解质的f电池充电电压下降,放电电压升高,电池性能得到提升,且循环性能优于硫酸作为支持电解质。

Claims (6)

1.一种醌多卤化物液流电池,所述电池由电池模块、装有正极电解液的电解液储液罐、装有负极电解液的负极储液罐、循环泵、循环管路组成;电池模块由二节或三节以上单电池串联而成,单电池包括正极、隔膜、负极,其特征在于:正极电解液为盐酸与溴化钠的混合溶液,负极电解液为盐酸与蒽醌的混合溶液。
2.根据权利要求1所述的醌多卤化物液流电池,其特征在于:所述正极电解液为终浓度0.5-2M盐酸和终浓度0.5-2M溴化钠的混合溶液。
3.根据权利要求1所述的醌多卤化物液流电池,其特征在于:所述负极电解液为终浓度0.5-2M盐酸和终浓度0.5-1M蒽醌的混合溶液。
4.根据权利要求1所述的醌多卤化物液流电池,其特征在于:正极和负极材料均为活性炭毡。
5.根据权利要求1所述的醌多卤化物液流电池,其特征在于:所述隔膜为多孔膜或致密膜。
6.根据权利要求1所述的醌多卤化物液流电池,其特征在于:单电池包括正极端板、正极、隔膜、负极、负极端板。
CN201410653131.XA 2014-11-17 2014-11-17 一种醌多卤化物液流电池 Active CN105679985B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201410653131.XA CN105679985B (zh) 2014-11-17 2014-11-17 一种醌多卤化物液流电池
EP15861860.3A EP3223354B1 (en) 2014-11-17 2015-10-16 Quinone polyhalide flow battery
AU2015349218A AU2015349218B2 (en) 2014-11-17 2015-10-16 Quinone polyhalide flow battery
US15/302,440 US10446867B2 (en) 2014-11-17 2015-10-16 Quinone polyhalide flow battery
PCT/CN2015/092059 WO2016078492A1 (zh) 2014-11-17 2015-10-16 一种醌多卤化物液流电池
JP2016566261A JP6247778B2 (ja) 2014-11-17 2015-10-16 キノンポリハライドフロー電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410653131.XA CN105679985B (zh) 2014-11-17 2014-11-17 一种醌多卤化物液流电池

Publications (2)

Publication Number Publication Date
CN105679985A CN105679985A (zh) 2016-06-15
CN105679985B true CN105679985B (zh) 2019-02-01

Family

ID=56013264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410653131.XA Active CN105679985B (zh) 2014-11-17 2014-11-17 一种醌多卤化物液流电池

Country Status (6)

Country Link
US (1) US10446867B2 (zh)
EP (1) EP3223354B1 (zh)
JP (1) JP6247778B2 (zh)
CN (1) CN105679985B (zh)
AU (1) AU2015349218B2 (zh)
WO (1) WO2016078492A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056698B2 (en) * 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
CN111293355A (zh) * 2018-12-07 2020-06-16 河南大学 蒽醌在锂氧电池中的应用及其得到的蒽醌锂氧电池
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768442A (zh) * 2003-03-14 2006-05-03 新南创新私人有限公司 新颖的卤化钒氧化还原液流电池
CN101047261A (zh) * 2006-03-31 2007-10-03 中国科学院大连化学物理研究所 用于液流蓄电的铁-配合物/卤素电化学体系
CN102035007A (zh) * 2009-09-25 2011-04-27 中国人民解放军63971部队 一种水溶性有机电对液流电池
CN102479968A (zh) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
WO2014052682A2 (en) * 2012-09-26 2014-04-03 President And Fellows Of Harvard College Small organic molecule based flow battery

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1409588A (fr) * 1964-09-09 1965-08-27 Thomson Houston Comp Francaise Perfectionnements aux accumulateurs
US5591538A (en) * 1995-07-07 1997-01-07 Zbb Technologies, Inc. Zinc-bromine battery with non-flowing electrolyte
AUPS192102A0 (en) * 2002-04-23 2002-05-30 Unisearch Limited Vanadium bromide redox flow battery
US7754064B2 (en) * 2006-09-29 2010-07-13 Eltron Research & Development Methods and apparatus for the on-site production of hydrogen peroxide
CN102119461B (zh) * 2008-06-12 2016-08-03 麻省理工学院 高能量密度氧化还原液流装置
US7927731B2 (en) * 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US20120135278A1 (en) * 2009-06-09 2012-05-31 Tomohisa Yoshie Redox flow battery
GB201006488D0 (en) 2010-04-19 2010-06-02 Univ Belfast Battery
CN103000924B (zh) * 2011-09-16 2015-02-18 清华大学 一种有机相双液流电池
US9130218B2 (en) * 2012-04-04 2015-09-08 Battelle Memorial Institute Hybrid energy storage systems utilizing redox active organic compounds
CN102646835B (zh) * 2012-04-24 2014-12-10 中南大学 用于液流电池的氧化还原性导电聚合物液流正极
US20140320061A1 (en) * 2013-04-30 2014-10-30 Ashlawn Energy, LLC Apparatus and method controlling sequencings for multiple electrolyte storage tanks in a reduction-oxidation flow battery
WO2014204985A1 (en) * 2013-06-17 2014-12-24 University Of Southern California Inexpensive metal-free organic redox flow battery (orbat) for grid-scale storage
JP6643983B2 (ja) * 2013-09-26 2020-02-12 プレジデント アンド フェローズ オブ ハーバード カレッジ キノン及びヒドロキノン系フロー電池
KR101600141B1 (ko) * 2013-10-11 2016-03-04 서울대학교산학협력단 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
US10050290B2 (en) * 2013-12-26 2018-08-14 United Technologies Corporation Rebalancing electrolyte concentration in flow battery using pressure differential
US9812883B2 (en) * 2014-02-18 2017-11-07 Massachusetts Institute Of Technology Materials for use with aqueous redox flow batteries and related methods and systems
US10079401B2 (en) * 2014-03-24 2018-09-18 Cornell University Symmetric redox flow battery containing organic redox active molecule
US10263308B2 (en) * 2014-03-24 2019-04-16 Cornell University Solar flow battery
JP6759233B2 (ja) * 2015-04-01 2020-09-23 フンダシオン セントロ デ インベスティガシオン コオペラティバ デ エネルヒアス アルテルナティバス セイセ エネルヒグネ フンダツィオアFundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa レドックスフロー電池用の有機電解質化合物
GB201511695D0 (en) * 2015-07-03 2015-08-19 Renewable Energy Dynamics Technology Ltd Improvements in redox flow batteries
WO2017189680A1 (en) * 2016-04-26 2017-11-02 Calera Corporation Intermediate frame, electrochemical systems, and methods
EP3464683B1 (en) * 2016-05-26 2021-07-07 Calera Corporation Anode assembly, contact strips, electrochemical cell, and methods to use and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768442A (zh) * 2003-03-14 2006-05-03 新南创新私人有限公司 新颖的卤化钒氧化还原液流电池
CN101047261A (zh) * 2006-03-31 2007-10-03 中国科学院大连化学物理研究所 用于液流蓄电的铁-配合物/卤素电化学体系
CN102035007A (zh) * 2009-09-25 2011-04-27 中国人民解放军63971部队 一种水溶性有机电对液流电池
CN102479968A (zh) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 一种锌/多卤化物储能电池
WO2014052682A2 (en) * 2012-09-26 2014-04-03 President And Fellows Of Harvard College Small organic molecule based flow battery

Also Published As

Publication number Publication date
US10446867B2 (en) 2019-10-15
JP6247778B2 (ja) 2017-12-13
EP3223354A1 (en) 2017-09-27
EP3223354A4 (en) 2018-07-04
JP2017517101A (ja) 2017-06-22
EP3223354B1 (en) 2019-11-13
CN105679985A (zh) 2016-06-15
WO2016078492A1 (zh) 2016-05-26
AU2015349218B2 (en) 2021-01-21
US20170025700A1 (en) 2017-01-26
AU2015349218A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
CN103000924B (zh) 一种有机相双液流电池
CN105742656B (zh) 一种锌碘液流电池
CN101997129B (zh) 一种液流电池
CN101593841B (zh) 一种氧化还原液流电池和氧化还原液流电池组
CN105280964B (zh) 一种锌锰液流电池
JP6189327B2 (ja) 再生燃料電池
CN106549179B (zh) 一种有机体系锂醌液流电池
CN108232265A (zh) 一种中性锌铁液流电池
CN105679985B (zh) 一种醌多卤化物液流电池
CN106532093A (zh) 一种醌金属电对液流电池***
US20200266465A1 (en) Advanced electrolyte mixing method for all vanadium flow batteries
CN102227029B (zh) 高浓度钒电解液及其制备方法
CN105280943A (zh) 一种全锰液流电池
CN107565151B (zh) 一种全钒液流电池电极活性的再生方法
CN112952172B (zh) 一种碱性铁镍液流电池
KR20160082372A (ko) 전해질을 물리적으로 분리하는 계층부를 포함하지 않는 레독스 흐름 이차전지 및 적층형 레독스 흐름 이차전지
US11605824B2 (en) Zinc iodine flow battery
CN104716385A (zh) 一种钒锰混合液流电池
KR101433048B1 (ko) 다중 재생에너지 발전 대용량 에너지 저장용 레독스 흐름 전지 시스템
KR20130055855A (ko) 재생 에너지 저장용 레독스 흐름 전지 시스템
CN103794813B (zh) 铕铈液流电池
CN110010949A (zh) 正负极电解液及其制备方法和在a11型号液流电池中应用
CN103022543A (zh) 一种铈铅液流电池
CN109888339A (zh) 正负极电解液及其制备方法和在a10型号液流电池中应用
CN105633440A (zh) 一种液流电池正极用铈基离子液体电解液及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant