CN105604546A - 双重介质碳酸盐岩储层的定量分类方法 - Google Patents

双重介质碳酸盐岩储层的定量分类方法 Download PDF

Info

Publication number
CN105604546A
CN105604546A CN201510956383.4A CN201510956383A CN105604546A CN 105604546 A CN105604546 A CN 105604546A CN 201510956383 A CN201510956383 A CN 201510956383A CN 105604546 A CN105604546 A CN 105604546A
Authority
CN
China
Prior art keywords
reservoir
need
carry out
matrix
quantitative classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510956383.4A
Other languages
English (en)
Other versions
CN105604546B (zh
Inventor
陈烨菲
李云娟
赵伦
李孔绸
范子菲
侯庆英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201510956383.4A priority Critical patent/CN105604546B/zh
Publication of CN105604546A publication Critical patent/CN105604546A/zh
Application granted granted Critical
Publication of CN105604546B publication Critical patent/CN105604546B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • E21B49/087Well testing, e.g. testing for reservoir productivity or formation parameters

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种双重介质碳酸盐岩储层的定量分类方法。该方法包括:1)获取待分类储层的基质孔隙度、基质渗透率、裂缝孔隙度、裂缝渗透率;待分类储层所在研究井的井筒半径、表皮系数、井内天然气在地层水中的溶解度,井内的地层压力和地层温度;待分类储层所在研究区的基质孔隙度下限及基质渗透率下限;2)获得研究井的地层水压缩系数,待分类储层的基质***岩石有效压缩系数、裂缝***岩石有效压缩系数;3)获取待分类储层的无因次串流系数和无因次井筒储集系数;4)根据前述获得的参数确定待分类储层的类型。本发明提供的技术方案通过测井解释的结果就能够确定储层的类型,操作简便。

Description

双重介质碳酸盐岩储层的定量分类方法
技术领域
本发明涉及一种双重介质碳酸盐岩储层的定量分类方法,属于石油开发中的开发地质和油藏工程领域。
背景技术
与碎屑岩相比,碳酸盐岩储层具有非均质性强,储集空间类型多样(基质孔隙、溶蚀孔洞、裂缝、微裂缝)的特点。目前碳酸盐岩储层的分类评价,基于侧重点的不同有多种分类方案,但大部分以取芯和薄片分析资料为基础来进行分类的,或者利用电成像及核磁测井资料进行分类的:
文章“碳酸盐岩复杂孔隙结构的测井识别和分类评价-以中东某油田H地层为例”(倪国辉,郭海峰,徐星,黄大琴.石油天然气学报(江汉石油学院学报).2014,36(1):60-65)从物性特征、毛管压力曲线特征、岩石学特征三方面进行综合分析,提取储层物性和孔隙结构的特征参数,定性划分三类储层,用电成像和核磁共振测井相结合,建立了储层类型测井识别图版,但该图版是建立在电成像和核磁共振测井基础上的,对于仅有常规测井的油田或单井,无法推广应用。
文章“碳酸盐岩储层孔隙结构评价方法”(郭振华,李光辉,吴蕾,李序仁,韩桂芹,姜英辉.石油学报.2011,32(3):459-465)根据储层物性综合指数Z(渗透率除以孔隙度开方)和毛细管中值压力,将碳酸盐岩储层分为四个级别,但是对于未取芯或未测压汞的单井,无法获得毛细管中值压力。
文章“碳酸盐岩孔隙分类方法综述”(李林,张学丰.内蒙古石油化工.2009(8):51-54)公开了目前碳酸盐岩分类主要方法如下:按基质结构及孔隙大小的分类(包括粒间孔、窗格孔、粒内孔、遮蔽孔、晶间孔、生长骨架孔、铸模孔、裂缝、溶沟、溶孔、溶洞、角砾孔、钻孔、潜穴孔、收缩孔)、包茨、顿铁军等提出的孔、洞、缝分类***[包括孔(巨孔隙、粗孔隙、中孔隙、细孔隙、微孔隙、隐孔隙)、洞(洞穴、洞隙)、缝(巨缝、大缝、特宽缝、宽缝、中等缝、窄缝、微缝、超微缝)];上述方法都是从岩心薄片分析基础上进行的分类,但是对于无取芯井无法推广应用。
文章“两种双重介质的对比与分析”(李传亮.岩性油气藏.2008,20(4):128-131)中公开了利用试井曲线形态和产量递减规律定性区别裂缝-孔隙型储层和裂缝-溶洞型储层,但是并未给出定量划分储层类型的方法或者公式。
对于海外的油田来说,取芯井、成像及核磁测井资料有限,很难推演到研究区的所有井。
因此,提供一种方便可靠的双重介质碳酸盐岩储层的定量分类方法成为本领域亟待解决的问题之一。
发明内容
为解决上述技术问题,本发明的目的在于提供一种双重介质碳酸盐岩储层的定量分类方法,该方法根据测井解释的结果就能够进行碳酸盐岩储层类型的划分,方便快捷,且测试结果准确可靠。
为达到上述目的,本发明提供了一种双重介质碳酸盐岩储层的定量分类方法,其包括以下步骤:
步骤一、获取需要进行定量分类的储层的参数,所述参数包括:
所述需要进行定量分类的储层的基质孔隙度Φm、基质渗透率Km、裂缝孔隙度Φf和裂缝渗透率Kf
所述需要进行定量分类的储层所在研究井的井筒半径rw、表皮系数S、井内天然气在地层水中的溶解度Rsw、井内的地层压力P和地层温度T;
所述需要进行定量分类的储层所在研究区的基质孔隙度的下限Cutoffpor及基质渗透率的下限Cutoffperm
步骤二、根据步骤一获取的参数,分别计算得到所述研究井的地层水压缩系数Cw、所述需要进行定量分类的储层的基质***岩石有效压缩系数Cf.m及裂缝***岩石有效压缩系数Cf.f
步骤三、利用步骤二中的Cw、Cf.m、Cf.f,分别计算得到所述需要进行定量分类的储层的无因次串流系数ω和无因次井筒储集系数CD
步骤四、利用步骤一获取的参数、步骤二得到的Cw、Cf.m、Cf.f、步骤三得到的ω、CD,确定需要进行定量分类的储层的类型。
在上述方法中,优选地,在步骤四中,确定需要进行定量分类的储层所属的类型时,不同类型储层之间的划分标准为:
当Φm<Cutoffpor,且Kf+Km≤Cutoffperm时,所述需要进行定量分类的储层为致密层;
当Φm<Cutoffpor,且Kf+Km>Cutoffperm时,所述需要进行定量分类的储层为裂缝型储层;
当Φm≥Cutoffpor,且时,所述需要进行定量分类的储层为孔隙型储层;
当Φm≥Cutoffpor,且 K f K m > 383.4 &times; &phi; f &phi; m , K f 2 &phi; f 3 r w 2 K m &le; 3.328 &times; 10 7 &times; &lsqb; 1.1575 &times; lg ( C D e 2 s ) + 2.6789 &rsqb; &times; C D &omega; l n ( 1 / &omega; ) 时,所述需要进行定量分类的储层为裂缝孔隙型储层;
当Φm≥Cutoffpor,且 K f 2 &phi; f 3 r w 2 K m > 3.328 &times; 10 7 &times; &lsqb; 1.1575 &times; lg ( C D e 2 s ) + 2.6789 &rsqb; &times; C D &omega; l n ( 1 / &omega; ) 时,所述需要进行定量分类的储层为孔隙裂缝型储层。
在上述方法中,优选地,所述孔隙型储层的特征为:基质***同时为储油空间和渗流通道,并且压力恢复试井显示单孔特征;所述孔隙裂缝型储层的特征为:基质***为主要储油空间(指地层中的油大部分储集在基质***里面),与此同时,基质***和裂缝***均为渗流通道,并且压力恢复试井显示单孔特征或者以单孔特征为主,存在小部分双孔特征;所述裂缝孔隙型储层的特征为:基质***为储油空间,裂缝***为渗流通道,压力恢复试井显示双孔特征;所述裂缝型储层的特征为:裂缝***同时为储油空间和渗流通道,压力恢复试井显示单孔特征;所述致密层的特征为:地层致密,基质***和裂缝***均不能为储油空间和渗流通道;储层类型的划分是碳酸盐岩储层地质建模和数值模拟的基础,这些不同类型的储层是根据储层的渗流机理及试井特征的划分得到的。
在上述方法中,优选地,在步骤二中,所述地层水压缩系数Cw的计算公式为:
Cw=1.4504×10-4[(3.8546-1.9435×10-2P)+(-1.052×10-2+6.9183×10-5P)×(1.8T+32)+(3.9267×10-5-1.2763×10-7P)×(1.8T+32)2]×(1.0+4.9974×10-2Rsw)。
在上述方法中,优选地,在步骤二中,所述基质***岩石有效压缩系数Cf.m的计算公式为:
C f . m = 2.587 &times; 10 - 4 &phi; m 0.4358 .
在上述方法中,优选地,在步骤二中,所述裂缝***岩石有效压缩系数Cf.f的计算公式:
C f . f = 2.587 &times; 10 - 4 &phi; f 0.4358 .
在上述方法中,优选地,在步骤三中,所述无因次串流系数ω的计算公式为:
&omega; = &phi; f ( C w + C f . f ) &phi; m ( C w + C f . m ) + &phi; f ( C w + C f . f ) .
在上述方法中,优选地,在步骤三中,所述无因次井筒储集系数CD的计算公式为
C D = C w 2 &lsqb; &phi; m ( C w + C f . m ) + &phi; f ( C w + C f . f ) &rsqb; .
在上述方法中,优选地,在步骤一中,所述需要进行定量分类的储层的基质孔隙度Φm、基质渗透率Km是由常规测井解释获得的;所述需要进行定量分类的储层的裂缝孔隙度Φf、裂缝渗透率Kf是由成像测井或常规测井解释获得的。
在上述方法中,优选地,在步骤一中,所述研究井的井筒半径rw、表皮系数S是由常规压力动态测试或压力降落试井动态测试获得的;所述研究井内天然气在地层水中的溶解度Rsw是由常规实验分析获得的;所述研究井内的地层压力P、地层温度T是由常规压力和温度测量获得的;所述研究区的基质孔隙度下限Cutoffpor、基质渗透率下限Cutoffperm是由取芯井的孔隙度和渗透率关系曲线和试油结果获得的。
在上述方法中,优选地,所述需要进行定量分类的储层、研究井、研究区三者之间的位置关系为:所述需要进行定量分类的储层位于所述研究井内,所述研究井位于所述研究区内。
本发明的有益效果:
1)与现有技术相比,本发明不但提供了定量化的技术方案,而且打破以往仅能对取芯井或成像测井数据进行分类的束缚,可以推广应用于所有非取芯井和未测成像测井的所有井;
2)本发明提供的双重介质碳酸盐岩储层的定量分类方法,操作简单方便,根据测井解释的结果就可以进行碳酸盐岩储层的分类。
附图说明
图1为对肯基亚克8001井中4335-4343m井段进行岩心观察和描述的结果图;
图2为对肯基亚克8016井中4313.9-4314.5m和4318.8-4319.5m井段进行岩心观察和描述的结果图;
图3为肯基亚克8016井的压降试井曲线图;
图4为对让纳若尔2399A井中3631-3633m、3635.3-3635.7m和3642-3643.3m井段进行岩心观察和描述的结果图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种储层的定量分类方法。
本实施例以肯基亚克盐下8001井为研究对象,该区域的基质孔隙度下限Cutoffpor为6%,对该井中4335-4343m井段的储层类型进行定量分类。将4335-4343井段以0.1m或0.125m的单位间距划分为若干个测量深度,确定每个测量深度的储层类型后便可知道4335-4343井段的储层类型。
下面以测量深度4335m为例,具体操作步骤如下:
1)由常规测井解释分别获得该测量深度的基质孔隙度Φm、基质渗透率Km
由常规测井解释分别获得该测量深度的裂缝孔隙度Φf、裂缝渗透率Kf
通过常规压力动态测试(或者压力降落试井动态测试)获得8001井的井筒半径rw、和表皮系数S;
通过常规实验分析获得8001井内天然气在地层水中的溶解度Rsw
通过常规压力和温度测量获得8001井内的地层压力P和地层温度T;
通过取芯井的孔隙度和渗透率关系曲线和试油结果获得肯基亚克盐下的基质孔隙度下限Cutoffpor(6%)及基质渗透率下限Cutoffperm
3)根据上述获得的天然气在地层水中的溶解度Rsw、地层压力P和地层温度T,计算得到8001井的地层水压缩系数Cw[其中:Cw=1.4504×10-4[(3.8546-1.9435×10-2P)+(-1.052×10-2+6.9183×10-5P)×(1.8T+32)+(3.9267×10-5-1.2763×10-7P)×(1.8T+32)2]×(1.0+4.9974×10-2Rsw)];
根据上述获得的基质孔隙度Φm,计算得到测量深度4335m的基质***岩石有效压缩系数Cf.m(其中:);
根据上述获得的裂缝孔隙度Φf,计算得到测量深度4335m的裂缝***岩石有效压缩系数Cf.f(其中:);
4)根据上述地层水压缩系数Cw、基质***岩石有效压缩系数Cf.m和裂缝***岩石有效压缩系数Cf.f,计算得到测量深度4335m的无因次串流系数ω和无因次井筒储集系数CD(其中: &omega; = &phi; f ( C w + C f . f ) &phi; m ( C w + C f . m ) + &phi; f ( C w + C f . f ) , C D = C w 2 &lsqb; &phi; m ( C w + C f . m ) + &phi; f ( C w + C f . f ) &rsqb; );
5)判断测量深度4335m的储层类型:
该测量深度的基质孔隙度Φm≥Cutoffpor,且由此可知该测量深度的储层类型为孔隙型储层;
6)按照上述方法一一对其他测量深度进行定量分析,结果为:其他测量深度均满足:Φm≥Cutoffpor,且的条件,均为孔隙型储层;由此肯基亚克盐下8001井中4335-4343m井段的储层类型为孔隙型储层。
为验证上述定量分来方法的正确性,对该井段的岩心进行了观察和描述(结果如图1所示),发现该井段确实为孔隙型储层,表明本发明提供的技术方案是正确可行的。
实施例2
本实施例提供了一种储层的定量分类方法。
本实施例以肯基亚克盐下8016井为研究对象,该区域的基质孔隙度下限Cutoffpor为6%,分别对该井中4313.9-4314.5m和4318.8-4319.5m井段的储层类型进行定量分类。参照实施例1的方法分别将4313.9-4314.5m和4308.8-4319.5m井段以0.1m或0.125m的单位间距划分为若干个测量深度,然后分别确定每个测量深度的储层类型。
结果为:4313.9-4314.5m和4318.8-4319.5m井段的每个测量深度均满足:
Φm≥Cutoffpor,且 K f K m > 383.4 &times; &phi; f &phi; m , K f 2 &phi; f 3 r w 2 K m &le; 3.328 &times; 10 7 &times; &lsqb; 1.1575 &times; lg ( C D e 2 s ) + 2.6789 &rsqb; &times; C D &omega; l n ( 1 / &omega; ) 的条件,均为裂缝孔隙型储层;由此可知肯基亚克盐下8016井中4313.9-4314.5m和4318.8-4319.5m井段的储层类型均为裂缝孔隙型储层。
为验证上述定量分来方法的正确性,对上述两个井段的岩心进行了观察和描述(结果如图2所示),发现上述两个井段有一定程度的微裂缝发育,压降试井曲线表现为双重介质特征(如图3所示),确实为裂缝孔隙型储层,表面本发明提供的技术方案是正确可行的。
实施例3
本实施例提供了一种储层的定量分类方法。
本实施例以让纳若尔油田2399A井为研究对象,该区域的基质孔隙度下限Cutoffpor为6%,分别对让纳若尔油田2399A井中3631-3633m、3635.3-3635.7m和3642-3643.3m井段的储层类型进行定量分类。参照实施例1的方法分别对上述三个井段进行定量分类。
结果为:上述三个井段的每个测量深度均满足:Φm≥Cutoffpor,且 K f 2 &phi; f 3 r w 2 K m > 3.328 &times; 10 7 &times; &lsqb; 1.1575 &times; lg ( C D e 2 s ) + 2.6789 &rsqb; &times; C D &omega; l n ( 1 / &omega; ) 的条件,均为孔隙裂缝型储层;由此可知让纳若尔2399A井中3631-3633m、3635.3-3635.7m和3642-3643.3m井段的储层类型均为孔隙裂缝型储层。
为验证上述定量分来方法的正确性,对上述三个井段的岩心进行了观察和描述(结果如图4所示),发现上述三个井段的裂缝极为发育,确实为孔隙裂缝型储层,表面本发明提供的技术方案是正确可行的。

Claims (10)

1.一种双重介质碳酸盐岩储层的定量分类方法,其包括以下步骤:
步骤一、获取需要进行定量分类的储层的参数,所述参数包括:
所述需要进行定量分类的储层的基质孔隙度Φm、基质渗透率Km、裂缝孔隙度Φf和裂缝渗透率Kf
所述需要进行定量分类的储层所在研究井的井筒半径rw、表皮系数S、井内天然气在地层水中的溶解度Rsw、井内的地层压力P和地层温度T;
所述需要进行定量分类的储层所在研究区的基质孔隙度的下限Cutoffpor及基质渗透率的下限Cutoffperm
步骤二、根据步骤一获取的参数,分别计算得到所述研究井的地层水压缩系数Cw、所述需要进行定量分类的储层的基质***岩石有效压缩系数Cf.m及裂缝***岩石有效压缩系数Cf.f
步骤三、利用步骤二中的Cw、Cf.m、Cf.f,分别计算得到所述需要进行定量分类的储层的无因次串流系数ω和无因次井筒储集系数CD
步骤四、利用步骤一获取的参数、步骤二得到的Cw、Cf.m、Cf.f、步骤三得到的ω、CD,确定需要进行定量分类的储层的类型。
2.根据权利要求1所述的方法,其中:在步骤四中,确定需要进行定量分类的储层所属的类型时,不同类型储层之间的划分标准为:
当Φm<Cutoffpor,且Kf+Km≤Cutoffperm时,所述需要进行定量分类的储层为致密层;
当Φm<Cutoffpor,且Kf+Km>Cutoffperm时,所述需要进行定量分类的储层为裂缝型储层;
当Φm≥Cutoffpor,且时,所述需要进行定量分类的储层为孔隙型储层;
当Φm≥Cutoffpor,且 3.328 &times; 10 7 &times; &lsqb; 1.1575 &times; lg ( C D e 2 s ) + 2.6789 &rsqb; &times; C D &omega; l n ( 1 / &omega; ) 时,所述需要进行定量分类的储层为裂缝孔隙型储层;
当Φm≥Cutoffpor,且 K f 2 &phi; f 3 r w 2 K m > 3.328 &times; 10 7 &times; &lsqb; 1.1575 &times; lg ( C D e 2 s ) + 2.6789 &rsqb; &times; C D &omega; l n ( 1 / &omega; ) 时,所述需要进行定量分类的储层为孔隙裂缝型储层。
3.根据权利要求2所述的方法,其中:
所述孔隙型储层的特征为:基质***同时为储油空间和渗流通道,并且压力恢复试井显示单孔特征;
所述孔隙裂缝型储层的特征为:基质***为主要储油空间,与此同时,基质***和裂缝***均为渗流通道,并且压力恢复试井显示单孔特征;
所述裂缝孔隙型储层的特征为:基质***为储油空间,裂缝***为渗流通道,压力恢复试井显示双孔特征;
所述裂缝型储层的特征为:裂缝***同时为储油空间和渗流通道,压力恢复试井显示单孔特征;
所述致密层的特征为:地层致密,基质***和裂缝***均不能为储油空间和渗流通道。
4.根据权利要求1所述的方法,其中:在步骤二中,所述地层水压缩系数Cw的计算公式为
Cw=1.4504×10-4[(3.8546-1.9435×10-2P)+(-1.052×10-2+6.9183×10-5P)×(1.8T+32)+(3.9267×10-5-1.2763×10-7P)×(1.8T+32)2]×(1.0+4.9974×10-2Rsw)。
5.根据权利要求1所述的方法,其中:在步骤二中,所述基质***岩石有效压缩系数Cf.m的计算公式为
C f . m = 2.587 &times; 10 - 4 &phi; m 0.4358 .
6.根据权利要求1所述的方法,其中:在步骤二中,所述裂缝***岩石有效压缩系数Cf.f的计算公式
C f . f = 2.587 &times; 10 - 4 &phi; f 0.4358 .
7.根据权利要求1-6任一项所述的方法,其中:在步骤三中,所述无因次串流系数ω的计算公式为
&omega; = &phi; f ( C w + C f . f ) &phi; m ( C w + C f . m ) + &phi; f ( C w + C f . f ) .
8.根据权利要求1-7任一项所述的方法,其中:在步骤三中,所述无因次井筒储集系数CD的计算公式为
C D = C w 2 &lsqb; &phi; m ( C w + C f . m ) + &phi; f ( C w + C f . f ) &rsqb; .
9.根据权利要求1所述的方法,其中:在步骤一中,
所述需要进行定量分类的储层的基质孔隙度Φm、基质渗透率Km是由常规测井解释获得的;
所述需要进行定量分类的储层的裂缝孔隙度Φf、裂缝渗透率Kf是由成像测井或常规测井解释获得的;
所述研究井的井筒半径rw、表皮系数S是由压力动态测试或压力降落试井动态测试获得的;
所述研究井内天然气在地层水中的溶解度Rsw是由常规实验分析获得的;
所述研究井内的地层压力P、地层温度T是由常规压力和温度测量获得的;
所述研究区的基质孔隙度下限Cutoffpor、基质渗透率下限Cutoffperm是由取芯井的孔隙度和渗透率关系曲线和试油结果获得的。
10.根据权利要求1所述的方法,其中:所述需要进行定量分类的储层、研究井、研究区三者之间的位置关系为:
所述需要进行定量分类的储层位于所述研究井内,所述研究井位于所述研究区内。
CN201510956383.4A 2015-12-18 2015-12-18 双重介质碳酸盐岩储层的定量分类方法 Active CN105604546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510956383.4A CN105604546B (zh) 2015-12-18 2015-12-18 双重介质碳酸盐岩储层的定量分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510956383.4A CN105604546B (zh) 2015-12-18 2015-12-18 双重介质碳酸盐岩储层的定量分类方法

Publications (2)

Publication Number Publication Date
CN105604546A true CN105604546A (zh) 2016-05-25
CN105604546B CN105604546B (zh) 2018-10-16

Family

ID=55984831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510956383.4A Active CN105604546B (zh) 2015-12-18 2015-12-18 双重介质碳酸盐岩储层的定量分类方法

Country Status (1)

Country Link
CN (1) CN105604546B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837321A (zh) * 2017-01-25 2017-06-13 中国石油大学(北京) 一种恢复天然气地下产状的方法
CN107704646A (zh) * 2017-08-11 2018-02-16 中国石油天然气股份有限公司 一种致密储层体积改造后的建模方法
CN108088779A (zh) * 2017-12-27 2018-05-29 中国石油大学(华东) 一种致密储层和常规储层储集空间分类方法
CN108843300A (zh) * 2018-06-25 2018-11-20 中国石油天然气股份有限公司 一种复杂多孔介质中确定主流通道类型的方法及装置
CN110486004A (zh) * 2018-05-14 2019-11-22 中国石油天然气股份有限公司 识别砂岩油藏水流优势通道的方法及装置
CN111239372A (zh) * 2020-03-12 2020-06-05 西安石油大学 一种基于覆压渗流实验的碳酸盐岩孔隙结构分类的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312115A (ja) * 1988-06-09 1989-12-15 Power Reactor & Nuclear Fuel Dev Corp 低水圧制御水理試験法
EA004518B1 (ru) * 2000-09-12 2004-06-24 Шлюмбергер Текнолоджи Б.В. Оценка многопластовых коллекторов
CN1749780A (zh) * 2005-09-21 2006-03-22 大庆油田有限责任公司 油气藏三元分类方法
CN102645678A (zh) * 2012-05-08 2012-08-22 中国石油大学(华东) 成藏动力和孔隙结构约束下的有效储层成藏物性下限计算方法
CN103306671A (zh) * 2013-05-17 2013-09-18 中国石油天然气股份有限公司 一种四象限储层类型识别方法及***
CN103334740A (zh) * 2013-07-12 2013-10-02 中国石油化工股份有限公司 考虑启动压力梯度的确定泄油前缘的方法
CN104101905A (zh) * 2013-04-11 2014-10-15 中国石油天然气集团公司 一种基于岩电参数的储层分类方法
CN104516025A (zh) * 2015-01-16 2015-04-15 中石化西南石油工程有限公司地质录井分公司 碳酸盐储层物性随钻分类和评价方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312115A (ja) * 1988-06-09 1989-12-15 Power Reactor & Nuclear Fuel Dev Corp 低水圧制御水理試験法
EA004518B1 (ru) * 2000-09-12 2004-06-24 Шлюмбергер Текнолоджи Б.В. Оценка многопластовых коллекторов
CN1749780A (zh) * 2005-09-21 2006-03-22 大庆油田有限责任公司 油气藏三元分类方法
CN102645678A (zh) * 2012-05-08 2012-08-22 中国石油大学(华东) 成藏动力和孔隙结构约束下的有效储层成藏物性下限计算方法
CN104101905A (zh) * 2013-04-11 2014-10-15 中国石油天然气集团公司 一种基于岩电参数的储层分类方法
CN103306671A (zh) * 2013-05-17 2013-09-18 中国石油天然气股份有限公司 一种四象限储层类型识别方法及***
CN103334740A (zh) * 2013-07-12 2013-10-02 中国石油化工股份有限公司 考虑启动压力梯度的确定泄油前缘的方法
CN104516025A (zh) * 2015-01-16 2015-04-15 中石化西南石油工程有限公司地质录井分公司 碳酸盐储层物性随钻分类和评价方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
倪国辉等: "碳酸盐岩复杂孔隙结构的测井识别和分类评价——以中东某油田H地层为例", 《石油天然气学报》 *
刘晓敏: "基于常规测井资料的礁滩相储层储集类型分类", 《测井技术》 *
李林等: "碳酸盐岩孔隙分类方法综述", 《内蒙古石油化工》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837321A (zh) * 2017-01-25 2017-06-13 中国石油大学(北京) 一种恢复天然气地下产状的方法
CN107704646A (zh) * 2017-08-11 2018-02-16 中国石油天然气股份有限公司 一种致密储层体积改造后的建模方法
CN107704646B (zh) * 2017-08-11 2021-06-01 中国石油天然气股份有限公司 一种致密储层体积改造后的建模方法
CN108088779A (zh) * 2017-12-27 2018-05-29 中国石油大学(华东) 一种致密储层和常规储层储集空间分类方法
CN108088779B (zh) * 2017-12-27 2020-02-07 中国石油大学(华东) 一种致密储层和常规储层储集空间分类方法
CN110486004A (zh) * 2018-05-14 2019-11-22 中国石油天然气股份有限公司 识别砂岩油藏水流优势通道的方法及装置
CN108843300A (zh) * 2018-06-25 2018-11-20 中国石油天然气股份有限公司 一种复杂多孔介质中确定主流通道类型的方法及装置
CN108843300B (zh) * 2018-06-25 2022-03-01 中国石油天然气股份有限公司 一种复杂多孔介质中确定主流通道类型的方法及装置
CN111239372A (zh) * 2020-03-12 2020-06-05 西安石油大学 一种基于覆压渗流实验的碳酸盐岩孔隙结构分类的方法

Also Published As

Publication number Publication date
CN105604546B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN105604546A (zh) 双重介质碳酸盐岩储层的定量分类方法
NL2030553B1 (en) Ore-forming Process Simulation Method and Device for Metallogenic Research Area
US9684084B2 (en) Three-dimensional multi-modal core and geological modeling for optimal field development
Wu et al. An improved method of characterizing the pore structure in tight oil reservoirs: Integrated NMR and constant-rate-controlled porosimetry data
US6691037B1 (en) Log permeability model calibration using reservoir fluid flow measurements
CN104819923A (zh) 基于核磁共振的低渗透砂岩储层孔隙结构定量反演方法
CN103293562A (zh) 一种碳酸盐岩储层地质储量的确定方法及设备
CN104569344B (zh) 页岩储层脆性矿物地震定量表征方法
CN106930754A (zh) 一种储层自适应的核磁共振测井数据采集方法
Ruth et al. Combining electrical measurements and mercury porosimetry to predict permeability
Clerke et al. Wireline spectral porosity analysis of the Arab Limestone—From Rosetta Stone to CIPHER
BR102016013243A2 (pt) método de explorar hidrocarbonetos de uma bacia sedimentária compreendendo rochas de carbonato, por meio de simulação estratigráfica
CN109375283A (zh) 一种砂岩储层3d渗透率演化史的分析方法
Askari et al. A fully integrated method for dynamic rock type characterization development in one of Iranian off-shore oil reservoir
CN110471127B (zh) 一种测井渗透率解释方法
Such et al. The influence of reservoir conditions on filtration parameters of shale rocks
El Sayed et al. Pore aperture size (r36) calculation from porosity or permeability to distinguish dry and producing wells
Wang et al. Analysis of petrophysical cutoffs of reservoir intervals with production capacity and with accumulation capacity in clastic reservoirs
Zahid et al. Pore size distribution and reservoir characterization: evaluation for the Eocene beach-bar sequence, Dongying Depression, China
RU2515629C1 (ru) Способ определения хрупких зон коллекторов
Palavecino et al. Grain-size distribution, grain arrangement, and fluid transport properties: an integrated rock classification method for tight-gas sandstones
Al-Bulushi et al. Brine versus Klinkenberg corrected gas permeability correlation for Shuaiba carbonate formation
Lima et al. Rock typing of coquinas from the Morro do Chaves Formation
Yasin et al. Application of hydraulic flow unit in pore size classification
Tavoosi Iraj et al. Integrated petrophysical and heterogeneity assessment of the Karstified Fahliyan formation in the Abadan Plain, Iran

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant