CN105386077B - 包括钴钼的水氧化催化剂 - Google Patents

包括钴钼的水氧化催化剂 Download PDF

Info

Publication number
CN105386077B
CN105386077B CN201510534699.4A CN201510534699A CN105386077B CN 105386077 B CN105386077 B CN 105386077B CN 201510534699 A CN201510534699 A CN 201510534699A CN 105386077 B CN105386077 B CN 105386077B
Authority
CN
China
Prior art keywords
water
molybdic acid
acid hydrate
hydrate cobalt
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510534699.4A
Other languages
English (en)
Other versions
CN105386077A (zh
Inventor
K·J·麦克唐纳德
贾鸿飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Engineering and Manufacturing North America Inc filed Critical Toyota Engineering and Manufacturing North America Inc
Publication of CN105386077A publication Critical patent/CN105386077A/zh
Application granted granted Critical
Publication of CN105386077B publication Critical patent/CN105386077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及包括钴钼的水氧化催化剂。具体地,公开了一种使用水合钴钼来氧化水的方法。多个水合钴钼纳米颗粒支撑在电极上并能够与水分子催化相互作用从而产生氧。可将催化剂用作用于产生电能的电化学电池或光电化学电池的一部分。

Description

包括钴钼的水氧化催化剂
发明领域
本发明涉及使用钴钼作为用于电化学和光化学电解水的催化剂的方法和装置,并且特别是涉及使用水合钴钼作为用于光化学氧化水的催化剂的方法和装置。
发明背景
长久以来,认为氢是理想的燃料来源,因为其提供化石燃料的一种清洁的、非污染的替代品。氢来源之一为如在方程式(I)中所述的将水分解为氢(H2)和氧(O2)。
(1)2H2O→O2+2H2
在电化学半电池中,水分解反应包含两个半反应:
(2)2H2O→O2+4H++4e-
(3)2H++2e-→H2
并且使用阳光由水制备的氢预期会提供充足的、可再生的、清洁的能量来源。然而,析氧半反应比析氢半反应在动力学上更加受限,并且因此可限制氢的总体制备。如此,付诸努力来研究有效的析氧反应(OER)催化剂,其可以提高OER的动力学,并提高由水制备氢。特别地,先前已经确定了钌和铱的氧化物。然而,由于它们在地球上属于最为稀有的元素,所以大规模使用这些催化剂是不切实际的。因此,改进的OER催化剂在作为可替代的燃料来源的氢的发展中将会是非常有用的。
发明内容
在一个方面中,本发明公开了一种用于氧化水以产生氧的方法。所述方法包括将水置于与水合钴钼接触,所述水合钴钼催化水的氧化并产生氧。所述水合钴钼可以是多个水合钴钼纳米颗粒,其可以附着于或可以不附着于电极,在电极和水之间施加电势来产生氧。
在本发明的另一个方面中,公开了一种用于氧化水以产生氧的电池。所述电池包含水和水合钴钼,其中水合钴钼催化水的氧化并产生氧。所述电池还可以包含用以保持水的容器。
在又一个方面中,可将光敏剂添加至水中与水合钴钼接触,并将水和水合钴钼以及光敏剂的混合物暴露至电磁辐射。在该方面中,光敏剂提供水合钴钼和水之间的电势。在一些情况下,光敏剂可以是钌-三(2,2’-联吡啶)化合物,例如钌-三(2,2’-联吡啶)氯化物。
附图说明
图1为所提出的机制的示意图,钴钼(CoMoO4)用作水氧化催化剂,用于将水转化为其单质部分,而电子转移至牺牲电子受主,例如[Ru(bpy)3]3+和S2O8 2-
图2为水合CoMoO4纳米颗粒和无水CoMoO4颗粒的一对扫描电子显微镜(SEM)图像;
图3为水合CoMoO4催化剂材料的EDX图;
图4为水合CoMoO4纳米颗粒和无水CoMoO4颗粒的XRD图;
图5为对于1个循环、10个循环之后的CoMoO4碳糊电极以及对于10个循环之后的CoWO4电极,使用5mV/s的扫描速率的循环伏安法形迹的图示;
图6为包括水合CoMoO4和无水CoMoO4的过电势对电流密度的电化学性能的图形;
图7为对于施加至涂覆有水合CoMoO4催化剂材料的ITO电极的工作电势来说所产生氧的百分比随时间变化的图示;
图8为水合CoMoO4的TGA数据图示。
发明详述
本公开内容提供了用于氧化水以产生氧气的方法、装置和/或催化剂组合物。所述方法包括提供水合钴钼(CoMoO4)催化剂材料,并将催化剂在对于产生氧为有效的条件下添加至水。在一种实施方案中,所述方法进一步包括将包含催化剂的水暴露至光辐射以产生氧气。
如在这里所使用的“催化剂”是指包含在化学电解反应(或其它电化学反应)中并提高其速率的材料,并且其自身作为电解的一部分进行反应,但是大部分并未由反应自身而被消耗,并且可以参与多个化学转化。本发明的催化材料在一些应用过程中会存在少量的消耗,并且在许多实施方案中,可以将本发明的催化材料再生至其原始化学状态。所述反应可以包括水氧化或析氧反应。
在一个方面中,水氧化催化剂或析氧催化剂包括水合钴钼,其将水分解为氧和氢离子。
在另一个方面中,公开了用于将水电化学水氧化分解为氧和氢离子的电极,包括基材和与所述基材接触的活性材料。所述活性材料包括水合钴钼。
在一个方面中,水合钴钼可与导电颗粒例如炭黑组合,并且还可以包括粘合剂,例如购自杜邦的磺化四氟乙烯基氟聚合物共聚物。可以通过本领域技术人员已知的任何方法将所组合的材料附着于电极基材。可以使用能够传导电流的多种不同的电极基材,例如玻璃碳、炭黑或其它材料。
催化剂可以包括多个水合钴钼纳米颗粒。在一些情况下,所述纳米颗粒在尺寸方面是均匀的,并且可以具有小于100nm的平均颗粒尺寸。在一种实施方案中,使用本领域技术人员已知的任何方法将水合钴钼附着于电极。例如,仅出于说明性的目的,可以使用吸附技术、粘合剂、沉积技术等将水合钴钼附着于电极。
在一些情况下,所述电极可以具有通道,并且可以使水以允许将水引入至电极通道内的速率与催化剂接触。此外,电极可以位于水性溶液中和/或是电化学电池的一部分和/或光电化学电池的一部分,其可以包括或可以不包括容器。
所述容器可以是任何接收器,例如盒、罐或瓶,可将电化学设备的部件保持或容纳于其中。如本领域普通技术人员将已知的,可以使用任何已知的技术或材料来制作容器。所述容器可以具有任何的形状或尺寸,只要其可以包含电化学设备的部件。电化学设备的部件可以安装在所述容器中。也就是说,可以将部件例如电极与所述容器连接,从而使得其相对于所述容器为固定的,并且在一些情况中,由所述容器支撑。
在一些情况下,包含本发明实施方案的电化学电池提供极为有效的使用太阳照射来分解水的方法,而无需施加电势。水在光阳极处氧化时,产生氢质子,随后在对电极处还原所述氢质子以形成氢气。此外,由电池产生的氧和氢可直接传递至燃料电池以产生进一步的能量。
在另一种实施方案中,可以通过光阳极(例如染料敏化半导体)或外部电势驱动电化学电池。所述染料敏化半导体充当化学/光电继电器***。例如并且仅出于说明性的目的,图1描述了可在光电继电器***内发生的一系列电子转移。这样的继电器***的例子包括钌N-施主染料,例如多吡啶钌染料,其可以吸收可见光并接收源自水合钴钼催化剂材料的电子,并由此促进与催化剂接触的水的氧化。在一些情况下,光敏剂可以是钌-三(2,2’-联吡啶)化合物,例如钌-三(2,2’-联吡啶)氯化物。
本发明进一步通过下文的实施例进行描述,其为实施本发明的具体模式的说明,并不意图对在权利要求中所定义的本发明的范围进行限定。
实施例
实施例I
水合CoMoO4的制备。
起始材料Co(NO3)2·6H2O(Mw=291.03g/mol)和Na2MoO4·2H2O(Mw=241.95g/mol)购自Sigma-Aldrich,并在没有进一步提纯的情况下直接使用。在典型的合成中,在强烈的搅拌下将(0.5M)Na2MoO4溶液逐滴添加至(0.5M)Co(NO3)2溶液中。反应之后,在离心机上使用水冲洗溶液混合物,并随后利用乙醇洗涤颗粒,之后在35℃下的烘箱中干燥过夜。最终产物为紫色粉末材料。
通过SEM检查最终的粉末产物,如图2所示。在图中可以看出,与无水颗粒相比,水合CoMoO4颗粒具有更小的尺寸。还对粉末颗粒进行如在图3中所示的能量色散X射线(EDX)分析,确认具有小于100nm的平均颗粒尺寸,以及钴、钼和氧的存在。所述分析表明钴:钼的比值为1:1,并且CoMoO4:H2O的比值为1:4。
对于水合CoMoO4和无水CoMoO4示出了如在图4中所示的XRD数据。所述数据表明对于无水CoMoO4材料的CoMoO4:H2O比值可为从1:1至1:3。
实施例II
CoMoO4的循环伏安法(CV)
通过研磨根据上文的实施例I制备的CoMoO4纳米颗粒和碳糊(BASI,CF-1010)来制备碳糊电极。随后将负载CoMoO4的碳糊负载至电极体(BASI,MF-2010)上,并砂磨以制备工作电极。可替代地,可以通过使用Nafion作为粘合剂材料结合如上所制备的CoMoO4颗粒和炭黑来制备电极。随后在玻璃碳电极上滴落涂布(drop cast)该材料。
对分别用Ag/AgCl和Pt线作为参比电极和对电极的简单3-电极电池进行CV研究。电解质具有的pH为8,并利用50和200mM浓度的磷酸盐缓冲溶液获得。典型的扫描速率为5和25mV/s。
在图5中示出对于在1个循环、10个循环之后的CoMoO4颗粒以及对于负载CoWO4的碳糊电极的循环伏安图形迹。如在图中所示的,10个循环之后的水合CoMoO4颗粒在所施加的1.1V电势下与第一个循环时的CoMoO4颗粒和10个循环之后的CoMoO4颗粒的颗粒相比具有提高的性能。
如在图6中所示的,水合和无水CoMoO4的塔菲尔图测量示出了在相同条件和所施加的过电势下,水合CoMoO4具有比无水CoMoO4每单位表面积明显更好的性能。水合CoMoO4在pH为8(电化学电池分解水的所需pH范围)下的性能特性示出可以使用水热反应大规模制备的用于分解水的改进的电化学催化剂。
实施例III
CoMoO4在氧化铟锡电极上的沉积
选择氧化铟锡(ITO)电极用于额外的水氧化测试,ITO载玻片测量25×75mm,购自SPI Supplies(#6415-CF)。通过使用金刚石刀片将ITO载玻片切割为四个相同的片来制备ITO电极,每个ITO载玻片产生四个ITO电极。
为了将水合CoMoO4纳米颗粒固定或附着于ITO电极上,首先将根据实施例I制备的钴钼纳米颗粒分散于乙醇中。典型的分散溶液包含在1ml乙醇中的10mg CoMoO4纳米颗粒。超声处理该分散溶液约20分钟,CoWO4纳米颗粒保持良好地分散于乙醇中持续多达数天。
使用浸渍技术和Nima Dip Coater来执行CoMoO4纳米颗粒在ITO载玻片上的沉积,从而获得均匀的涂层。随后将CoMoO4-ITO电极在150℃下的烘箱中烘烤1小时。
实施例IV
验证氧产生
设计气密H-电池以将电池中的氧产生定量。在一端附着具有弹簧夹的铜棒以保持CoMoO4-ITO电极,同时Ag/AgCl和铂线圈分别用作参比电极和对电极。这种H-电池中的两个室典型地填充有35ml的pH为8的磷酸盐缓冲液(200mM)。通过用Teflon带覆盖所不需要的区域来控制电极面积。在这些研究中使用的典型电极面积为1cm2,并且用于其中执行在电解质中溶解氧浓度的实时监测的恒电势研究的扫描速率为5和25mV/s。该研究包括将CoMoO4-ITO工作电极设定为相对于Ag/AgCl参比电极介于0.8-1.3V之间的电压,在每个所施加电势下持续15分钟,并且在整个研究中持续记录电极附近的氧浓度。如在图7中所示的,在低至1.0V(~200mV过电势)的电压下观察到氧浓度的增加,随后在更高的300mV和400mV的过电势下也观察到氧浓度的增加。当未施加电势时,还观察到氧浓度的下降。不被理论所限制,这种结果暗示Co2+离子可能已被活化为Co3+或Co4+,用于水的催化氧化。
实施例V
参考图8,示出水合CoMoO4颗粒的TGA分析图。基于TGA,发现因为水的总重量损失为约10%,CoMoO4:H2O的原子比为约1:1。
在一个方面中,CoMoO4:H2O的原子比可以是从1:1至1:4,如通过实施例所支持的。
本发明不限于如上所述的说明性实施例。所描述的实施例并不意图用于限定本发明的范围。其中的变化,要素的其它组合,以及其它的用途对于本领域技术人员来说将可发生。本发明的范围由权利要求的范围来定义。

Claims (17)

1.用于氧化水的方法,所述方法包含:
提供水合钼酸钴;
提供水;和
将水置于与水合钼酸钴接触,所述水合钼酸钴催化水的氧化。
2.权利要求1的方法,其中水合钼酸钴为多个水合钼酸钴纳米颗粒。
3.权利要求2的方法,进一步包括在水合钼酸钴和水之间施加电势。
4.权利要求2的方法,进一步包括将光敏剂添加至水,并使水和光敏剂暴露至电磁辐射,所述光敏剂在水合钼酸钴和水之间提供电势。
5.权利要求4的方法,其中光敏剂为钌-三(2,2’-联吡啶)化合物。
6.权利要求1的方法,其中水合钼酸钴具有的CoMoO4:H2O比值为从1:1至1:4。
7.用于氧化水的电池,所述电池包含:
水以及与所述水接触的水合钼酸钴;
所述水合钼酸钴催化水的氧化,其中水合钼酸钴具有的CoMoO4:H2O比值为从1:1至1:4。
8.权利要求7的电池,其中所述水合钼酸钴为多个水合钼酸钴纳米颗粒。
9.权利要求7的电池,进一步包括在所述水合钼酸钴和所述水之间施加的电势。
10.权利要求9的电池,进一步包括电极,所述水合钼酸钴附着于所述电极。
11.权利要求7的电池,在所述水中进一步包括光敏剂,并且电磁辐射源可操作地设置以使所述水和所述光敏剂暴露至电磁辐射,所述光敏剂在所述水合钼酸钴和所述水之间提供电势。
12.权利要求11的电池,其中所述光敏剂为钌-三(2,2’-联吡啶)化合物。
13.将水分解为氧和氢离子的水氧化催化剂,包含水合钼酸钴,其中水合钼酸钴具有的CoMoO4:H2O比值为从1:1至1:4。
14.权利要求13的水氧化催化剂,其中水合钼酸钴包括多个纳米颗粒,所述纳米颗粒具有小于1微米的尺寸。
15.权利要求13的水氧化催化剂,进一步包括与水合钼酸钴的纳米颗粒组合的粘合剂和导电颗粒。
16.用于将水电化学水氧化分解为氧和氢离子的电极,包含:
基材;
与所述基材接触的活性材料,所述活性材料包括水合钼酸钴,其中水合钼酸钴具有的CoMoO4:H2O比值为从1:1至1:4;
其中将水分解为氧和氢离子。
17.权利要求16的电极,进一步包括与水合钼酸钴的纳米颗粒组合的粘合剂和导电颗粒。
CN201510534699.4A 2014-08-28 2015-08-27 包括钴钼的水氧化催化剂 Active CN105386077B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/471,921 2014-08-28
US14/471,921 US9809889B2 (en) 2014-08-28 2014-08-28 Water oxidation catalyst including cobalt molybdenum

Publications (2)

Publication Number Publication Date
CN105386077A CN105386077A (zh) 2016-03-09
CN105386077B true CN105386077B (zh) 2019-05-21

Family

ID=55312290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510534699.4A Active CN105386077B (zh) 2014-08-28 2015-08-27 包括钴钼的水氧化催化剂

Country Status (4)

Country Link
US (2) US9809889B2 (zh)
JP (1) JP6525816B2 (zh)
CN (1) CN105386077B (zh)
DE (1) DE102015112585A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189708B2 (en) * 2016-08-18 2019-01-29 The United States Of America As Represented By The U.S. Environmental Protection Agency Ruthenium on chitosan (ChRu): concerted catalysis for water splitting and reduction
WO2019016852A1 (ja) * 2017-07-18 2019-01-24 国立大学法人弘前大学 電極触媒の製造方法及び水素の製造方法
CN109647476B (zh) * 2018-11-20 2021-06-08 天津大学 一种金属与金属氧化物复合her催化剂的制备方法
CN109718824A (zh) * 2019-01-14 2019-05-07 济南大学 一种氮掺杂CoMoO4纳米球的制备方法及电催化应用
CN113403641B (zh) * 2021-05-19 2022-04-05 中山大学 一种电催化材料及其制备方法和应用
CN114147221B (zh) * 2021-12-03 2023-10-27 中北大学 一种Ag@CoMoO4析氧电催化剂的制备方法
CN114293225B (zh) * 2022-01-10 2024-01-23 中纯氢能源科技(泰州)有限公司 一种Co5.47N/CoMoOx析氢电催化剂制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2847417A (en) * 1956-07-13 1958-08-12 Houdry Process Corp Preparation of imidazole compounds
US4537674A (en) 1982-07-19 1985-08-27 Energy Conversion Devices, Inc. Electrolytic cell anode
US20030091496A1 (en) 2001-07-23 2003-05-15 Resasco Daniel E. Method and catalyst for producing single walled carbon nanotubes
JP2002170431A (ja) 2000-11-29 2002-06-14 Idemitsu Kosan Co Ltd 電極基板およびその製造方法
JP2003200051A (ja) * 2001-12-28 2003-07-15 Sony Corp 酸素酸化還元デバイス用触媒及びそれを用いた電極
WO2005081326A1 (en) 2004-02-19 2005-09-01 The University Of Toledo Interconnected photoelectrochemical cell
US8062552B2 (en) 2005-05-19 2011-11-22 Brookhaven Science Associates, Llc Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
WO2008116254A1 (en) 2007-03-23 2008-10-02 Robin Brimblecombe Water oxidation catalyst
US8617770B2 (en) 2007-09-12 2013-12-31 GM Global Technology Operations LLC Electrodes containing oxygen evolution reaction catalysts
EP2315862A2 (en) 2008-06-18 2011-05-04 Massachusetts Institute of Technology Catalytic materials, electrodes, and systems for water electrolysis and other electrochemical techniques
JP2012505310A (ja) 2008-10-08 2012-03-01 マサチューセッツ インスティテュート オブ テクノロジー 触媒材料、光アノード、ならびに水電気分解およびたの電気化学技術のための光電気化学セル
WO2010042197A1 (en) 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
US8192609B2 (en) 2009-12-01 2012-06-05 Wisconsin Alumni Research Foundation Cobalt oxyfluoride catalysts for electrolytic dissociation of water
US10208384B2 (en) 2011-08-11 2019-02-19 Toyota Motor Engineering & Manufacturing North America, Inc. Efficient water oxidation catalysts and methods of oxygen and hydrogen production by photoelectrolysis
US8968534B2 (en) * 2012-01-31 2015-03-03 Toyota Motor Egineering & Manufacturing North America, Inc. Water oxidation catalyst
CN103539210B (zh) * 2013-10-30 2015-10-28 渤海大学 一种钼酸钴微晶的制备方法
CN103811189B (zh) * 2014-02-12 2016-08-17 东华大学 一种钼酸钴与石墨烯纳米复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electrocatalytic properties of new spinel-type MMoO4 (M[Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions;R.N. Singh;《International Journal of hydrogen energy》;20080808;第4260-4264页

Also Published As

Publication number Publication date
US20160060769A1 (en) 2016-03-03
JP2016050361A (ja) 2016-04-11
US9809889B2 (en) 2017-11-07
DE102015112585A1 (de) 2016-03-03
US20180038000A1 (en) 2018-02-08
JP6525816B2 (ja) 2019-06-05
CN105386077A (zh) 2016-03-09
US10619252B2 (en) 2020-04-14

Similar Documents

Publication Publication Date Title
CN105386077B (zh) 包括钴钼的水氧化催化剂
Hu et al. Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition
Bhowmick et al. Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell
Han et al. Enhanced activity and acid pH stability of Prussian blue-type oxygen evolution electrocatalysts processed by chemical etching
Zou et al. NixSy nanowalls/nitrogen‐doped graphene foam is an efficient trifunctional catalyst for unassisted artificial photosynthesis
Sahara et al. Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru (II)–Re (I) complex photocatalyst and a CoO x/TaON photoanode
JP5905839B2 (ja) 水酸化触媒
Das et al. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons
Swaminathan et al. Defect-Rich Metallic Titania (TiO1. 23) An Efficient Hydrogen Evolution Catalyst for Electrochemical Water Splitting
Wang et al. Distorted 1T-ReS2 nanosheets anchored on porous TiO2 nanofibers for highly enhanced photocatalytic hydrogen production
Kong et al. Dye-sensitized cobalt catalysts for high efficient visible light hydrogen evolution
Tao et al. Formation of highly active NiO (OH) thin films from electrochemically deposited Ni (OH) 2 by a simple thermal treatment at a moderate temperature: a combined electrochemical and surface science investigation
Dong et al. Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion
Guo et al. Facile electrochemical co-deposition of a graphene–cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions
Joya et al. Thin-film iron-oxide nanobeads as bifunctional electrocatalyst for high activity overall water splitting
Zhang et al. Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation
Karfa et al. Shape-dependent electrocatalytic activity of iridium oxide decorated erbium pyrosilicate toward the hydrogen evolution reaction over the entire pH range
CN107829107A (zh) 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
Roger et al. Silver leakage from Ag/AgCl reference electrodes as a potential cause of interference in the electrocatalytic hydrogen evolution reaction
Hosseini-Benhangi et al. Controlling the interfacial environment in the electrosynthesis of MnO x nanostructures for high-performance oxygen reduction/evolution electrocatalysis
Zahran et al. Concisely Synthesized FeNiWO x Film as a Highly Efficient and Robust Catalyst for Electrochemical Water Oxidation
Hoogeveen et al. Photo-electrocatalytic hydrogen generation at dye-sensitised electrodes functionalised with a heterogeneous metal catalyst
CN104195588B (zh) 一种光电化学分解纯水制备氧气与氢气的方法
Sato et al. Electrocatalytic CO2 reduction near the theoretical potential in water using Ru complex supported on carbon nanotubes
Cheng et al. Pd nanofilm supported on C@ TiO2 nanocone core/shell nanoarrays: a facile preparation of high performance electrocatalyst for H2O2 electroreduction in acid medium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191021

Address after: Aichi Prefecture, Japan

Patentee after: Toyota Motor Corp.

Address before: Kentucky, USA

Patentee before: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, Inc.

TR01 Transfer of patent right