CN105513831A - Electrode material in hollow tubular structure, and preparation method for electrode material - Google Patents

Electrode material in hollow tubular structure, and preparation method for electrode material Download PDF

Info

Publication number
CN105513831A
CN105513831A CN201510813390.9A CN201510813390A CN105513831A CN 105513831 A CN105513831 A CN 105513831A CN 201510813390 A CN201510813390 A CN 201510813390A CN 105513831 A CN105513831 A CN 105513831A
Authority
CN
China
Prior art keywords
copper
kocide
tubular structure
hollow tubular
complex hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510813390.9A
Other languages
Chinese (zh)
Other versions
CN105513831B (en
Inventor
雷晓东
张东彬
梅运谊
孔祥贵
夏梦棋
王雨薇
刘晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Technology Service Center Of Petrochina Co Ltd
Beijing University of Chemical Technology
Original Assignee
Beijing Information Technology Service Center Of Petrochina Co Ltd
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Technology Service Center Of Petrochina Co Ltd, Beijing University of Chemical Technology filed Critical Beijing Information Technology Service Center Of Petrochina Co Ltd
Priority to CN201510813390.9A priority Critical patent/CN105513831B/en
Publication of CN105513831A publication Critical patent/CN105513831A/en
Application granted granted Critical
Publication of CN105513831B publication Critical patent/CN105513831B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

The invention provides an electrode material in a hollow tubular structure, and the electrode material is in the hollow tubular structure which consists of a composite hydroxide/copper hydroxide/copper-contained metal substrate. The chemical formulation of the composite hydroxide is MxM'y(OH)2, wherein M is Ni2+ or Co2+, M' is Co2+, Al3+, or Fe3+. According to the invention, a method of solution dipping and constant potential deposition, and a copper hydroxide nanowire array grows on the copper-contained metal substrate in an in-situ manner. The composite hydroxide is deposited on a copper hydroxide nanorod in electrolyte containing mixed metal salt solution in a manner of electro-deposition through employing the method of constant potential deposition. Meanwhile, electrochemical corrosion enables the copper hydroxide nanorod to be dissolved in a process of electro-deposition, thereby obtaining the hollow tubular structure of the composite hydroxide/copper hydroxide/copper-contained metal substrate. The electrode material is good in super-capacitance performance, and can be used for a super-capacitor.

Description

A kind of hollow tubular structure electrode material and preparation method thereof
Technical field:
The present invention relates to a kind of hollow tubular structure electrode material and preparation method thereof, be specifically related to complex hydroxide/Kocide SD/copper-containing metal substrate hollow tubular structure electrode material and preparation method thereof.
Background technology:
In the past few decades, people take a large amount of effort go design and build novel energy storage device.Ultracapacitor, due to its high-energy-density, good cyclical stability and efficiently charge-discharge performance, more and more get more and more people's extensive concerning.Research finds, in order to obtain desirable electrochemical capacitance performance, we must consider two aspects: the load capacity of electroactive component and charge transfer process (comprising the ion in electrolyte and the electronics in redox reaction).The research of one-dimensional nano line nucleocapsid structure makes electrode material for super capacitor burst out again unlimited life.Due to nucleocapsid structure possessed bigger serface shell and by the core of nano wire by multiple advantages such as collector and active component firmly combine, make solution specific surface that 1-dimention nano nucleocapsid structure can be comparatively satisfactory and load capacity two problems, thus be expected to the comparatively ideal ratio capacitance value of acquisition one.
Present stage, of common occurrence as the report of electrode material for super capacitor for 1-dimention nano nucleocapsid structure.The people such as poplar [NanoEnergy (2014) 7,170 – 178] and Ning Dengren [NanoEnergy (2014) 7,134 – 142] report Co respectively 3o 4niO nanometer rods nucleocapsid structure and Co 3o 4lDH nano-array, and achieve the higher ratio capacitance value of 2033F/g and 1722F/g.But the high rate performance of this kind of electrode material is not very well, only has 54.0% and 61.4% respectively, which limits the application of these electrode materials in actual production life.
In fact, electrochemical capacitance electrode material has good ratio capacitance value and relatively poor this phenomenon of high rate performance is much in scientific research.Nickel hydroxide nano wall has been prepared in the people such as land [Chem.Commun, 2011,47,9651 – 9653] success in foam nickel base, and obtains 7.83F/cm 2comparatively high specific capacitance value, but along with the increase of current density, the ratio capacitance value of this electrode material is reduced to 43.0% of initial value.Under normal circumstances, when the raising density of charging current, its ratio capacitance value can significantly lower, and showing is exactly that the high rate performance of electrode material is poor.Return and make a thorough investigation of the end, this is because at higher current densities, the electron transfer rate in electro-chemical activity site can not lead over that the conversion rate of redox reaction causes.In other words, although nanometer nuclear shell nano-structure is conducive to OH -with electronics in electrolyte and interelectrode transmission, but this is nowhere near, and we also must improve the transmission efficiency between them, could improve the high rate performance of electrode material like this.Therefore, we wish that the electrode building a kind of hollow tubular nanometer nuclear shell nano-structure solves this problem.On the one hand, multistage shell can increase the specific area of electrode material, and promote the load capacity of active component, on the other hand, hollow tubular structure can allow electrolyte diffusion enter in nanotube, shortens electron diffusion path, effective transfer of accelerated charge.
For the shell of multilevel hierarchy, metal oxide/hydroxide, comprises NiAl-LDHs, NiTi-LDHs, Co 3o 4, NiO, Ni (OH) 2, Co (OH) 2it may be best selection.Wherein, Ni (OH) 2, Co (OH) 2because the layer structure of higher theoretical ratio capacitance value, feature redox reaction and uniqueness, and be widely used in the electrode material of fake capacitance capacitor.Meanwhile, consider the cooperative effect of hybrid metal ion, complex hydroxide is expected to be widely applied in the preparation of electrode material for super capacitor.
Summary of the invention:
The object of this invention is to provide a kind of hollow tubular structure electrode material and preparation method thereof, this material can be used as the electrode material of the energy storage device such as ultracapacitor, lithium battery.
Hollow tubular structure electrode material of the present invention is the hollow tubular structure material be made up of complex hydroxide/Kocide SD/copper-containing metal substrate, and wherein complex hydroxide chemical formulation is M xm ' y(OH) 2, wherein M, M ' is two kinds of different metal ions, and wherein M is Ni 2+or Co 2+, M ' is Co 2+, Al 3+or Fe 3+.This material has unique microstructure, and wherein Kocide SD nanorod growth is in copper-containing metal substrate, the hollow tubular structure that complex hydroxide growth is formed at Kocide SD nanometer rods outer wall.
The present invention adopts the method for solution impregnation and potentiostatic electrodeposition, first growth in situ Kocide SD nano-wire array in copper-containing metal substrate, then in the electrolyte containing mixed salt solution, by the method for constant potential electro-deposition, complex hydroxide on Kocide SD nanometer rods substrates, simultaneously due to electrochemical corrosion effect, make in electrodeposition process, there is dissolution phenomena in Kocide SD nanometer rods, thus obtains complex hydroxide/Kocide SD/copper-containing metal substrate hollow tubular structure.This electrode material has good electrochemical capacitance performance, can be applicable to electrode material for super capacitor.
The preparation method of hollow tubular structure electrode material of the present invention, concrete steps are as follows:
A. impregnated in NaOH and ammonium persulfate mixed solution by pretreated copper-containing metal substrate, wherein the concentration of NaOH is 0.5-10.0mol/L, and the concentration of ammonium persulfate is 0.05-1.00mol/L; Take out after dipping 20-30min, clean with deionized water rinsing, be placed in 30-80 DEG C of baking oven dry, namely obtain the substrate that grown Kocide SD in copper-containing metal substrate.The Kocide SD grown is nano bar-shape structure, and described copper-containing metal substrate is the cupric elemental metallic material such as foam copper, copper sheet, copper mesh, copper alloy.
B. using Kocide SD/copper-containing metal substrate of obtaining in steps A as work electrode, be to electrode with Pt, Ag/AgCl is reference electrode, in mixed salt solution, electromotive force is potentiostatic electrodeposition 150-400 second under-0.9 ~-1.1V condition, obtains complex hydroxide/Kocide SD/copper-containing metal substrate tubular structure.
Described mixed salt solution is the mixing salt solution that M salt and M ' salt form, and wherein M is metal ion Ni 2+or Co 2+, M ' is metal ion Co 2+, Al 3+or Fe 3+; The anion of above-mentioned two kinds of salt has at least one to be NO 3 -, another kind is NO 3 -, Cl -or SO 4 2-.In mixed salt solution, the mol ratio of M salt and M ' salt is 1 ~ 4:1, and total concentration of metal ions is 0.005-0.100mol/L.
Complex hydroxide described in step B is Ni xco 1-x(OH) 2, Ni xal 2/3 (1-x)(OH) 2, Co xal 2/3 (1-x)(OH) 2, Ni xfe 2/3 (1-x)(OH) 2and Co xfe 2/3 (1-x)(OH) 2complex hydroxide.
Feature of the present invention is: the one-dimensional nano line array built in copper-containing metal substrate, can increase the load capacity of active component complex hydroxide, thus the ratio capacitance value that acquisition one is ideal.Due to the factor such as unsteadiness of electrochemical corrosion effect and Kocide SD nanometer rods, in the process of potentiostatic electrodeposition complex hydroxide, cause the dissolving of Kocide SD nanometer rods, thus obtain the structure of hollow tubular, this hollow tubular structure is conducive to fully contacting of electrolyte and electro-chemical activity component, shorten the approach of electric charge diffusion, accelerate effective transfer of electronics, make this electrode material have good high rate performance.Therefore, this material is suitable for the electrode material being used as the energy storage device such as ultracapacitor, lithium battery.
Characterize and application experiment
Fig. 1 is that the scanning electron microscopy (SEM) of Kocide SD/foam copper that embodiment 1 step B obtains characterizes, as seen from the figure, Kocide SD nanometer rods grows on foam copper surface uniformly, the smooth surface of nanometer rods, its diameter is 150-250 nanometer, and length is 5-15 micron.
Fig. 2 is that the transmission electron microscope (TEM) of Kocide SD/foam copper that embodiment 1 step B obtains characterizes, and as seen from the figure, Kocide SD nanorod diameter is about 200 nanometers, and is solid construction.
Fig. 3 is that the X-ray diffraction (XRD) of nickel cobalt complex hydroxide/Kocide SD/foam copper that embodiment 1 step C obtains characterizes, as seen from the figure, except there is foam copper basement feature diffraction maximum (representing by " # "), have also appeared (001), (101) characteristic diffraction peak of (020), (021) of Kocide SD phase, (002) characteristic diffraction peak and nickel cobalt complex hydroxide, illustrate that this material is nickel cobalt complex hydroxide/Kocide SD/foam copper structure.
Fig. 4 is that the scanning electron microscopy (SEM) of nickel cobalt complex hydroxide/Kocide SD/foam copper that embodiment 1 step C obtains characterizes, as seen from the figure, nickel cobalt complex hydroxide nanometer sheet is wrapped in Kocide SD nanometer rods outer wall, forms tubulose multilevel hierarchy.
Fig. 5 is that the transmission electron microscope (TEM) of nickel cobalt complex hydroxide/Kocide SD/foam copper that embodiment 1 step C obtains characterizes, as seen from the figure, nickel cobalt complex hydroxide nanoscale twins thickness is about 50 nanometers, and the nickel cobalt complex hydroxide/Kocide SD/foam copper structure of formation is hollow structure.
Fig. 6 is that the scanning electron microscopy (SEM) after nickel cobalt complex hydroxide/Kocide SD/foam copper structural deterioration of obtaining of embodiment 1 step C characterizes, as seen from the figure, there is pore passage structure in nanometer rods section, confirms that the nickel cobalt complex hydroxide/Kocide SD/foam copper of preparation is hollow tubular structure further.
Fig. 7 is that the scanning electron microscopy (SEM) of ferronickel complex hydroxide/Kocide SD/foam copper that embodiment 3 step C obtains characterizes, as seen from the figure, ferronickel complex hydroxide/Kocide SD/the foam copper formed is hollow tubular structure, and its length is 5-15 micron.
Fig. 8 is that the scanning electron microscopy (SEM) of cobalt aluminum complex hydroxide/Kocide SD/foam copper that embodiment 5 step C obtains characterizes, as seen from the figure, cobalt aluminum complex hydroxide is attached to nanotube outer wall with graininess, and form tubulose multilevel hierarchy, nanotube length is 5-10 micron.
Fig. 9 is the cyclic voltammetry curve of nickel cobalt complex hydroxide/Kocide SD/foam copper electrode in the KOH electrolyte of 1mol/L that embodiment 1 step C obtains, and sweep speed is respectively 1mV/s, 5mV/s, 10mV/s, 20mV/s, 30mV/s.As seen from the figure, under 1mV/s low sweeps fast condition, there is redox character peak.But under height sweeps fast condition, redox character peak is not obvious, its reason may be that the oxidation-reduction potential of nickel cobalt is close, thus mutually caused by interference.
Figure 10 is the charging and discharging curve of nickel cobalt complex hydroxide/Kocide SD/foam copper electrode in the KOH electrolyte of 1mol/L under different current density that embodiment 1 step C obtains, charge and discharge process carries out between 0-0.4V, and capacitance can be obtained by following formulae discovery:
C = I Δ t m Δ V Or C = I Δ t A Δ V
C represents ratio capacitance (F/g or F/cm 2), I is charging and discharging currents (mA), and Δ t is discharge and recharge time (s), and Δ V is voltage (V), m is the quality (g) of electrode active component, and A is electrode active component area occupied (1.0*1.0cm 2).5mA/cm is respectively in current density 2, 10mA/cm 2, 20mA/cm 2, 30mA/cm 2time, ratio capacitance value is respectively 22.125,21.445,19.840,17.394F/cm 2, its respective quality ratio capacitance value is respectively 1923.91,1864.78,1725.22,1512.52F/g (electrode active component is 0.0115g).
Figure 11 is the stable circulation linearity curve of nickel cobalt complex hydroxide/Kocide SD/foam copper electrode in the KOH electrolyte of 1mol/L that embodiment 1 step C obtains, as seen from the figure, at 30mA/cm 2high current densities under, 1000 circulation after still keep 86.68% capacity, illustrate that this material has long-time stability, can be used for ultracapacitor actual production life in.
Figure 12 is the charge-discharge magnification curve of nickel cobalt complex hydroxide/Kocide SD/foam copper electrode in the KOH electrolyte of 1mol/L that embodiment 1 step C obtains, and as seen from the figure, along with the increase of current density, ratio capacitance value lowers, along with current density is by 5mA/cm 2be increased to 30mA/cm 2, ratio capacitance value reduces to initial 78.62%, higher than the most of electrode materials reported at present.Illustrate that this electrode material still has ideal ratio capacitance value under high charge-discharge rate conditions, this illustrate unique hollow structure be conducive to electrolyte with active group understand fully contact, shorten the approach of charge transfer, accelerate charge transfer process, make this electrode material take into account the advantage of high specific capacitance value and high rate capability, be expected to effectively be applied in electrode material for super capacitor.
Beneficial effect of the present invention: the method adopting solution impregnation and constant potential electro-deposition, growth in situ Kocide SD nano-wire array in copper-containing metal substrate, and in Kocide SD nanometer rods potentiostatic electrodeposition complex hydroxide.Due to electrochemical corrosion effect, Kocide SD is dissolved, thus obtain the multilevel hierarchy of hollow tubular.The preparation of the method is simple, fast, with low cost, and the product structure obtained is good, and conductivity is strong, in addition, by controlling the potentiostatic electrodeposition time, can reach the object of pattern and the regulation and control complex hydroxide load capacity controlling material.Due to the structural advantage of this product, make this electrode material have good electrochemical capacitance performance (high, the stability of ratio capacitance value strong, good rate capability), it is expected to be with a wide range of applications in the electrode material of ultracapacitor and even other energy storage devices.
Accompanying drawing explanation
Fig. 1 is scanning electron microscopy (SEM) sign of the Kocide SD/foam copper in embodiment 1.
Fig. 2 is transmission electron microscope (TEM) sign of the Kocide SD/foam copper in embodiment 1.
Fig. 3 is X-ray diffraction (XRD) figure of the nickel cobalt complex hydroxide/Kocide SD/foam copper in embodiment 1.
Fig. 4 is scanning electron microscopy (SEM) sign of the nickel cobalt complex hydroxide/Kocide SD/foam copper in embodiment 1.
Fig. 5 is transmission electron microscope (TEM) sign of the nickel cobalt complex hydroxide/Kocide SD/foam copper in embodiment 1.
Fig. 6 is that the scanning electron microscopy (SEM) after the nickel cobalt complex hydroxide/Kocide SD/foam copper structural deterioration in embodiment 1 characterizes.
Fig. 7 is scanning electron microscopy (SEM) sign of the ferronickel complex hydroxide/Kocide SD/foam copper in embodiment 3.
Fig. 8 is scanning electron microscopy (SEM) sign of the cobalt aluminum complex hydroxide/Kocide SD/foam copper in embodiment 5.
Fig. 9 is the cyclic voltammetry curve of the nickel cobalt complex hydroxide/Kocide SD/foam copper electrode in embodiment 1.
Figure 10 is the nickel cobalt complex hydroxide/Kocide SD/charging and discharging curve of foam copper electrode under different current density in embodiment 1.
Figure 11 is the stable circulation linearity curve of the nickel cobalt complex hydroxide/Kocide SD/foam copper electrode in embodiment 1.
Figure 12 is the charge-discharge magnification curve of the nickel cobalt complex hydroxide/Kocide SD/foam copper electrode in embodiment 1.
Embodiment
Embodiment 1
A. the preliminary treatment of foam copper.
Be greater than the foam copper of 90% with purity for raw material, be cut into as 4.0*3.0cm 2the sheet of size, with the hydrochloric ultrasonic wave cleaning 5min of 10%, then rinses well with deionized water and absolute ethyl alcohol respectively, puts into 60 DEG C of baking oven drying for standby.
The ammonium persulfate of the NaOH and 2.28g that B. take 10.0g is dissolved in the deionized water of 100mL, be made into the mixed solution that concentration is respectively 2.5mol/L and 0.1mol/L, take out in foam copper substrate complete for preliminary treatment dipping mixed solution after 20min, with deionized water rinsing, be placed in 60 DEG C of baking oven drying for standby, Kocide SD nanometer rods can be grown in foam copper substrate.
C. take the nickel nitrate of 2.18g and the cobalt nitrate of 2.18g, be dissolved in the deionized water of 50mL, as electrolyte solution.Kocide SD/the foam copper obtained by step B, as work electrode, is to electrode with Pt, and Ag/AgCl is reference electrode.Under-1.0V electrical potential conditions, potentiostatic electrodeposition 300 seconds, thus obtain Ni 0.5co 0.5(OH) 2nickel cobalt complex hydroxide/Kocide SD/foam copper tubular structure material.
Embodiment 2
A. select purity to be greater than the copper mesh of 99%, be cut into as 4.0*3.0cm 2the sheet of size, by the disposal methods of embodiment 1.
B. the NaOH of 5.0g and the ammonium persulfate of 1.85g is taken, be dissolved in the deionized water of 100mL, be made into mixed solution, copper mesh substrate complete for preliminary treatment be impregnated in mixed solution and take out after 25min, with deionized water rinsing, be placed in 60 DEG C of baking oven drying for standby.
C. take the cobalt nitrate of 1.09g and the iron chloride of 0.41g, be dissolved in the deionized water of 50mL, as electrolyte solution.Kocide SD/the copper mesh obtained by step B, as work electrode, is to electrode with Pt, and Ag/AgCl is reference electrode.Under-1.0V electrical potential conditions, potentiostatic electrodeposition 150 seconds, thus obtain Co 0.5fe 0.33(OH) 2ferro-cobalt complex hydroxide/Kocide SD/copper mesh tubular structure material.
Embodiment 3
A. with embodiment 1.
B. the NaOH of 5.0g and the ammonium persulfate of 1.44g is taken, be dissolved in the deionized water of 100mL, be made into mixed solution, foam copper substrate complete for preliminary treatment be impregnated in mixed solution and take out after 30min, with deionized water rinsing, be placed in 45 DEG C of baking oven drying for standby.
C. take the nickel nitrate of 1.09g and the ferric sulfate of 0.60g, be dissolved in the deionized water of 50mL, as electrolyte solution.Kocide SD/the foam copper obtained by step B, as work electrode, is to electrode with Pt, and Ag/AgCl is reference electrode.Under-1.1V electrical potential conditions, potentiostatic electrodeposition 200 seconds, thus obtain Ni 0.625fe 0.25(OH) 2ferronickel complex hydroxide/Kocide SD/foam copper hollow tubular structure material.
Embodiment 4
A. select purity to be greater than the copper sheet of 90%, be cut into as 4.0*3.0cm 2the sheet of size, with the method process of embodiment 1.
B. the NaOH of 8.0g and the ammonium persulfate of 2.0g is taken, be dissolved in the deionized water of 100mL, be made into mixed solution, copper sheet substrate complete for preliminary treatment be impregnated in mixed solution and take out after 25min, with deionized water rinsing, be placed in 60 DEG C of baking oven drying for standby.
C. take the nickel nitrate of 2.91g and the aluminum sulfate of 1.67g, be dissolved in the deionized water of 50mL, as electrolyte solution.Kocide SD/the copper sheet obtained by step B, as work electrode, is to electrode with Pt, and Ag/AgCl is reference electrode.Under-0.9V electrical potential conditions, potentiostatic electrodeposition 250 seconds, thus obtain Ni 0.73al 0.18(OH) 2nickel aluminum complex hydroxide/Kocide SD/copper sheet tubular structure material.
Embodiment 5
A. with embodiment 1.
B. the NaOH of 10.0g and the ammonium persulfate of 2.28g is taken, be dissolved in the deionized water of 100mL, be made into mixed solution, foam copper substrate complete for preliminary treatment be impregnated in mixed solution and take out after 20min, with deionized water rinsing, be placed in 30 DEG C of baking oven drying for standby.
C. take the cobalt nitrate of 2.18g and the aluminum nitrate of 0.94g, be dissolved in the deionized water of 50mL, as electrolyte solution.Kocide SD/the foam copper obtained by step B, as work electrode, is to electrode with Pt, and Ag/AgCl is reference electrode.Under-1.0V electrical potential conditions, potentiostatic electrodeposition 250 seconds, thus obtain Co 0.67al 0.22(OH) 2cobalt aluminum complex hydroxide/Kocide SD/foam copper tubular structure material.

Claims (3)

1. a preparation method for hollow tubular structure electrode material, concrete steps are as follows:
A. impregnated in NaOH and ammonium persulfate mixed solution by pretreated copper-containing metal substrate, wherein the concentration of NaOH is 0.5-10.0mol/L, and the concentration of ammonium persulfate is 0.05-1.00mol/L; Take out after dipping 20-30min, clean with deionized water rinsing, be placed in 30-80 DEG C of baking oven dry, namely obtain the substrate that grown Kocide SD in copper-containing metal substrate; The Kocide SD grown is nano bar-shape structure; Described copper-containing metal substrate is foam copper, copper sheet, one of copper mesh or copper alloy;
B. Kocide SD steps A obtained/copper-containing metal substrate is as work electrode, be to electrode with Pt, Ag/AgCl is reference electrode, in mixed salt solution, electromotive force is potentiostatic electrodeposition 150-400 second under-0.9 ~-1.1V condition, obtains complex hydroxide/Kocide SD/copper-containing metal substrate tubular structure;
Mixed salt solution described in step B is the mixing salt solution that M salt and M ' salt form, and wherein M is metal ion Ni 2+or Co 2+, M ' is metal ion Co 2+, Al 3+or Fe 3+, and be Co when M and M ' is different 2+; The anion of above-mentioned two kinds of salt has at least one to be NO 3 -, another kind is NO 3 -, Cl -or SO 4 2-; In mixed salt solution, the mol ratio of M salt and M ' salt is 1 ~ 4:1, and total concentration of metal ions is 0.005-0.100mol/L;
Complex hydroxide described in step B is Ni xco 1-x(OH) 2, Ni xal 2/3 (1-x)(OH) 2, Co xal 2/3 (1-x)(OH) 2, Ni xfe 2/3 (1-x)(OH) 2and Co xfe 2/3 (1-x)(OH) 2complex hydroxide, it is the structure of hollow tubular.
2. the hollow tubular structure electrode material prepared of method according to claim 1, it is the hollow tubular structure material be made up of complex hydroxide/Kocide SD/copper-containing metal substrate, and wherein complex hydroxide chemical formulation is M xm ' y(OH) 2, wherein M is Ni 2+or Co 2+, M ' is Co 2+, Al 3+or Fe 3+, and be Co when M and M ' is different 2+.
3. hollow tubular structure electrode material according to claim 2, is characterized in that this material microstructure is; Kocide SD nanorod growth is in copper-containing metal substrate, and complex hydroxide growth is at the hollow tubular structure of Kocide SD nanometer rods outer wall formation.
CN201510813390.9A 2015-11-23 2015-11-23 A kind of hollow tubular structure electrode material and preparation method thereof Expired - Fee Related CN105513831B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510813390.9A CN105513831B (en) 2015-11-23 2015-11-23 A kind of hollow tubular structure electrode material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510813390.9A CN105513831B (en) 2015-11-23 2015-11-23 A kind of hollow tubular structure electrode material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN105513831A true CN105513831A (en) 2016-04-20
CN105513831B CN105513831B (en) 2017-10-20

Family

ID=55721734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510813390.9A Expired - Fee Related CN105513831B (en) 2015-11-23 2015-11-23 A kind of hollow tubular structure electrode material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN105513831B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869908A (en) * 2016-05-25 2016-08-17 东华大学 Preparation method of core-shell Co3O4@Fe2O3 nanowire array
CN105938762A (en) * 2016-07-12 2016-09-14 安徽大学 Method for preparing flexible solid super capacitor based on linear Cu(OH)2@NiCo2O4 multilevel nano array
CN106226382A (en) * 2016-08-08 2016-12-14 北京科技大学 Nano porous copper/Cu (OH)2nano-wire array sensor electrode material and preparation method thereof
CN106517445A (en) * 2016-12-07 2017-03-22 青岛海尔智能技术研发有限公司 Preparation method for electroporation electrode structure and application
CN107871627A (en) * 2016-09-28 2018-04-03 南京大学 Foam copper supports high capacitance flexible electrode material of CuO nanometer sheet and preparation method thereof
CN107879371A (en) * 2017-11-17 2018-04-06 许昌学院 A kind of method in copper-based material surface in situ growth needle-like Kocide SD
CN108109851A (en) * 2017-12-20 2018-06-01 中国科学院深圳先进技术研究院 A kind of preparation method of super capacitor, its electrode and its active material
CN108538609A (en) * 2018-01-02 2018-09-14 北京化工大学 A kind of iron Cu oxide/copper base electrode material and preparation method thereof
CN108671923A (en) * 2018-05-10 2018-10-19 宁波大学 Cu oxide/cobalt/cobalt oxide catalyst with core-casing structure and preparation method thereof for electrolysis water
CN109055976A (en) * 2018-08-03 2018-12-21 北京化工大学 A kind of multilevel structure transition metal nitride electrode material and preparation method thereof
CN109811364A (en) * 2019-01-10 2019-05-28 北京化工大学 A kind of ruthenium/cuprous oxide electrocatalysis material and preparation method thereof
CN109876846A (en) * 2019-03-27 2019-06-14 浙江理工大学 A kind of Cu of three-dimensional self-supporting3The preparation method of PNW@CoFeP composite material
CN110223851A (en) * 2019-05-23 2019-09-10 潍坊学院 A kind of method of electrodeposition process preparation supercapacitor Co-Fe-P combination electrode material
CN110241438A (en) * 2018-03-08 2019-09-17 天津大学 Foam copper supports palladium-copper alloy nanocages catalyst and preparation method thereof
CN110504107A (en) * 2019-08-20 2019-11-26 吉林大学 A kind of nanometer combined electrode material and preparation method thereof and supercapacitor
CN110890227A (en) * 2019-12-10 2020-03-17 武汉理工大学 Pine needle-shaped nickel-cobalt-copper basic carbonate nano composite material and preparation method and application thereof
CN110993362A (en) * 2019-12-25 2020-04-10 湖北大学 Novel three-dimensional electrode material, preparation method thereof and application thereof in super capacitor
CN111265705A (en) * 2020-03-03 2020-06-12 北京科技大学 Preparation method of antibacterial and antivirus copper-based filter screen
CN112542328A (en) * 2020-12-02 2021-03-23 浙江大学 Ternary layered metal hydroxide @ polyaniline composite electrode material and preparation method and application thereof
CN114530606A (en) * 2022-01-06 2022-05-24 清华大学深圳国际研究生院 Three-dimensional lithium-philic carbon interface modified copper-based current collector and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231435A (en) * 2011-05-20 2011-11-02 合肥工业大学 Method for preparing electrode material CuO (cupric oxide) film of lithium ion battery on copper substrate
CN104134788A (en) * 2014-07-22 2014-11-05 南方科技大学 Three dimensional gradient metal hydroxide/oxide electrode material and manufacture method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231435A (en) * 2011-05-20 2011-11-02 合肥工业大学 Method for preparing electrode material CuO (cupric oxide) film of lithium ion battery on copper substrate
CN104134788A (en) * 2014-07-22 2014-11-05 南方科技大学 Three dimensional gradient metal hydroxide/oxide electrode material and manufacture method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO WANG,ET AL.: ""Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties"", 《ACS APPLIED MATERIALS & INTERFACES》 *
ZHIYI LU,ET AL.: ""Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction"", 《CHEM. COMMUN.》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105869908A (en) * 2016-05-25 2016-08-17 东华大学 Preparation method of core-shell Co3O4@Fe2O3 nanowire array
CN105938762A (en) * 2016-07-12 2016-09-14 安徽大学 Method for preparing flexible solid super capacitor based on linear Cu(OH)2@NiCo2O4 multilevel nano array
CN106226382A (en) * 2016-08-08 2016-12-14 北京科技大学 Nano porous copper/Cu (OH)2nano-wire array sensor electrode material and preparation method thereof
CN107871627A (en) * 2016-09-28 2018-04-03 南京大学 Foam copper supports high capacitance flexible electrode material of CuO nanometer sheet and preparation method thereof
CN106517445B (en) * 2016-12-07 2021-05-25 青岛海尔智能技术研发有限公司 Preparation method and application of electroporation electrode structure
CN106517445A (en) * 2016-12-07 2017-03-22 青岛海尔智能技术研发有限公司 Preparation method for electroporation electrode structure and application
CN107879371A (en) * 2017-11-17 2018-04-06 许昌学院 A kind of method in copper-based material surface in situ growth needle-like Kocide SD
CN108109851A (en) * 2017-12-20 2018-06-01 中国科学院深圳先进技术研究院 A kind of preparation method of super capacitor, its electrode and its active material
CN108538609A (en) * 2018-01-02 2018-09-14 北京化工大学 A kind of iron Cu oxide/copper base electrode material and preparation method thereof
CN108538609B (en) * 2018-01-02 2019-10-18 北京化工大学 A kind of iron Cu oxide/copper base electrode material and preparation method thereof
CN110241438A (en) * 2018-03-08 2019-09-17 天津大学 Foam copper supports palladium-copper alloy nanocages catalyst and preparation method thereof
CN108671923A (en) * 2018-05-10 2018-10-19 宁波大学 Cu oxide/cobalt/cobalt oxide catalyst with core-casing structure and preparation method thereof for electrolysis water
CN108671923B (en) * 2018-05-10 2021-06-29 宁波大学 Copper oxide/cobalt oxide core-shell structure catalyst for water electrolysis and preparation method thereof
CN109055976A (en) * 2018-08-03 2018-12-21 北京化工大学 A kind of multilevel structure transition metal nitride electrode material and preparation method thereof
CN109811364A (en) * 2019-01-10 2019-05-28 北京化工大学 A kind of ruthenium/cuprous oxide electrocatalysis material and preparation method thereof
CN109876846A (en) * 2019-03-27 2019-06-14 浙江理工大学 A kind of Cu of three-dimensional self-supporting3The preparation method of PNW@CoFeP composite material
CN109876846B (en) * 2019-03-27 2022-01-25 浙江理工大学 Three-dimensional self-supporting Cu3Preparation method of PNW @ CoFeP composite material
CN110223851A (en) * 2019-05-23 2019-09-10 潍坊学院 A kind of method of electrodeposition process preparation supercapacitor Co-Fe-P combination electrode material
CN110504107A (en) * 2019-08-20 2019-11-26 吉林大学 A kind of nanometer combined electrode material and preparation method thereof and supercapacitor
CN110504107B (en) * 2019-08-20 2020-10-16 吉林大学 Nano composite electrode material, preparation method thereof and super capacitor
CN110890227A (en) * 2019-12-10 2020-03-17 武汉理工大学 Pine needle-shaped nickel-cobalt-copper basic carbonate nano composite material and preparation method and application thereof
CN110890227B (en) * 2019-12-10 2021-09-28 武汉理工大学 Pine needle-shaped nickel-cobalt-copper basic carbonate nano composite material and preparation method and application thereof
CN110993362A (en) * 2019-12-25 2020-04-10 湖北大学 Novel three-dimensional electrode material, preparation method thereof and application thereof in super capacitor
CN111265705A (en) * 2020-03-03 2020-06-12 北京科技大学 Preparation method of antibacterial and antivirus copper-based filter screen
CN112542328A (en) * 2020-12-02 2021-03-23 浙江大学 Ternary layered metal hydroxide @ polyaniline composite electrode material and preparation method and application thereof
CN112542328B (en) * 2020-12-02 2022-07-05 浙江大学 Ternary layered metal hydroxide @ polyaniline composite electrode material and preparation method and application thereof
CN114530606A (en) * 2022-01-06 2022-05-24 清华大学深圳国际研究生院 Three-dimensional lithium-philic carbon interface modified copper-based current collector and preparation method and application thereof
CN114530606B (en) * 2022-01-06 2023-05-23 清华大学深圳国际研究生院 Three-dimensional lithium-philic carbon interface modified copper-based current collector and preparation method and application thereof

Also Published As

Publication number Publication date
CN105513831B (en) 2017-10-20

Similar Documents

Publication Publication Date Title
CN105513831B (en) A kind of hollow tubular structure electrode material and preparation method thereof
Guo et al. Non-noble metal-transition metal oxide materials for electrochemical energy storage
Lo et al. Synthesis of Ni (OH) 2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors
CN108538609B (en) A kind of iron Cu oxide/copper base electrode material and preparation method thereof
CN102709058B (en) Method for preparing manganese dioxide-nickel hydroxide composite electrode materials of super capacitors
Zeng et al. Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance
Liu et al. Three-dimensional interconnected cobalt sulfide foam: Controllable synthesis and application in supercapacitor
CN105280394A (en) Multilayer structure-based novel battery type supercapacitor with high power density and high energy density and preparation method
CN102664107B (en) Preparation method of nano-manganese dioxide electrode
CN102938331A (en) Foam nickel-base MnO2/C composite electrode material and preparation method thereof
CN107785181A (en) A kind of electrode material for super capacitor and preparation method thereof
JP5022567B2 (en) Electrochemical cell
CN108899222B (en) Preparation method of supercapacitor electrode material
JP2006510172A5 (en)
Gao et al. Core-shell Cu2-xS@ CoS2 heterogeneous nanowire array with superior electrochemical performance for supercapacitor application
CN109786135A (en) A kind of copper oxide@nickel molybdate/foam copper combination electrode material and preparation method thereof
CN107768150A (en) Copper ion doped polyaniline electrode with carbon cloth as substrate and preparation method thereof
CN109950062A (en) Nickel foam load α-Co (OH) in situ2/α-Ni(OH)2Hetero-junctions nanometer rods and preparation method and application
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
CN105789637B (en) Area load has carbon nano pipe array electrode of Au nano particles and its preparation method and application
CN104867680A (en) NiCo2O4@NiCo2O4 nanometer material for super capacitor electrode and preparation method thereof
CN102709060A (en) High-performance nickel-cobalt oxide composite nanowire film for super capacitor
CN108987123A (en) A kind of manganese dioxide-expanded graphite-cotton fiber tri compound electrochemical capacitance electrode material and preparation method thereof
CN110723755B (en) Fe7S8/α -FeOOH/iron-based electrode material and preparation method and application thereof
CN106449141A (en) Method for preparing cobalt hydroxide/nickel hydroxide supercapacitor electrode based on metal titanium mesh substrate with high-conductivity ceramic surface film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171020

Termination date: 20211123

CF01 Termination of patent right due to non-payment of annual fee