CN105636725B - 用于将粉末床淀积于表面上的设备及相应的方法,所述设备设置有电磁响应探针 - Google Patents

用于将粉末床淀积于表面上的设备及相应的方法,所述设备设置有电磁响应探针 Download PDF

Info

Publication number
CN105636725B
CN105636725B CN201480055426.5A CN201480055426A CN105636725B CN 105636725 B CN105636725 B CN 105636725B CN 201480055426 A CN201480055426 A CN 201480055426A CN 105636725 B CN105636725 B CN 105636725B
Authority
CN
China
Prior art keywords
powder bed
scanning
powder
equipment
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480055426.5A
Other languages
English (en)
Other versions
CN105636725A (zh
Inventor
P·维尔
J·杰哈布瓦拉
E·布瓦拉
G·桑蒂
D·伊佩尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of CN105636725A publication Critical patent/CN105636725A/zh
Application granted granted Critical
Publication of CN105636725B publication Critical patent/CN105636725B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laser Beam Processing (AREA)

Abstract

用于将粉末床淀积于表面(1)上的设备与相应的方法,所述设备包括淀积模块(2),所述淀积模块(2)配置为在将粉末传送至表面的同时扫描表面。所述淀积模块具有至少一个电磁响应探针(5),所述至少一个电磁响应探针(5)能够分析粉末床的已传送部分(6)。本发明涉及烧结或选择性激光熔化机器。

Description

用于将粉末床淀积于表面上的设备及相应的方法,所述设备 设置有电磁响应探针
技术领域
本发明涉及粉末床,更具体而言,涉及粉末床(lit de poudre)的内部密度和缺陷的确定。
背景技术
粉末床被用于烧结(sintering)机中,或者作为选择地用于选择性激光熔化(SLM,selective laser melting)机器中。
在这种机器中的粉末床的密度和同质性(l’homogénéité)对于产品制造的成功而言尤其重要。在这种情况下,在测量的过程中在不破坏粉末床的情况下确定其性能是尤为复杂的。
通过对给定量的粉末床进行称重来测量是现有技术中所已知的,但是这种技术存在破坏粉末床的缺点。
因此,已提出了用于对粉末床进行无损分析的方法。可以参考文件EP 1 915 936与WO 2012/100766,其描述了通过经由选择性激光熔化技术而固化的层的涡电流来进行的测量。
还可以参考文件US 2006/0127267,其描述了一种借助于布置在包含粉末的容器周围的线圈而通过涡电流来确定粉末的密度的方法。
现有技术中所描述的解决方案无法在不破坏粉末床的情况下对它们进行分析或者在粉末床固化之前对它们进行分析。
发明内容
因此,本发明的目标在于提供一种能够获得粉末床并且能够在该粉末床固化之前对其进行分析的设备。
一方面提供了用于将粉末床淀积于表面上的设备,所述设备包括淀积模块,所述淀积模块配置为在将粉末传送至表面上的同时扫描该表面。
根据本发明的一般特征,所述淀积模块具有至少一个电磁响应探针,所述至少一个电磁响应探针能够分析粉末床的已传送部分。
因此,与现有技术的解决方案相比,探针直接布置在淀积模块上,例如布置在对表面进行扫描的臂上。从而粉末一淀积,探针就可以使用。
使用电磁响应探针是特别有利的,这是因为它能够在不破坏粉末床的情况下对粉末床进行分析。
探针会能够在扫描表面期间对粉末床的条状带(bande)进行分析。
由此获得了可以由(跟随淀积模块移动的)探针所扫描的整个区域上信息。于是,条状带的宽度对应于所使用的电磁响应探针可以分析的部分的宽度。
所述淀积模块可以配置为在传送粉末的同时从初始位置沿着一个方向扫描表面,以及配置为沿着相反方向扫描表面以便返回至初始位置,探针能够在每次扫描期间分析粉末床的相同条状带。
由此获得了对粉末床的条状带的更好分析(其被分析了两次)。
所述模块可以具有能够分析不同的粉末床的已传送部分的多个探针。
例如,多个规律地排列的探针可以放置于适当位置处,以便能够在一次扫描中覆盖与分析所有粉末床。
另一方面提供了一种烧结或选择性激光熔化机器,所述烧结或选择性激光熔化机器包括如上所限定的粉末床淀积设备和用于对部分粉末床进行固化的装置,并且具有处理器,所述处理器能够使用由所述至少一个探针提供的信息来控制固化装置。
从而,可以考虑由探针或多个探针提供的信息以便调整粉末床的熔化。具体而言,可以考虑密度或同质性以便例如调整熔化时间。由此实现了更好的烧结或者更好的选择性激光熔化,而这特别地能够获得具有更高品质的物品。
而另一方面提供了用于将粉末床淀积于表面上的方法,所述方法包括对表面的扫描,在该扫描期间将粉末传送至表面上。
根据一般特征,所述方法包括通过测量电磁场而对粉末床的已传送部分进行至少一次分析。
电磁场的测量可以借助于电磁响应探针来进行。
在对表面的扫描期间,可以对粉末床的条状带进行分析。
可以在传送粉末的同时从初始位置沿着一个方向扫描表面,沿着相反方向扫描表面以便返回至初始位置,并且在每次扫描期间对粉末床的相同条状带进行分析。
可以同时对不同的粉末床的已传送部分进行分析。
所述方法可以进一步包括烧结或选择性激光熔化,其中,对部分粉末床进行固化,并且其中,基于由所述至少一次分析所提供的信息来对固化进行控制。
附图说明
通过阅读以下仅以非限制性示例的方式给出并且参考附图而提供的说明,其他目标、特征以及优点将变得明显,其中:
-图1和图2示意性地示出了根据本发明实施方案的淀积设备的两个实施方案,以及
-图3示意性地示出了根据本发明的另一个实施方案的烧结或选择性激光熔化机器。
具体实施方式
图1呈现了表面1,该表面1旨在由粉末床覆盖,例如,为了进行随后的烧结或选择性激光熔化。粉末床的形成通过利用淀积模块2扫描表面1而实现,所述淀积模块2在传送粉末的同时扫描表面1。
淀积模块2包括臂3,该臂3可以沿着由箭头4a和4b指示的两个方向而受到纵向平移驱动。臂3包括用于将粉末传送至表面上的装置。粉末的淀积可以例如从位于图中右侧的初始位置进行,然后,通过沿着箭头4a的方向移动,臂可以利用粉末覆盖表面1,直至到达表面1的左手端。然后,臂可以通过沿着相反方向(沿着箭头4b的方向)移动而返回至其初始位置(不传送粉末)。
为了分析粉末床的特性,将电磁响应探针5直接放置于臂3上淀积模块2的内部是尤其有利的。由此该探针可以对刚刚被传送的粉末床的部分6进行分析。为了这个目的,将探针放置在淀积模块上与淀积模块所来自于的那侧相对应的侧上,在此即图中的右侧。
作为变化形式,探针可以在臂移动以便传送(将随后受到分析的)粉末的同时通过分析相继的部分而分析粉末床的条状带(bande)。
由此得到用于将粉末床淀积于表面1上的设备,该设备能够借助于电磁响应探针5来分析所获得的粉末床。
应当注意的是,优选为使用磁性粉末,例如包括铁或者适合于电磁响应探针的使用的任何其他材料。
图2呈现了本发明的变化形式,其中,臂3设置有多个电磁响应探针5。
每个探针5可以分析粉末床的部分6。如图2中可见,探针可以规律地进行布置以便覆盖多个相邻的部分6。通过增加探针5的数量,可以覆盖横向的条状带,并且在通过臂3执行的扫描期间可以对所有的粉末床进行分析。
图3呈现了机器10,例如烧结或选择性激光熔化机器。机器10可以包括与参考图1和图2所描述的淀积设备类似的淀积设备。更确切来说,机器10可以包括表面1、臂3以及至少一个电磁响应探针5。
在已对粉末床部分、粉末床条状带或者全部的粉末床进行分析之后,利用处理器11来对通过这些分析所获得的数据(涉及例如粉末床的密度和同质性)进行处理。
例如,处理器11可以为包括用于存储分析结果和用于处理这些结果的装置的计算单元。
机器10可以包括用于将淀积的粉末床的至少部分进行固化的固化装置12。通过指示的方式,固化装置可以包括激光束装置。
固化装置12可以由处理器11进行控制。从而能够利用电磁分析的结果来调整随后的固化步骤的参数。然后,在将粉末床的缺陷考虑在内的情况下执行随后的固化步骤。
应当注意的是,电磁响应探针5可以为线圈,其中对该线圈的阻抗变化进行测量。因而可以使用涡电流探针。
当然,在根据本发明的方法中,测量电磁场的步骤可以借助于电磁响应探针(例如线圈,对其阻抗的变化进行测量)来执行。也可以使用涡电流探针。
基于本发明,实现了对粉末床的分析,其中一进行淀积就能实现该分析。
通过这些分析所获得的信息能够改善随后的烧结或选择性激光熔化步骤,这能够得到更好的固体。

Claims (11)

1.用于将粉末床淀积于表面(1)上的设备,所述设备包括淀积模块(2),所述淀积模块(2)配置为在将粉末传送至表面的同时扫描表面,其特征在于,所述淀积模块具有至少一个电磁响应探针(5),所述至少一个电磁响应探针(5)能够在粉末床的固化之前分析粉末床的已传送部分(6)。
2.根据权利要求1所述的设备,其中,探针(5)能够在对表面的扫描期间分析粉末床的条状带。
3.根据权利要求2所述的设备,其中,所述淀积模块(2)配置为在传送粉末的同时从初始位置沿着一个方向(4a)扫描表面,以及配置为沿着相反方向(4b)扫描表面以便返回至初始位置,探针能够在每次扫描期间分析粉末床的相同条状带。
4.根据前述权利要求中的任一项所述的设备,其中,所述淀积模块具有能够对不同的粉末床的已传送部分(6)进行分析的多个探针(5)。
5.烧结或选择性激光熔化机器(10),其包括根据前述权利要求中的任一项所述的设备以及用于对部分粉末床进行固化的装置(12),并且所述烧结或选择性激光熔化机器(10)还具有处理器(11),所述处理器(11)能够利用由所述至少一个电磁响应探针(5)提供的信息来控制固化装置。
6.用于将粉末床淀积于表面(1)的方法,所述方法包括对表面的扫描,在该扫描期间将粉末传送至表面上,其特征在于,所述方法包括在粉末床的固化之前,通过测量电磁场而进行的对粉末床的已传送部分的至少一次分析。
7.根据权利要求6所述的方法,其中,在对表面的扫描期间,对粉末床的条状带进行分析。
8.根据权利要求7所述的方法,其中,在传送粉末的同时从初始位置沿着一个方向扫描表面,沿着相反方向扫描表面以便返回至初始位置,以及在每次扫描期间对粉末床的相同条状带进行分析。
9.根据权利要求6至8中的任一项所述的方法,其中,同时对不同的粉末床的已传送部分进行分析。
10.根据权利要求6至8中的任一项所述的方法,进一步包括烧结或选择性激光熔化,其中,对部分粉末床进行固化,并且其中,基于由所述至少一次分析所提供的信息来对固化进行控制。
11.根据权利要求9所述的方法,进一步包括烧结或选择性激光熔化,其中,对部分粉末床进行固化,并且其中,基于由所述至少一次分析所提供的信息来对固化进行控制。
CN201480055426.5A 2013-09-09 2014-09-09 用于将粉末床淀积于表面上的设备及相应的方法,所述设备设置有电磁响应探针 Active CN105636725B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1358611A FR3010334B1 (fr) 2013-09-09 2013-09-09 Dispositif de depot de lit de poudre sur une surface muni d'une sonde a reponse electromagnetique, et procede correspondant
FR1358611 2013-09-09
PCT/EP2014/069185 WO2015032974A1 (fr) 2013-09-09 2014-09-09 Dispositif de dépôt de lit de poudre sur une surface muni d'une sonde à réponse électromagnétique, et procédé correspondant

Publications (2)

Publication Number Publication Date
CN105636725A CN105636725A (zh) 2016-06-01
CN105636725B true CN105636725B (zh) 2017-09-29

Family

ID=49484338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480055426.5A Active CN105636725B (zh) 2013-09-09 2014-09-09 用于将粉末床淀积于表面上的设备及相应的方法,所述设备设置有电磁响应探针

Country Status (6)

Country Link
US (1) US10926525B2 (zh)
EP (1) EP3043936B1 (zh)
JP (1) JP6453336B6 (zh)
CN (1) CN105636725B (zh)
FR (1) FR3010334B1 (zh)
WO (1) WO2015032974A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160339519A1 (en) * 2015-05-19 2016-11-24 Lockheed Martin Corporation In-process monitoring of powder bed additive manufacturing
DE102015110264A1 (de) 2015-06-25 2016-12-29 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung wenigstens eines dreidimensionalen Objekts
US10780523B1 (en) 2015-10-05 2020-09-22 Lockheed Martin Corporation Eddy current monitoring in an additive manufacturing continuous welding system
DE102015223474A1 (de) 2015-11-26 2017-06-01 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
DE102016201290A1 (de) * 2016-01-28 2017-08-17 Siemens Aktiengesellschaft Verfahren zur Qualitätssicherung und Vorrichtung
US11766824B2 (en) * 2017-05-26 2023-09-26 Ihi Corporation Apparatus for producing three-dimensional multilayer model, method for producing three-dimensional multilayer model, and flaw detector
FR3066705B1 (fr) 2017-05-29 2022-12-02 Commissariat Energie Atomique Particule pour la realisation de pieces metalliques par impression 3d et procede de realisation de pieces metalliques
US11446917B2 (en) * 2017-10-06 2022-09-20 Ihi Corporation Additive manufacturing device and additive manufacturing method
US11964435B2 (en) 2018-08-30 2024-04-23 Nanyang Technological University Method and system for monitoring a powder bed process in additive manufacturing
FR3087270A1 (fr) * 2018-10-16 2020-04-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et dispositif de controle de la qualite d'un lit de poudres dans les procedes de fabrication additive

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174771A (ja) * 1992-12-09 1994-06-24 Nippon Petrochem Co Ltd 粉体の帯電状態の測定方法
CN1315022A (zh) * 1998-06-30 2001-09-26 乔蒂·马宗达 激光包覆装置和方法
CN1976800A (zh) * 2005-04-06 2007-06-06 Eos有限公司电镀光纤*** 用于制造三维物体的装置和方法
WO2007147221A1 (en) * 2006-06-20 2007-12-27 Katholieke Universiteit Leuven Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
DE102011111818A1 (de) * 2011-08-27 2013-02-28 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung eines Bauteils

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52116290A (en) * 1976-03-02 1977-09-29 Nippon Steel Corp Quantitative determination method of magnetite and metal iron in granu lar or powdery non-metallic substances
US6492651B2 (en) * 2001-02-08 2002-12-10 3D Systems, Inc. Surface scanning system for selective deposition modeling
US20040004653A1 (en) * 2002-07-03 2004-01-08 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
RU2288073C2 (ru) * 2002-07-23 2006-11-27 Юниверсити Оф Саутерн Калифорния Способ и установка для изготовления объемных металлических изделий
JP3599059B2 (ja) * 2003-02-25 2004-12-08 松下電工株式会社 三次元形状造形物の製造方法及びその装置
US6815636B2 (en) * 2003-04-09 2004-11-09 3D Systems, Inc. Sintering using thermal image feedback
US6930278B1 (en) * 2004-08-13 2005-08-16 3D Systems, Inc. Continuous calibration of a non-contact thermal sensor for laser sintering
US7288941B2 (en) 2004-10-06 2007-10-30 Enerize Corporation Method and apparatus for measuring conductivity of powder materials using eddy currents
US7569174B2 (en) * 2004-12-07 2009-08-04 3D Systems, Inc. Controlled densification of fusible powders in laser sintering
DE102005030067A1 (de) * 2005-06-27 2006-12-28 FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes durch ein generatives 3D-Verfahren
JP4801447B2 (ja) * 2006-01-13 2011-10-26 旭化成株式会社 磁気センサを用いた測定装置及び測定方法
GB0601982D0 (en) * 2006-02-01 2006-03-15 Rolls Royce Plc Method and apparatus for examination of objects and structures
DE102006050238A1 (de) 2006-10-18 2008-04-30 Eckart Roth An einer Gebäudewand befestigbare Haltevorrichtung zum Halten von Gegenständen oder Ergreifen durch Personen
DE202010010771U1 (de) * 2010-07-28 2011-11-14 Cl Schutzrechtsverwaltungs Gmbh Laserschmelzvorrichtung zum Herstellen eines dreidimensionalen Bauteils
DE102011009624A1 (de) * 2011-01-28 2012-08-02 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Prozessüberwachung
US20150273583A1 (en) * 2014-03-28 2015-10-01 Mitutoyo Corporation Layer scanning inspection system for use in conjunction with an additive workpiece fabrication system
US20160349215A1 (en) * 2014-12-23 2016-12-01 Edison Welding Institute, Inc. Non-destructive evaluation of additive manufacturing components using an eddy current array system and method
US20160339519A1 (en) * 2015-05-19 2016-11-24 Lockheed Martin Corporation In-process monitoring of powder bed additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174771A (ja) * 1992-12-09 1994-06-24 Nippon Petrochem Co Ltd 粉体の帯電状態の測定方法
CN1315022A (zh) * 1998-06-30 2001-09-26 乔蒂·马宗达 激光包覆装置和方法
CN1976800A (zh) * 2005-04-06 2007-06-06 Eos有限公司电镀光纤*** 用于制造三维物体的装置和方法
WO2007147221A1 (en) * 2006-06-20 2007-12-27 Katholieke Universiteit Leuven Procedure and apparatus for in-situ monitoring and feedback control of selective laser powder processing
DE102011111818A1 (de) * 2011-08-27 2013-02-28 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur generativen Herstellung eines Bauteils

Also Published As

Publication number Publication date
FR3010334A1 (fr) 2015-03-13
EP3043936A1 (fr) 2016-07-20
JP6453336B2 (ja) 2019-01-16
US20160214319A1 (en) 2016-07-28
JP2016533432A (ja) 2016-10-27
US10926525B2 (en) 2021-02-23
JP6453336B6 (ja) 2019-02-20
CN105636725A (zh) 2016-06-01
WO2015032974A1 (fr) 2015-03-12
FR3010334B1 (fr) 2015-09-25
EP3043936B1 (fr) 2021-01-06

Similar Documents

Publication Publication Date Title
CN105636725B (zh) 用于将粉末床淀积于表面上的设备及相应的方法,所述设备设置有电磁响应探针
EP3162474B1 (en) Imaging device, additive manufacturing system including an imaging device and method of operating such system
US11543388B2 (en) In-process quality assessment for additive manufacturing
US20140159266A1 (en) Method and device for the generative production of a component
US20160349215A1 (en) Non-destructive evaluation of additive manufacturing components using an eddy current array system and method
US20170151727A1 (en) Method and device for producing three-dimensional components with the aid of an overfeed sensor
JP5662117B2 (ja) 三次元物体の製造方法
US10674101B2 (en) Imaging devices for use with additive manufacturing systems and methods of imaging a build layer
CN110167696A (zh) 用于持续更新用于增材制造的重涂覆机刀片的方法及装置
CN109773185A (zh) 用于使用基于箔的构建材料的移动大型增材制造的箔部分翘曲补偿
US20190105843A1 (en) Optical Powder Spreadability Sensor and Methods for Powder-Based Additive Manufacturing
US8780196B2 (en) Particle measuring instrument, in particular for the analysis of grain sizes of fine and very fine bulk materials
EP3495904A1 (en) Method and apparatus for predicting manufacturing parameters of a product to be manufactured in a 3d-printing process
Lapointe et al. Photodiode-based machine learning for optimization of laser powder bed fusion parameters in complex geometries
JP2018193586A (ja) 粉末床評価方法
US10919218B2 (en) Interlace calibration and methods of use thereof
IT201600071117A1 (it) Manipolatore di alimenti in magazzino
EP3465179B1 (en) Apparatus for identification of physical parameters of rod-like articles of the tobacco industry
EP3069133B1 (de) Verfahren und vorrichtung zur kontaktlosen überprüfung der beschaffenheit eines metallurgischen giessproduktes
JP2019522789A (ja) たばこ産業における棒状物品の物理的パラメータ識別装置
Imran et al. In-Situ Process Monitoring and Defects Detection Based on Geometrical Topography With Streaming Point Cloud Processing in Directed Energy Deposition
US20240082924A1 (en) Method for non-destructive testing of regions of interest of a metal piece during additive manufacturing
JP2007271329A (ja) 透磁率測定装置及び透磁率測定方法
GB2502989A (en) Investigating the propagation of a crack in a rail

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170825

Address after: French Clermont Ferrand

Applicant after: Compagnie General Des Etablissements Michelin

Address before: French Clermont Ferrand

Applicant before: Compagnie General Des Etablissements Michelin

Applicant before: Michelin Research & Technology Co., Ltd.

GR01 Patent grant
GR01 Patent grant