CN105489167A - 显示装置及其像素电路和驱动方法 - Google Patents

显示装置及其像素电路和驱动方法 Download PDF

Info

Publication number
CN105489167A
CN105489167A CN201510890674.8A CN201510890674A CN105489167A CN 105489167 A CN105489167 A CN 105489167A CN 201510890674 A CN201510890674 A CN 201510890674A CN 105489167 A CN105489167 A CN 105489167A
Authority
CN
China
Prior art keywords
transistor
voltage
driving transistors
image element
element circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510890674.8A
Other languages
English (en)
Other versions
CN105489167B (zh
Inventor
张盛东
王翠翠
林兴武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Shenzhen Graduate School
Original Assignee
Peking University Shenzhen Graduate School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Shenzhen Graduate School filed Critical Peking University Shenzhen Graduate School
Priority to CN201510890674.8A priority Critical patent/CN105489167B/zh
Publication of CN105489167A publication Critical patent/CN105489167A/zh
Application granted granted Critical
Publication of CN105489167B publication Critical patent/CN105489167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本申请涉及显示装置及其像素电路和驱动方法,像素电路包括驱动晶体管、发光元件、驱动控制晶体管、数据写入晶体管和存储电容,其中,驱动晶体管用于驱动发光元件发光;数据写入晶体管用于在扫描信号线的扫描信号为有效时,提供数据信号的电压;驱动控制晶体管用于在响应发光控制信号,完成阈值和迁移率的补偿,以及将所提供的数据信号的电压写入驱动晶体管;存储电容用于为阈值补偿时提供驱动晶体管的阈值电压。本申请通过各晶体管和存储电容的相互配合,完成阈值和迁移率的补偿,解决了显示面板各处驱动晶体管阈值电压不同而导致的显示不均匀问题,可以补偿驱动管迁移率变化造成的显示均匀度降低问题,进一步提高了显示的均匀度。

Description

显示装置及其像素电路和驱动方法
技术领域
本申请涉及显示器件技术领域,具体涉及一种显示装置及其像素电路和驱动方法。
背景技术
有机发光二极管(OrganicLight-EmittingDiode,OLED)显示因具有高亮度、高发光效率、宽视角和低功耗等优点,近年来被人们广泛研究,并被迅速应用到新一代的显示当中。OLED显示的驱动方式可以分为无源矩阵驱动(PassiveMatrixOLED,PMOLED)和有源矩阵驱动(ActiveMatrixOLED,AMOLED)两种。研究表明,无源矩阵驱动虽然成本低廉,但是存在交叉串扰现象,不能实现高分辨率的显示,且无源矩阵驱动电流大,降低了OLED的使用寿命。相比之下,有源矩阵驱动方式在每个像素上设置数目不同的晶体管作为电流源,避免了交叉串扰,所需的驱动电流较小,功耗较低,使OLED的寿命增加,可以实现高分辨的显示,同时,有源矩阵驱动更容易满足大面积和高灰度级显示的需要。
传统AMOLED的像素电路是简单的两薄膜场效应晶体管(ThinFilmTransistor,TFT)结构,这种电路虽然结构简单,但是不能补偿驱动晶体管T1和OLED阈值电压漂移,或因TFT器件采用多晶材料制成而导致面板各处TFT器件的阈值电压不均匀性,也不能补偿驱动管T1的迁移率变化。当驱动晶体管T1阈值电压和迁移率发生漂移或在面板上各处的值不一致时,驱动电流IDS(T1的漏极-源极间电流)出现改变,并且面板上不同的像素因偏置电压的不同而使OLED阈值电压发生不同程度的漂移,从而造成面板显示的不均匀性。
发明内容
本申请提供一种像素电路和驱动方法及其显示装置,以补偿驱动晶体管和发光器件的阈值电压的不均匀或者阈值电压漂移,并且改善驱动晶体管的阈值电压不均匀。
根据第一方面,本申请一种实施例中提供一种像素电路,包括:驱动晶体管、发光元件、驱动控制晶体管、数据写入晶体管和存储电容,其中,所述驱动晶体管连接所述发光元件,用于驱动所述发光元件发光;所述数据写入晶体管分别连接数据信号线、信号扫描线、所述驱动控制晶体管和所述存储电容,用于在所述扫描信号线的扫描信号为有效时,响应所述数据信号线的数据信号以提供所述数据信号的电压;所述驱动控制晶体管分别连接发光控制信号线、所述驱动晶体管和所述数据写入晶体管,用于在响应所述发光控制信号,完成阈值和迁移率的补偿,以及将所述数据写入晶体管提供的所述数据信号的电压写入所述驱动晶体管;所述存储电容还连接所述发光元件,用于为所述驱动控制晶体管进行阈值补偿时提供所述驱动晶体管的阈值电压。
根据第二方面,本申请一种实施例中提供一种像素电路驱动方法,应用于如上所述的像素电路,像素电路的每一驱动周期包括初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段,驱动方法包括:在所述初始化阶段,使所述驱动控制晶体管导通,初始化所述存储电容和所述发光元件的连接所述驱动晶体管的一端的电压;在所述阈值补偿阶段,所述驱动控制晶体管保持导通,以便为所述驱动晶体管提供参考电压,对所述驱动晶体管充电直至所述驱动晶体管关断,提取所述驱动晶体管的阈值电压并存储于所述存储电容;在所述数据写入阶段,使所述驱动控制晶体管关断,使所述数据写入晶体管导通,使得所述发光元件的连接所述驱动晶体管的一端的电压被刷新,所述存储电容存储所述数据写入晶体管输出的电压和所述发光元件的连接所述驱动晶体管的一端的电压之间的电压差;在所述迁移率补偿阶段,所述数据写入晶体管保持导通,使所述驱动控制晶体管导通,所述驱动晶体管导通,所述发光元件的连接所述驱动晶体管的一端的电压经所述驱动晶体管抬升,使得所述存储电容的两端形成发光过程的基准电压;在所述发光阶段,使所述数据写入晶体管关断,所述驱动控制晶体管保持导通,所述驱动晶体管根据所述存储电容两端的电压差产生所需要的发光电流,并驱动所述发光元件发光
根据第三方面,本申请一种实施例中提供一种显示装置,包括:像素电路矩阵,所述像素电路矩阵包括排列成N行M列矩阵的如上所述的像素电路,N和M为正整数;栅极驱动电路,用于产生扫描信号,并通过沿第一方向形成的各行扫描信号线向所述像素电路提供所需的控制信号;数据驱动电路,用于产生代表灰度信息的数据信号,并通过沿第二方向形成的各数据信号线向所述像素电路提供数据信号;控制器,用于分别向所述栅极驱动电路和所述数据驱动电路提供控制时序。
本申请实施例通过驱动晶体管、驱动控制晶体管、数据写入晶体管和存储电容的相互配合,完成阈值和迁移率的补偿,然后将数据信号写入驱动晶体管,通过驱动晶体管驱动发光元件发光,从而解决显示面板各处驱动晶体管阈值电压不同而导致的显示不均匀问题,可以补偿驱动管迁移率变化造成的显示均匀度降低问题,进一步提高了显示的均匀度。
附图说明
图1为本申请实施例一公开的一种像素电路结构图;
图2为图1所示像素电路的驱动时序图;
图3为本申请实施例二公开的一种像素电路结构图;
图4a为图3所示像素电路的一种驱动时序图;
图4b为图3所示像素电路的另一种驱动时序图;
图5为本申请实施例三公开的一种像素电路结构图;
图6为图5所示像素电路的驱动时序图;
图7a为本申请实施例四公开的一种像素电路结构图;
图7b为本申请实施例四公开的另一种像素电路结构图;
图7c为本申请实施例四公开的又一种像素电路结构图;
图8为图7a所示像素电路的驱动时序图;
图9为本申请实施例五公开的一种像素电路结构图;
图10a为图9所示像素电路的一种驱动时序图;
图10b为图9所示像素电路的另一种驱动时序图;
图11为本申请实施例六公开的一种像素电路结构图;
图12为图11所示像素电路的驱动时序图;
图13为本申请实施例七公开的一种像素电路结构图;
图14为图12所示像素电路的驱动时序图;
图15为本申请一实施例公开的一种显示装置结构原理示意图。
具体实施方式
下面通过具体实施方式结合附图对本申请作进一步详细说明。其中相同的标号表示相同的元件。
首先对一些术语进行说明。本申请各实施例中的晶体管可以是任何结构的晶体管,比如双极型晶体管(BJT)或者场效应晶体管(FET)。当晶体管为双极型晶体管时,其控制极是指双极型晶体管的基极,第一极可以为双极型晶体管的集电极或发射极,对应的第二极可以为双极型晶体管的发射极或集电极,在实际应用过程中,“发射极”和“集电极”可以依据信号流向而互换。当晶体管为场效应晶体管时,其控制极是指场效应晶体管的栅极,第一极可以为场效应晶体管的漏极或源极,对应的第二极可以为场效应晶体管的源极或漏极,在实际应用过程中,“源极”和“漏极”可以依据信号流向而互换。显示装置中的晶体管通常为薄膜晶体管(TFT),是一种场效应晶体管。下面以TFT为例对本申请做详细的说明。
本申请一实施例中的发光元件为有机发光二极管(OrganicLight-EmittingDiode,OLED),但并不限于此,在其它实施例中,也可以是其它类型的发光元件。发光元件的一端(称为第一端)为阳极,相应地,另一端(称为第二端)为阴极。
第一电平端和第二电平端是为像素电路工作所提供的电源的两端。在一种实施例中,第一电平端可以为高电平端VDD,第二电平端为低电平端VSS或地线,在其它实施例中,也可以作适应性地置换。需要说明的是:对于像素电路而言,第一电平端(例如高电平端VDD)和第二电平端(例如低电平端VSS)并非本申请像素电路的一部分,为了使本领域技术人员更好地理解本申请的技术方案,而特别引入第一电平端和第二电平端予以描述。
需要说明的是,为了描述方便,也为了使本领域技术人员更清楚地理解本申请的技术方案,本申请文件中引入第一节点A和第二节点B对电路结构相关部分进行标识,不能认定为电路中额外引入的端子。此外,为描述方便,高电平采用VH表征,低电平采用VL表征。
本申请实施例中的晶体管是以N型TFT为例进行描述,应理解,根据本申请提供的思想也可以采用相应的基于P型或者N型和P型的像素电路。
如图15所示,本申请一实施例提供了一种显示装置,其包括:显示面板100、栅极驱动电路200、数据驱动电路300和控制器400。
显示面板100包括排列成n行m列矩阵的多个像素电路Pixel[1][1]、……、Pixel[n][m],与每个像素电路相连的第一方向(例如横向)的多条扫描线Gate[1]、……、Gate[n],以及与每个像素相连的第二方向(例如纵向)的多条数据线Data[1]、……、Data[m]。其中,n和m为大于0的整数;Pixel[n][m]表征第n行m列的像素电路,在该实施例中,像素电路采用本申请另一实施例提供的像素电路;Gate[n]表示第n行像素电路对应的扫描线,用于向相应行的像素电路提供扫描信号;Data[m]表示第m列像素电路对应的数据线,用于向相应列的像素电路提供数据电压。显示面板100可以是液晶显示面板、有机发光显示面板、电子纸显示面板等,而对应的显示装置可以是液晶显示器、有机发光显示器、电子纸显示器等。
栅极驱动电路200用于产生扫描脉冲信号,并通过沿第一方向形成的各行扫描线Gate[1]、……、Gate[n],向相应的像素电路提供所需的控制信号,以完成对像素矩阵的逐行扫描。
数据驱动电路300的信号输出端耦合到显示面板100中与其对应的数据线Data[1]、……、Data[m]上,数据驱动电路300产生的数据电压信号VDATA通过数据线Data[1]……Data[m]传输到对应的像素单元内以实现图像灰度。
控制器400用于分别向栅极驱动电路200和数据驱动电路300提供控制时序,以控制整个显示装置动作的时序。图示中控制器400与栅极驱动电路200及数据驱动电路300分离,然而在其它实施例中,控制器400也可以分别集成到栅极驱动电路200和数据驱动电路300中。
以下通过多个实施例详细描述本申请所涉及的像素电路。
实施例一:
请参考图1,为本实施例公开的一种像素电路结构图,包括:串联在第一电平端VDD和第二电平端GND之间的驱动晶体管T1和发光元件OLED,以及驱动控制晶体管(为便于结合图示描述,也称其为第二晶体管)T2、数据写入晶体管(为便于结合图示描述,也称其为第三晶体管)T3和存储电容C1。
驱动晶体管T1的第一极耦合至第一电平端VDD,驱动晶体管T1的第二极耦合至发光元件OLED的第一端(本文将二者连接之处称为第二节点B),发光元件OLED的第二端耦合至第二电平端GND。在一种实施例中,请参考图1,发光元件OLED的第一端为阳极,发光元件OLED的第二端为阴极。
驱动晶体管T1的控制极耦合至第二晶体管T2的第二电极,第二晶体管T2的第一电极耦合至第三晶体管T3的第二电极(本文将二者连接之处称为第一节点A),第二晶体管T2的控制极耦合至发光控制信号线,用于响应发光控制信号VEM
第三晶体管T3的第一电极耦合至数据信号线,第三晶体管T3的第二电极耦合至第二晶体管T2的第一电极,第三晶体管T3的控制极耦合至扫描信号线,用于响应扫描信号VSCAN。在具体实施例中,数据信号线用于提供数据信号VDATA和参考电压VREF,在其它实施例中,数据信号线还可以用于提供初始化电压。
存储电容C1耦合于第一节点A和第二节点B之间。
本实施例中像素电路的驱动信号波形图如图2所示,该像素电路工作过程中一帧时间T(一帧周期)可分为五个阶段:初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段。
(1)初始化阶段
在初始化阶段,发光控制信号VEM和扫描信号VSCAN为高电平VH,第二晶体管T2和第三晶体管T3分别响应发光控制信号VEM和扫描信号VSCAN而导通,数据信号线提供的电压为参考电压VREF,第一节点A和驱动晶体管T1的控制极通过导通的晶体管T3和T2初始化到参考电压VREF,与此同时,驱动晶体管T1处于导通状态,第一电平端VDD提供的电压为一初始化低电平信号VDDL,第二节点B的电压通过驱动晶体管T1放电至VDDL。从而,完成了对第一节点A和第二节点B的电压初始化操作。
(2)在阈值补偿阶段
发光控制信号VEM和扫描信号VSCAN保持为高电平VH,数据信号线上的电压保持为参考电压VREF,因此,第一节点A和驱动晶体管T1的控制极的电压保持为VREF;第一电平端VDD提供的信号由低电平VDDL转变为高电平VDDH,因此,VDDH通过导通的驱动晶体管T1给第二节点B充电直至驱动晶体管T1截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压,从而可以提取到驱动晶体管T1的阈值电压VTH信息。也即是说,阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。为了获得高对比度,此时VREF-VTH可以小于发光元件OLED的阈值电压。
(3)数据写入阶段
发光控制信号VEM为低电平VL,第二晶体管T2在发光控制信号VEM控制下处于截止状态,扫描信号VSCAN为高电平VH,第三晶体管T3响应扫描信号VSCAN的高电平而导通,并向节点A传输数据信号线上提供的数据信号,此时数据信号线上提供的数据信号电压为数据电压VDATA,该数据电压通过导通的第三晶体管T3刷新第一节点A的电压至VDATA,第二节点B的电压在第一节点A的电压从VREF充电到VDATA的过程中,通过存储电容C1和发光元件OLED的本征电容COLED的耦合作用被耦合到VB I
V B I = C 1 C 1 + C O L E D ( V D A T A - V R E F ) + V R E F - V T H - - - ( 1 )
其中,VB I为第二节点B的电压,C1和COLED分别是存储电容C1和发光元件OLED的本征电容的电容值。因此,此时第一节点A和第二节点B之间的电压差为
V A - V B I = V D A T A - [ C 1 C 1 + C O L E D ( V D A T A - V R E F ) + V R E F - V T H ] = C O L E D C 1 + C O L E D ( V D A T A - V R E F ) + V T H - - - ( 2 )
(4)迁移率补偿阶段
发光控制信号VEM为从低电平VL转换为高电平VH,第二晶体管T2从截止状态转换为导通状态,扫描信号VSCAN保持为高电平VH,第三晶体管T3处于导通状态,数据信号线上提供的信号电压保持为数据电压VDATA,因此第一节点A的电压保持为VDATA,驱动晶体管T1的控制极的电压为VDATA,从而驱动晶体管T1导通,并开始对第二节点B充电,使B点的电压抬升ΔVB,ΔVB可以表示为:
ΔV B = ∫ i ( t ) d t C 1 + C O L E D - - - ( 3 )
其中i(t)为驱动晶体管T1导通过程中的电流。由于迁移率补偿的时间Δt比较短,流过驱动晶体管T1的电流可以看成为恒定的电流IOLED 0,该电流由数据写入阶段存储电容两端的电压差决定,IOLED 0可以表示为:
I O L E D 0 = 1 2 μC O X W L ( V A - V B I - V T H ) 2 = 1 2 μC O X W L [ C O L E D C 1 + C O L E D ( V D A T A - V R E F ) ] 2 - - - ( 4 )
其中,μ、COX和W/L分别为驱动晶体管T1的迁移率、单位面积栅氧化层电容和宽长比。因此,ΔVB可以进一步表示为:
ΔV B = ∫ i ( t ) d t C 1 + C O L E D ≈ I O L E D 0 · Δ t C 1 + C O L E D - - - ( 5 )
其中IOLED 0为如公式(4)中所示,可以看出IOLED 0与驱动晶体管T1的阈值电压无关,与驱动晶体管T1的迁移率有关,如果驱动晶体管T1的迁移率大,则ΔVB增大,否则,ΔVB减小。C1两端(即第一节点A和第二节点B之间)形成了发光过程中的基准电压,该基准电压为
V A - V B I - ΔV B = C O L E D C 1 + C O L E D ( V D A T A - V R E F ) + V T H - ΔV B - - - ( 6 )
其中,ΔVB如公式(5)中所示,该基准电压会维持整个发光周期。
(5)发光阶段
发光控制信号VEM保持为高电平VH,第二晶体管T2处于导通状态,扫描信号VSCAN为低电平VL,第三晶体管T3关断(即处于截止状态),使得第一节点A悬,迁移率补偿阶段形成的基准电压驱动发光元件OLED开始发光,第二节点B的电压抬升至OLED发光时的电压VOLED。此时,由于第二晶体管T2导通,驱动晶体管T1的控制极的电压等于第一节点A的电压,由于第一节点A是悬空的,因此,当B点的电压抬升时,A点的电压也有相应的抬升,从而使第一节点A和第二节点B之间的电压差保持公式(6)中的基准电压不变,由于此时驱动晶体管T1工作在饱和区,因此流过OLED的电流可以表示为:
I O L E D = 1 2 μC O X W L ( V A - V B I - ΔV B - V T H ) 2 = 1 2 μC O X W L [ C O L E D C 1 + C O L E D ( V D A T A - V R E F ) - ΔV B ] 2 - - - ( 7 )
由于ΔVB与驱动晶体管T1的阈值电压无关,因此,从(7)中可以看出,最终流过发光元件OLED的电流与驱动晶体管T1的阈值电压以及OLED本身的阈值电压都无关,从而,本实施例的像素电路可以很好地补偿驱动晶体管T1和OLED的阈值电压的变化造成的不均匀性。
关于对迁移率的补偿,从公式(4)和(5)可以知道,当迁移率μ增大时,ΔVB增大,公式(7)中的平方项减小,补偿了因迁移率增大造成的OLED电流变大;为了得到合理的迁移率补偿时间,利用|dIOLED/dμ|2<ε,ε为某一很小的量(如,0<ε<0.1),通过解方程可以得到合适的迁移率补偿时间,该迁移率补偿时间是利用发光控制信号线和扫描信号线来实现的,并没有引入多余的控制信号线。
通过以上分析可知,本实施例的优点是,电路结构相对简单,只采用三个晶体管和一个存储电容,即可增加像素开口率,能够减小发光元件OLED的电流密度,以此为提高发光元件OLED使用寿命提供可能;像素电路采用充电式的阈值提取方式,即源跟随器结构,对于正负阈值都有补偿作用,所以这种方法对于采用耗尽型的晶体管也同样有效;此外该像素电路还可以补偿驱动管的迁移率变化造成的不均匀。
实施例二:
本实施例与上述实施例一不同之处在于,本实施例公开的像素电路中还包括第一初始化晶体管(为便于结合图示描述,也称其为第四晶体管)T4,用以向第二节点B提供相应的初始化电压,而实施例一中,第二节点B的初始化电压是通过第一电平端VDD提供。请参考图3,为本实施例公开的一种像素电路结构图。
第四晶体管T4的第二电极耦合至第二节点B,第四晶体管T4的第一电极用于输入初始化电压VR,第四晶体管T4的控制极耦合至初始化扫描信号线,用于响应初始化扫描信号VINT。在初始化阶段,第四晶体管T4响应初始化扫描信号VINT而导通,从而在初始化阶段,第四晶体管T4的第一电极输入的初始化电位由VR提供,第二节点B的电压通过第四晶体管T4初始化到初始化低电压VR
本实施例中像素电路的驱动信号波形图如图4a和图4b所示,该像素电路工作过程中一帧时间T(一帧周期)可分为五个阶段:初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段。以本实施例结合驱动波形图4a为例进行说明。
(1)初始化阶段
在初始化阶段,发光控制信号VEM和扫描信号VSCAN为高电平VH,第二晶体管T2和第三晶体管T3分别响应发光控制信号VEM和扫描信号VSCAN而导通,数据信号线提供的电压为参考电压VREF,第一节点A和驱动晶体管T1的控制极通过导通的晶体管T3和T2初始化到参考电压VREF,与此同时,初始化扫描信号VINT为高电平VH,第四晶体管T4处于导通状态,第二节点B的电压通过第四晶体管T4放电至低电压VR。从而,完成了对第一节点A和第二节点B的电压初始化。
(2)在阈值补偿阶段
发光控制信号VEM和扫描信号VSCAN保持为高电平VH,数据信号线DataLine上的电压保持为参考电压VREF,因此,第一节点A和驱动晶体管T1的控制极的电压保持为VREF;初始化扫描信号VINT从高电平VH转换为低电平VL,第四晶体管T4关断,第一电平端VDD通过导通的驱动晶体管T1对第二节点B充电直至驱动晶体管截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压。阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。为了获得高对比度,此时VREF-VTH可以小于发光元件OLED的阈值电压。
其他阶段与实施例一的相应阶段相似,不再赘述。
采用本实施例的像素点路结合驱动波形图4b的分析与上述过程类似,不同在于,初始化阶段第一节点A是悬空的,其电压会被初始化的B点电压拉低。
通过以上分析可知,除了可以补偿阈值电压变化和迁移率变化之外,本实施例的优点还在于,第一电平端VDD为恒定的高电平电源信号,不再为脉冲信号。当第一电平端VDD为恒定电压时,时序控制更易实现。
实施例三:
请参考图5,为本实施例公开的像素电路结构图,与上述实施例二不同之处在于,第四晶体管T4的控制极耦合至同一扫描帧内前一级扫描信号线(即上一行像素电路的扫描信号线),第四晶体管T4响应上一行的扫描信号完成对第二节点B的初始化。
请参考图6,为图5所示像素电路的驱动时序图,本实施例像素电路的驱动过程与上述实施例一、实施例二大体相同,不同之处在于,初始化阶段发生在当前行(第n行)扫描信号VSCAN[n]到来之前,且第二节点B的初始化在上一行的扫描信号VSCAN[n-1]有效时进行,此时没有对A点初始化,A点的电压会被初始化的B点电压拉低。
图5所示像素电路工作过程中一帧时间T(一帧周期)可分为五个阶段:初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段。下面将图5所示像素电路结合驱动波形图6进行说明,实际上,实施例二结合时序图4b的驱动过程与本实施例的大致相同。
(1)初始化阶段
在初始化阶段,发光控制信号VEM为高电平VH,第二晶体管T2导通,当前行的扫描信号VSCAN[n]为低电平VL,第三晶体管T3关断,上一行的第一扫描信号VSCAN[n-1]为高电平VH,第四晶体管T4打开,第二节点B的电压通过第四晶体管T4放电至低电压VR,由于第一节点A是悬空的,因此,第一节点A的电压也被初始化电压拉低到某一低电平,从而完成了对第一节点A和第二节点B的初始化。
(2)阈值补偿阶段
上一行的扫描信号VSCAN[n-1]为从高电平VH转换为低电平VL,第四晶体管T4关断,第三晶体管T3响应当前行的扫描信号VSCAN[n]打开,发光控制信号VEM保持为高电平VH,因此第二晶体管T2打开,驱动晶体管T1的控制极与第一节点A耦合在一起,由于此时数据信号线DataLine上的电压为参考电压VREF,因此,第一节点A和驱动管的控制极的电压为VREF;第一电平端VDD通过导通的驱动晶体管T1对第二节点B充电直至驱动晶体管截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压。阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。需要注意的是,VREF-VTH小于发光元件OLED的阈值电压以获得高对比度。
其他阶段与实施例一的相应阶段相似,不再赘述。
通过以上分析可知,除了可以补偿阈值电压变化和迁移率变化之外,本实施例的优点还在于减少了一根扫描信号线,其用上一行的扫描信号来完成当前行的初始化,可以增大像素的开口率,减少***电路的复杂度。
实施例四:
请参考图7a、图7b和图7c,为本实施例公开的三种像素电路结构图,与上述实施例二不同之处在于,本实施例中第四晶体管T4的第一电极耦合至数据信号线(如图7a所示),或者第四晶体管T4的第一电极耦合至第二晶体管T2的第一电极(如图7b所示),或者第四晶体管T4的第一电极耦合至第二晶体管T2的第二电极(如图7c所示),第四晶体管T4响应初始化控制信号VRST,从而在初始化阶段第四晶体管T4的第一电极输入的初始化电位由数据信号线提供,由此利用数据信号线提供的初始化电压信号VR完成对第一节点A和第二节点B的初始化。
请参考图8,为本实施例所示像素电路的驱动时序图,本实施例像素电路的驱动过程与上述实施例大体相似,不同之处在于,在初始化阶段,初始化电压信号由数据信号线提供,第四晶体管T4响应初始化扫描信号,完成对像素电路的初始化。
本实施例的像素电路工作过程中一帧时间T(一帧周期)可分为五个阶段:初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段。下面将图7a所示像素电路结合驱动波形图8对本实施例的像素电路的具体操作进行说明,图7b和图7c所示像素电路的具体操作与此类似,故不做重述。
(1)初始化阶段
在初始化阶段,数据信号线上的电压信号为低电平信号VR。发光控制信号VEM、扫描信号VSCAN和初始化控制信号VRST均为高电平VH,因此,第二晶体管T2、第三晶体管T3和第四晶体管T4都导通,因此,第一节点A和第二节点B的电压都被初始化到低电平信号VR,从而完成了对第一节点A和第二节点B的初始化。
(2)在阈值补偿阶段
初始化扫描信号从高电平VH转换为低电平VL,第四晶体管T4关断,扫描信号VSCAN和发光控制信号VEM保持为高电平VH以使第二晶体管T2和第三晶体管T3保持导通,驱动晶体管T1的控制极与第一节点A耦合在一起,由于此时数据信号线上的电压为参考电压VREF,因此,第一节点A和驱动晶体管T1的控制极的电压为VREF;第一电平端VDD通过导通的驱动晶体管T1对第二节点B充电直至驱动晶体管T1截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压。阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。为获得高对比度,VREF-VTH可以小于发光元件OLED的阈值电压。
其他阶段与实施例一的相应阶段相似,不再赘述。
通过以上分析可知,除了可以补偿阈值电压变化和迁移率变化之外,本实施例的优点还在于,通过利用数据信号线提供的初始化电压信号可以使面板减少一个低电平电压。
实施例五:
请参考图9,为本实施例公开的像素电路结构图,与上述各实施例不同之处在于,第四晶体管T4的控制极耦合至第四晶体管T4的第二电极;第四晶体管T4的第一电极耦合至初始化控制信号VRET,第二节点B的电压通过二极管接法的第四晶体管T4放电,完成对第二节点B的初始化。完成初始化以后,初始化控制信号保持高电平使得第四晶体管T4关断,不再影响电路的工作。
请参考图10,为图9所示电路的驱动过程时序图,本实施例像素电路的驱动过程与实施例二的驱动过程大致相似,不同之处在于,初始化阶段第二节点B的初始化电压提供方式和阈值补偿阶段第四晶体管T4的关闭方式。下面结合驱动时序图10a以及图9所示像素电路对像素电路的工作过程进行描述。该像素电路工作过程中一帧时间T(一帧周期)可分为五个阶段:初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段。
(1)初始化阶段
当前行的扫描信号VSCAN[n]和发光控制信号VEM为高电平VH,因此,第二晶体管T2和第三晶体管T3导通,第一节点A和驱动管T1的控制极被数据信号线上的电压VREF初始化到VREF;初始化脉冲电压信号VRET为低电平,第二节点B的电压被二极管接法的第四晶体管T4放电至低电平完成对第二节点B的初始化,从而完成了对第一节点A和第二节点B的初始化。
(2)在阈值补偿阶段
初始化脉冲电压信号VRET从低电平转换为高电平,则第四晶体管T4关断,第三晶体管T3和第二晶体管T2响应当前行的扫描信号VSCAN和发光控制信号VEM的高电平VH而打开,由于驱动晶体管T1的控制极与第一节点A耦合在一起,此时数据信号线上的电压为参考电压VREF,因此,第一节点A和驱动管的控制极的电压为VREF;第一电平端VDD通过导通的驱动晶体管T1对第二节点B充电直至驱动晶体管T1截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压。阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。为获得高对比度,VREF-VTH可以小于发光元件OLED的阈值电压。
其他阶段与实施例一的相应阶段相似,不再赘述。
在另一具体实施例中,其驱动时序如图10(b)所示。初始化时T3管保持关断,此时T4导通,B点被初始化到某一低电平,则A点也被初始化到低电平,完成初始化以后VRET为高电平,T4管关断,电路开始进入阈值提取阶段;在阈值提取阶段,第三晶体管T3和第二晶体管T2响应当前行的扫描信号VSCAN和发光控制信号VEM的高电平VH而打开,由于驱动晶体管T1的控制极与第一节点A耦合在一起,此时数据信号线上的电压为参考电压VREF,因此,第一节点A和驱动管的控制极的电压为VREF;第一电平端VDD通过导通的驱动晶体管T1对第二节点B充电直至驱动晶体管T1截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压。阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。为获得高对比度,VREF-VTH可以小于发光元件OLED的阈值电压。其他阶段与实施例一的相应阶段相似,不再赘述。
通过以上分析可知,除了可以补偿阈值电压变化和迁移率变化之外,本实施例的优点还在于少了一根电源线,进而可以减少工艺复杂度,并简化结构。
实施例六:
请参考图11,为本实施例公开的一种像素电路结构图,与上述各实施例不同之处在于,本实施例公开的像素电路中还包括第二初始化晶体管(为便于结合图示描述,也称其为第五晶体管)T5,其作用为在阈值提取阶段为像素电路提供参考电压VREF。第一节点A所需的参考电压VREF和/或初始化电压由第五晶体管T5传输,数据信号线只提供数据信号VDATA,由此简化数据线的时序控制,通过合理的设计可以使像素电路的行时间减少,进一步容易满足高分辨率和高帧频的显示需求。上述实施例一至五均可以在其像素电路结构上作出适当的修改,以设计出包括第五晶体管T5的对应像素电路,例如,图11所示像素电路即是在实施例三的像素电路基础上增加第五晶体管T5而得到的具体电路结构,其它实施例也可以按类似方式设计得到。
为了减少像素电路的控制信号,可以充分利用上面若干行的扫描信号来进行像素电路的初始化和阈值提取过程,如果设置每行的行时间等于阈值提取的时间,当前行像素为第n行,则第四晶体管的控制极可以耦合至第n-2行的扫描信号,第五晶体管T5的控制极耦合至第n-1行的扫描信号。
具体地,本实施例的像素电路与实施例三中的像素电路的不同之处包括:像素电路还包括第五晶体管T5,第五晶体管T5的控制极耦合至第n-1行的扫描信号VSCAN[n-1],第五晶体管T5的第一电极耦合至参考电压源信号VREF,第五晶体管T5的第二电极耦合至第一节点A;第四晶体管T4的控制极耦合至第n-2行的扫描信号VSCAN[n-2]
图11所示像素电路工作过程中一帧时间T(一帧周期)可分为五个阶段:初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段。结合驱动波形图12对于该实施例与实施例三不同的地方进行说明。
(1)初始化阶段
在初始化阶段,发光控制信号VEM为高电平VH,第二晶体管T2导通,当前行的扫描信号VSCAN[n]和第n-1行的扫描信号VSCAN[n-1]为低电平VL,第三晶体管T3和T5晶体管关断,第n-2行的扫描信号VSCAN[n-2]为高电平VH,第四晶体管T4打开,第二节点B的电压通过第四晶体管T4放电至低电压VR,由于第一节点A是悬空的,因此,第一节点A的电压也被初始化电压拉低到某一低电平,从而完成了对第一节点A和第二节点B的初始化。
(2)在阈值补偿阶段
第n-2行的扫描信号VSCAN[n-2]从高电平VH转换为低电平VL,第四晶体管T4关断,当前行的扫描信号VSCAN[n]为低电平VL,第三晶体管T3关断,第五晶体管T5响应第n-1行的扫描信号VSCAN[n-1]导通,发光控制信号VEM保持为高电平VH,第二晶体管T2导通,驱动晶体管T1的控制极与第一节点A耦合在一起,因此,第一节点A和驱动晶体管T1的控制极的电压为VREF;第一电平端VDD通过导通的驱动晶体管T1对第二节点B充电直至驱动晶体管T1截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压。阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。为获得高对比度,VREF-VTH可以小于发光元件OLED的阈值电压。
(3)数据写入阶段
发光控制信号VEM为低电平VL,第二晶体管T2关断,第n-1行的扫描信号VSCAN[n-1]和第n-2行的扫描信号VSCAN[n-2]均为低电平VL,第四晶体管T4和第五晶体管T5关断;当前行的扫描信号VSCAN[n]为高电平VH,第三晶体管T3处于导通状态,数据信号线上提供的信号电压为数据电压VDATA,该数据电压通过导通的第三晶体管T3刷新第一节点A的电压至VDATA,第二节点B的电压在第一节点A的电压从VREF充电到VDATA的过程中,通过存储电容C1和发光元件OLED的本征电容COLED的耦合作用被耦合到VB I
V B I = C 1 C 1 + C O L E D ( V D A T A - V R E F ) + V R E F - V T H - - - ( 8 )
其中,VB I为第二节点B的电压,C1和COLED分别是存储电容C1和发光元件OLED的本征电容的电容值。因此,此时第一节点A和第二节点B之间的电压差为
V A - V B I = V D A T A - &lsqb; C 1 C 1 + C O L E D ( V D A T A - V R E F ) + V R E F - V T H &rsqb; = C O L E D C 1 + C O L E D ( V D A T A - V R E F ) + V T H - - - ( 9 )
其他阶段与实施例一的相应阶段相似,不再赘述。
通过以上分析可知,除了可以补偿阈值电压变化和迁移率变化之外,,本实施例虽然多了一个晶体管,但其充分利用了前面行的扫描信号线,减少了行时间,使得电路相对更适合大面积高分辨率显示。
实施例七:
请参考图13,为本实施例公开的一种像素电路结构图,与上述实施例六不同之处在于,本实施例公开的像素电路中的第五晶体管T5的控制极耦合至扫描控制信号线,第四晶体管T4的控制极耦合至前面某一行的扫描信号线。随着显示面板频率和分辨率的提高,每行的行时间越来越短,行时间不足以提供足够的时间来进行阈值提取,因为如果阈值提取的时间比较短,补偿的精度就会大大降低,因此希望的阈值提取的时间比较长又不增大行时间,采用本实施例可以满足高分辨率和高帧频的显示需求。
假设阈值提取的时间为行时间的a倍,a为整数,则第四晶体管的控制极耦合至第n-(a+1)行的扫描信号。本实施例以阈值提取时间为行时间的3倍设置(应理解,该倍数不限于3,其可以是其它数值的倍数),则第四晶体管T4的控制极耦合至第n-4行的扫描信号,第五晶体管的控制极耦合至扫描控制信号VSC。为了提高阈值提取的精度,可以增大阈值提取时间。
图14为本实施例的像素电路的驱动波形图,下面结合驱动波形图14对本实施例与实施例六不同的地方进行说明。图13所示像素电路工作过程中一帧时间T(一帧周期)可分为五个阶段:初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段。
(1)初始化阶段
在初始化阶段,发光控制信号VEM为高电平VH,第二晶体管T2导通,当前行的扫描信号VSCAN[n]和扫描控制信号VSC均为低电平VL,第三晶体管T3和T5晶体管关断,第n-4行的扫描信号VSCAN[n-4]为高电平VH,第四晶体管T4导通,第二节点B的电压通过第四晶体管T4放电至低电压VR,由于第一节点A是悬空的,因此,第一节点A的电压也被初始化电压拉低到某一低电平,从而完成了对第一节点A和第二节点B的初始化。
(2)在阈值补偿阶段
第n-4行的扫描控制信号VSCAN[n-4]从高电平VH转换为低电平VL,第四晶体管T4关断,当前行的第一扫描控制信号VSCAN[n]为低电平VL,第三晶体管T3关断,第五晶体管T5响应当前行的扫描控制信号VSC的高电平导通,发光控制信号VEM保持为高电平VH,第二晶体管T2打开,驱动晶体管T1的控制极与第一节点A耦合在一起,因此,第一节点A和驱动管的控制极的电压为VREF;第一电平端VDD通过导通的驱动晶体管T1对第二节点B充电直至驱动晶体管T1截止,此时,第二节点B的电压升高到VREF-VTH,其中VTH为驱动晶体管T1的阈值电压。阈值补偿阶段结束后,驱动晶体管T1的阈值电压信息被存储在存储电容C1两端。为获得高对比度,VREF-VTH可以小于发光元件OLED的阈值电压。
(3)数据写入阶段
发光控制信号VEM为低电平VL,第二晶体管T2关断,第n-4行的扫描信号VSCAN[n-4]为低电平VL,第四晶体管T4关断;当前行的扫描控制信号VSC为低电平VL,第五晶体管T5关断;当前行的扫描信号VSCAN[n]为高电平VH,第三晶体管T3处于导通状态,数据信号线上提供的信号电压为数据电压VDATA,该数据电压通过导通的第三晶体管T3刷新第一节点A的电压至VDATA,第二节点B的电压在第一节点A的电压从VREF充电到VDATA的过程中,通过存储电容C1和发光元件OLED的本征电容COLED的耦合作用被耦合到VB I
V B I = C 1 C 1 + C O L E D ( V D A T A - V R E F ) + V R E F - V T H - - - ( 10 )
其中,VB I为第二节点B的电压,C1和COLED分别是存储电容C1和发光元件OLED的本征电容的电容值。因此,此时第一节点A和第二节点B之间的电压差为
V A - V B I = V D A T A - &lsqb; C 1 C 1 + C O L E D ( V D A T A - V R E F ) + V R E F - V T H &rsqb; = C O L E D C 1 + C O L E D ( V D A T A - V R E F ) + V T H - - - ( 11 )
其他阶段与实施例一的相应阶段相似,不再赘述。
通过以上分析可知,除了可以补偿阈值电压变化和迁移率变化之外,本实施例虽然多了一根控制信号线,但行时间进一步缩短为数据写入和迁移率补偿的时间,使得电路相对更适合大面积高分辨率显示。
以上各实施例还可根据具体的情况采用同时发光或者分组驱动的形式来完成电路的驱动操作,采用同时发光和分组驱动的过程中整个面板或者同组的像素电路的阈值提取是同时进行的,这样可以缩短每行的有效变成时间,跟适合大面积和高分辨率的显示器需求。
此外,以上实施例应用于本申请实施例的显示装置时,在一种实施例中,扫描线向对应像素电路提供的扫描信号可以是例如初始化控制信号VRST、扫描信号VSCAN、发光控制信号VEM等。其它实施例中,像素电路所需的有些扫描信号也可以通过全局线(例如图15所示)的方式来提供,比如第一电平端所需的电源线、初始化控制信号VINT所需的初始化控制线VR等,本领域技术人员可以依据具体像素电路的需求进行调整。
基于上述实施例公开的像素电路,本申请一实施例还公开了一种显示电路驱动方法,该显示电路采用上述实施例的像素电路,其中像素电路的每一驱动周期包括初始化阶段、阈值补偿阶段、数据写入阶段,迁移率补偿阶段和发光阶段,驱动方法包括:
在初始化阶段,第二晶体管T2导通和第三晶体管T3导通,分别初始化存储电容C1两端的电压和驱动晶体管T1控制极的电压。在其它实施例中,还可以通过导通的第四晶体管T4和第五晶体管T5辅助初始化存储电容C1两端的电压。
在阈值补偿阶段,第三晶体管T3和/或第五晶体管T5导通,向驱动晶体管T1控制极提供参考电压,读取驱动晶体管T1的阈值电压信息并通过存储电容C1存储。在一种实施例中,可以通过第三晶体管T3提供参考电压;在另一种实施例中,也可以通过第五晶体管T5提供参考电压。
在数据写入阶段,第三晶体管T3导通传输数据电压VDATA,通过串联的存储电容和发光器件的本征电容的分压将数据电压VDATA和阈值电压VTH存储于存储电容C1两端。
在迁移率补偿阶段,第三晶体管T3导通使第一节点A的电压保持为数据电压VDATA,第二晶体管T2导通使驱动管导通给B点充电,B点电压的改变量只与驱动管的迁移率有关,与阈值电压无关,通过合理的控制导通时间完成迁移率的补偿。
在发光阶段,驱动晶体管T1根据存储电容C1两端的压差驱动产生驱动电流,并驱动发光元件OLED发光。
本申请实施例提供的像素电路通过源跟随的形式产生驱动晶体管的阈值电压信息,通过电荷分压的形式在存储电容两端产生驱动晶体管的阈值电压和灰度信息有关的电压信息以补偿驱动晶体管的阈值电压,完成数据写入以后保持电路其他状态不变提前打开发光控制管,存储电容两端的信息将改变ΔV最终形成发光过程中的基准电压。其中,ΔV与阈值电压无关,只与驱动晶体管的迁移率有关从而补偿的迁移率变化。发光过程中,该基准电压保持不变,使得流过发光器件的驱动电流与驱动晶体管和发光元件的阈值电压无关,并且利用控制信号交叠改善驱动管的迁移率变化对像素电路亮度均匀性的影响,解决了显示面板由于阈值电压和迁移率变化造成的显示不均匀问题。
以上应用了具体各例对本申请进行阐述,只是用于帮助理解本申请,并不用以限制本申请。具体实施例中晶体管均采用N型TFT,但是,根据本申请的思想,并在不脱离本申请的范围内,也可以设计出其他结合P型或者N、P型TFT的像素电路。而且,对于本申请所属技术领域的技术人员,在不脱离本发明构思的前提下,还可以做出若干简单推演、变形或替换。

Claims (8)

1.一种像素电路,其特征在于,包括驱动晶体管、发光元件、驱动控制晶体管、数据写入晶体管和存储电容,其中,
所述驱动晶体管连接所述发光元件,用于驱动所述发光元件发光;
所述数据写入晶体管分别连接数据信号线、信号扫描线、所述驱动控制晶体管和所述存储电容,用于在所述扫描信号线的扫描信号为有效时,响应所述数据信号线的数据信号以提供所述数据信号的电压;
所述驱动控制晶体管分别连接发光控制信号线、所述驱动晶体管和所述数据写入晶体管,用于在响应所述发光控制信号,完成阈值和迁移率的补偿,以及将所述数据写入晶体管提供的所述数据信号的电压写入所述驱动晶体管;
所述存储电容还连接所述发光元件,用于为所述驱动控制晶体管进行阈值补偿时提供所述驱动晶体管的阈值电压。
2.如权利要求1所述的像素电路,其特征在于,还包括第一初始化晶体管,所述第一初始化晶体管连接所述发光元件,用于向所述发光元件的连接所述驱动晶体管的一端提供初始化电压。
3.如权利要求2所述的像素电路,其特征在于,还包括第二初始化晶体管,所述第二初始化晶体管连接所述驱动控制晶体管,用于通过所述驱动控制晶体管为所述驱动晶体管提供所需的参考电压或初始化电压。
4.如权利要求3所述的像素电路,其特征在于,
所述驱动晶体管的控制极连接所述驱动控制晶体管的第二电极,所述驱动晶体管的第一电极连接第一电平端,所述驱动晶体管的第二电极连接所述发光元件的第一端,所述发光元件的第二端连接第二电平端;
所述驱动控制晶体管的控制极连接发光控制信号线,所述驱动控制晶体管的第一电极连接所述数据写入晶体管的第二电极;
所述数据写入晶体管的控制极连接所述扫描信号线,所述数据写入晶体管的第一电极连接所述数据信号线;
所述存储电容的第一电极端连接所述数据写入晶体管的第二电极,所述存储电容的第二电极端连接所述发光元件的第一端。
5.如权利要求4所述的像素电路,其特征在于,
所述第一初始化晶体管的控制极连接初始化控制信号,所述第一初始化晶体管的第一电极连接所述初始化电压或者所述数据信号线或者所述驱动控制晶体管的第一电极或者驱动控制晶体管的第二电极或者所述第一初始化晶体管的控制极,所述第一初始化晶体管的第二电极连接所述发光元件的第一端;
或者,所述第一初始化晶体管的控制极连接所述像素电路所在行的前n-(a+1)行的扫描信号线,n为所述像素电路所在行的行号,a为扫描一行所用时间的整数倍,所述第一初始化晶体管的第一电极连接所述初始化电压,所述第一初始化晶体管的第二电极连接所述发光元件的第一端。
6.如权利要求5所述的像素电路,其特征在于,
所述第二初始化晶体管的控制极连接所述像素电路所在行的前一行的扫描信号线或者扫描控制信号,所述第二初始化晶体管的第一电极连接参考电压,所述第二初始化晶体管的第二电极连接初始化电压。
7.一种像素电路的驱动方法,应用于如权利要求1至6中任一项权利要求所述的像素电路,其特征在于,所述像素电路的每一驱动周期包括初始化阶段、阈值补偿阶段、数据写入阶段、迁移率补偿阶段和发光阶段,所述驱动方法包括:
在所述初始化阶段,使所述驱动控制晶体管导通,初始化所述存储电容和所述发光元件的连接所述驱动晶体管的一端的电压;
在所述阈值补偿阶段,所述驱动控制晶体管保持导通,以便为所述驱动晶体管提供参考电压,对所述驱动晶体管充电直至所述驱动晶体管关断,提取所述驱动晶体管的阈值电压并存储于所述存储电容;
在所述数据写入阶段,使所述驱动控制晶体管关断,使所述数据写入晶体管导通,使得所述发光元件的连接所述驱动晶体管的一端的电压被刷新,所述存储电容存储所述数据写入晶体管输出的电压和所述发光元件的连接所述驱动晶体管的一端的电压之间的电压差;
在所述迁移率补偿阶段,所述数据写入晶体管保持导通,使所述驱动控制晶体管导通,所述驱动晶体管导通,所述发光元件的连接所述驱动晶体管的一端的电压经所述驱动晶体管抬升,使得所述存储电容的两端形成发光过程的基准电压;
在所述发光阶段,使所述数据写入晶体管关断,所述驱动控制晶体管保持导通,所述驱动晶体管根据所述存储电容两端的电压差产生所需要的发光电流,并驱动所述发光元件发光。
8.一种显示装置,其特征在于,包括:
像素电路矩阵,所述像素电路矩阵包括排列成N行M列矩阵的如权利要求1-7任一项所述的像素电路,N和M为正整数;
栅极驱动电路,用于产生扫描信号,并通过沿第一方向形成的各行扫描信号线向所述像素电路提供所需的控制信号;
数据驱动电路,用于产生代表灰度信息的数据信号,并通过沿第二方向形成的各数据信号线向所述像素电路提供数据信号;
控制器,用于分别向所述栅极驱动电路和所述数据驱动电路提供控制时序。
CN201510890674.8A 2015-12-07 2015-12-07 显示装置及其像素电路和驱动方法 Active CN105489167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510890674.8A CN105489167B (zh) 2015-12-07 2015-12-07 显示装置及其像素电路和驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510890674.8A CN105489167B (zh) 2015-12-07 2015-12-07 显示装置及其像素电路和驱动方法

Publications (2)

Publication Number Publication Date
CN105489167A true CN105489167A (zh) 2016-04-13
CN105489167B CN105489167B (zh) 2018-05-25

Family

ID=55676124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510890674.8A Active CN105489167B (zh) 2015-12-07 2015-12-07 显示装置及其像素电路和驱动方法

Country Status (1)

Country Link
CN (1) CN105489167B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652917A (zh) * 2017-03-15 2017-05-10 四川太锦信息技术有限公司 建立在相同电压的有机电致发光元件的电路
CN106856086A (zh) * 2017-01-23 2017-06-16 京东方科技集团股份有限公司 一种电学补偿方法和显示面板
CN108538249A (zh) * 2018-06-22 2018-09-14 京东方科技集团股份有限公司 像素驱动电路及方法、显示装置
WO2018210211A1 (zh) * 2017-05-19 2018-11-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN109064975A (zh) * 2018-09-28 2018-12-21 昆山国显光电有限公司 像素电路及其驱动方法、显示面板、显示装置
CN109727578A (zh) * 2018-12-14 2019-05-07 合肥鑫晟光电科技有限公司 显示装置的补偿方法、装置和显示设备
CN111402803A (zh) * 2020-04-23 2020-07-10 湖南鹰神新材料科技有限公司 微显示阵列电路、显示方法及其主动发光型显示器
CN112511769A (zh) * 2020-11-05 2021-03-16 北京大学深圳研究生院 一种图像传感器像素电路以及图像传感阵列
CN112530351A (zh) * 2020-12-23 2021-03-19 厦门天马微电子有限公司 显示面板的驱动方法、显示面板和显示装置
CN112885304A (zh) * 2021-01-15 2021-06-01 合肥维信诺科技有限公司 像素电路、显示面板和像素电路的驱动方法
CN113963667A (zh) * 2020-07-21 2022-01-21 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN114267313A (zh) * 2021-12-30 2022-04-01 惠科股份有限公司 驱动电路以及驱动方法、栅极驱动电路和显示装置
CN114882838A (zh) * 2022-04-29 2022-08-09 天宜微电子(北京)有限公司 像素电路、显示装置及其驱动方法
CN115244609A (zh) * 2020-11-30 2022-10-25 京东方科技集团股份有限公司 像素电路、其驱动方法及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202070A (ja) * 2004-01-14 2005-07-28 Sony Corp 表示装置、および画素回路
CN100418123C (zh) * 2003-02-24 2008-09-10 奇美电子股份有限公司 显示装置
JP2010039117A (ja) * 2008-08-04 2010-02-18 Sony Corp 表示装置及びその駆動方法と電子機器
CN101887684A (zh) * 2009-05-12 2010-11-17 索尼公司 显示装置
CN101887685A (zh) * 2009-05-12 2010-11-17 索尼公司 用于像素电路的驱动方法和显示装置
CN102314832A (zh) * 2010-07-01 2012-01-11 索尼公司 显示装置、像素电路及其显示驱动方法
WO2015033496A1 (ja) * 2013-09-04 2015-03-12 パナソニック株式会社 表示装置および駆動方法
CN104715723A (zh) * 2015-03-19 2015-06-17 北京大学深圳研究生院 显示装置及其像素电路和驱动方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418123C (zh) * 2003-02-24 2008-09-10 奇美电子股份有限公司 显示装置
JP2005202070A (ja) * 2004-01-14 2005-07-28 Sony Corp 表示装置、および画素回路
JP2010039117A (ja) * 2008-08-04 2010-02-18 Sony Corp 表示装置及びその駆動方法と電子機器
CN101887684A (zh) * 2009-05-12 2010-11-17 索尼公司 显示装置
CN101887685A (zh) * 2009-05-12 2010-11-17 索尼公司 用于像素电路的驱动方法和显示装置
CN102314832A (zh) * 2010-07-01 2012-01-11 索尼公司 显示装置、像素电路及其显示驱动方法
WO2015033496A1 (ja) * 2013-09-04 2015-03-12 パナソニック株式会社 表示装置および駆動方法
CN104715723A (zh) * 2015-03-19 2015-06-17 北京大学深圳研究生院 显示装置及其像素电路和驱动方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856086A (zh) * 2017-01-23 2017-06-16 京东方科技集团股份有限公司 一种电学补偿方法和显示面板
CN106652917A (zh) * 2017-03-15 2017-05-10 四川太锦信息技术有限公司 建立在相同电压的有机电致发光元件的电路
US10964256B2 (en) 2017-05-19 2021-03-30 Boe Technology Group Co., Ltd. Method for driving a pixel circuit
WO2018210211A1 (zh) * 2017-05-19 2018-11-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN108538249A (zh) * 2018-06-22 2018-09-14 京东方科技集团股份有限公司 像素驱动电路及方法、显示装置
CN109064975A (zh) * 2018-09-28 2018-12-21 昆山国显光电有限公司 像素电路及其驱动方法、显示面板、显示装置
US11257434B2 (en) 2018-12-14 2022-02-22 Hefei Xinsheng Optoelectronics Technology Co., Ltd. Method and device for compensating a display device and display apparatus
CN109727578A (zh) * 2018-12-14 2019-05-07 合肥鑫晟光电科技有限公司 显示装置的补偿方法、装置和显示设备
CN111402803A (zh) * 2020-04-23 2020-07-10 湖南鹰神新材料科技有限公司 微显示阵列电路、显示方法及其主动发光型显示器
CN113963667A (zh) * 2020-07-21 2022-01-21 京东方科技集团股份有限公司 一种显示装置及其驱动方法
US11922882B2 (en) 2020-07-21 2024-03-05 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel circuit and driving method therefor, and display apparatus
US11908414B2 (en) 2020-07-21 2024-02-20 Chengdu Boe Optoelectronics Technology Co., Ltd. Display apparatus with compensation and driving method therefor
CN112511769A (zh) * 2020-11-05 2021-03-16 北京大学深圳研究生院 一种图像传感器像素电路以及图像传感阵列
CN112511769B (zh) * 2020-11-05 2022-09-20 北京大学深圳研究生院 一种图像传感器像素电路以及图像传感阵列
CN115244609A (zh) * 2020-11-30 2022-10-25 京东方科技集团股份有限公司 像素电路、其驱动方法及显示装置
CN112530351A (zh) * 2020-12-23 2021-03-19 厦门天马微电子有限公司 显示面板的驱动方法、显示面板和显示装置
CN112530351B (zh) * 2020-12-23 2024-04-09 厦门天马微电子有限公司 显示面板的驱动方法、显示面板和显示装置
CN112885304A (zh) * 2021-01-15 2021-06-01 合肥维信诺科技有限公司 像素电路、显示面板和像素电路的驱动方法
CN112885304B (zh) * 2021-01-15 2022-03-22 合肥维信诺科技有限公司 像素电路、显示面板和像素电路的驱动方法
CN114267313B (zh) * 2021-12-30 2023-01-13 惠科股份有限公司 驱动电路以及驱动方法、栅极驱动电路和显示装置
CN114267313A (zh) * 2021-12-30 2022-04-01 惠科股份有限公司 驱动电路以及驱动方法、栅极驱动电路和显示装置
CN114882838A (zh) * 2022-04-29 2022-08-09 天宜微电子(北京)有限公司 像素电路、显示装置及其驱动方法

Also Published As

Publication number Publication date
CN105489167B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
CN105489167A (zh) 显示装置及其像素电路和驱动方法
CN105096819B (zh) 一种显示装置及其像素电路
CN103440840B (zh) 一种显示装置及其像素电路
CN104112427B (zh) 像素电路及其驱动方法和显示装置
CN104658482B (zh) Amoled像素驱动电路及像素驱动方法
CN101515434B (zh) 有机发光二极管显示器
CN104700778B (zh) Amoled像素驱动电路及像素驱动方法
CN104575387B (zh) Amoled像素驱动电路及像素驱动方法
CN103700338B (zh) 像素电路及其驱动方法及采用该电路的有机发光显示装置
CN104715723A (zh) 显示装置及其像素电路和驱动方法
CN102842283B (zh) 一种像素电路、显示装置及其驱动方法
CN104575378B (zh) 像素电路、显示装置及显示驱动方法
CN104036726A (zh) 像素电路及其驱动方法、oled显示面板和装置
CN107068060A (zh) Amoled像素驱动电路及像素驱动方法
CN104867442A (zh) 一种像素电路及显示装置
CN102930821B (zh) 一种像素电路及其驱动方法、显示装置
CN107393477B (zh) 顶发射amoled像素电路及其驱动方法
CN104715724A (zh) 像素电路及其驱动方法和一种显示装置
CN103117040B (zh) 像素电路、显示装置及显示驱动方法
CN105096817A (zh) 像素电路及其驱动方法和一种显示装置
CN106067291A (zh) 一种像素驱动电路及其驱动方法、显示装置
CN105609048A (zh) 一种像素补偿电路及其驱动方法、显示装置
CN103198794A (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
CN104637446A (zh) 像素电路及其驱动方法和一种显示装置
CN103714778A (zh) 像素电路、像素电路的驱动方法和显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant