CN105304736B - 磁控溅射联合快速退火技术制备Ge/Si量子点 - Google Patents

磁控溅射联合快速退火技术制备Ge/Si量子点 Download PDF

Info

Publication number
CN105304736B
CN105304736B CN201510421707.4A CN201510421707A CN105304736B CN 105304736 B CN105304736 B CN 105304736B CN 201510421707 A CN201510421707 A CN 201510421707A CN 105304736 B CN105304736 B CN 105304736B
Authority
CN
China
Prior art keywords
sputtering
quantum dot
growth
substrate
quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510421707.4A
Other languages
English (en)
Other versions
CN105304736A (zh
Inventor
杨宇
舒启江
迟庆斌
王荣飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN201510421707.4A priority Critical patent/CN105304736B/zh
Publication of CN105304736A publication Critical patent/CN105304736A/zh
Application granted granted Critical
Publication of CN105304736B publication Critical patent/CN105304736B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种磁控溅射联合快速退火技术生长Ge量子点的方法,属于半导体量子材料的制备技术领域。本发明基于超高真空磁控溅射技术,以Ar气为工作气体,在真空度小于或等于2.0×10‑4Pa时,首先采用射频溅射技术于较高温度条件下生长一定厚度的本征Si缓冲层,接着采用直流溅射技术于低温、低功率、低溅射气压等条件下生长一较薄Ge原子层,最后利用快速退火炉对Ge原子薄层进行快速退火处理获得Ge/Si量子点。该方法不但解决了大溅射速率下生长量子点可控性差、分布不均匀的不足,同时克服了低生长速率(MBE、CVD)技术中生长缓慢,制备高密度、小尺寸量子点时工序相对复杂的缺点,获得的量子点具有密度高、尺寸小、分布均匀、可控性好等优点,且设备简单、使用和维护成本低。因而该方法是一种简单高效、成点质量高、易于产业化推广的量子点制备方法。

Description

磁控溅射联合快速退火技术制备Ge/Si量子点
技术领域
本发明涉及半导体量子材料的制备方法,特别是采用磁控溅射技术、快速退火技术来制备Ge/Si量子点的方法。
背景技术
半导体Ge量子点由于具有许多独特的性质(三维限制效应、库伦阻塞效应、声子瓶颈效应、对垂直入射光响应、可直接与硅基电路集成)而在光电子与微电子器件领域有着巨大的应用潜力,成为目前学术研究的热点之一。
从量子点红外探测器的角度出发,为了实现对垂直入射光的强响应,首要问题是如何获得体积足够小的量子点,使其横向面内的限制能级能够控制或减少到1到2条能级,这从理论上要求量子点的横向宽度小于或等于10nm;另外,优质可用的探测器必须具有较高的吸收效率,这就要求有源区具有较高的量子点密度,例如:为获得和量子阱探测器相当的吸收率,每层的载流子密度应为:(1-10)×1011cm-2,如果每个量子点内的载流子数为2,那么量子点密度应为:(1-5)×1011cm-2,为达到这一密度,相应的量子点横向尺寸要求控制在30nm以内;最后,在吸收率出现饱和之前,探测器的吸收率随量子点层数的增加而增加,所以高效、快捷地生长多层量子点也是器件制作中不可忽视的方向。总之,为了满足器件性能要求,除了提高量子点空间排布的有序性外,减小尺寸、提高密度、高效地生长重复有源层是科研工作者要突破的重要方面。
量子点的制备具有多重手段,包括分子束外延(MBE)、化学气相沉积(CVD)、物理气相沉积(PVD)和原子层外延(ALE)等技术,近年来,为了克服密度过低、尺寸过大的难题,许多科研工作者进行了大量的尝试并取得了突破性的进展,例如:在Si衬底上先制作图形,再进行Ge沉积;利用超薄氧化层设计窗口,沉积Ge形成量子点;利用分子束外延设备,通过沉积适量B原子或C原子,诱导制备Ge量子点。特别是通过杂质原子诱导成点的方法,横向尺寸小于10nm,高度小于1nm,密度高达1011cm-2的Ge量子点已显有报道。以上介绍的常规制备Ge量子点的方法一般为低沉积速率(速率为0.001-0.004nm/s)技术,生长速率慢,同时,为实现高密度、小尺寸,又必须经过相对复杂或精细的修饰过程或杂质诱导过程。所以寻找或探索一种具有设备简单、使用和维护成本低、生长方法简单快捷、成点质量高、易于产业化推广等优点的量子点制备方法是该领域中急需解决的难题。
发明内容
为了克服采用低沉积速率通过衬底修饰或杂质诱导制备小尺寸、高密度Ge/Si量子点速率慢、过程复杂、设备维护成本高的不足,本发明提供一种利用磁控溅射技术开展Ge/Si量子点生长研究的方法。该方法不仅设备维护成本低、操作简单、且能高效快捷(溅射沉积速率为0.18nm/s)地生长制备出密度高、尺寸小、均匀性好的高质量量子点。
本发明解决其技术问题所采用的技术方案是:采用FJL560 型超高真空磁控溅射仪为生长设备,以n型低掺杂Si(100)单面抛光晶体为衬底,衬底厚度为0.50mm,电阻率为1-3Ω.cm。对衬底使用标准Shiraki方法进行清洗,然后在HF酸溶液中漂洗以去除基片表面的自然氧化层,同时完成对衬底表面的H钝化,用高纯氮气吹干后将衬底迅速放入磁控溅射真空室内进行Ge点的生长。
在衬底上沉积Ge之前,先对磁控溅射室进行真空化处理,待本底真空达到2.0×10-4Pa时对Si衬底进行加热,温度到达800oC时保温600s进行脱气处理,为了降低表面态影响,同时降低表面粗糙度,减小表面缺陷,先将衬底温度降低到700oC,然后生长50nm的Si缓冲层,对缓冲层保温1800s使其结晶率最大化。随后降低基片温度到600oC保温300s,待温度稳定后沉积3.4nm厚度的Ge原子薄膜,自然降温获得初始样品,再将初始样品放入RTP-1000D4型快速退火炉中进行合适温度的快速退火处理获得量子点最终样品。样品的量子点表面形貌采用SPA-400SPM型原子力显微镜(AFM)进行表征,Raman分析是在invia共聚焦显微拉曼光谱仪上进行。所有测试均在室温下完成。
与常见制备量子点低维材料的MBE、CVD(沉积速率为0.001-0.004nm/s)相比,磁控溅射设备(沉积速率为0.1-0.8nm/s)具有较高的沉积速率,其超高效率的优点在镀膜技术领域中已经获得认可,实现了产业化推广,但过高的沉积速率在制备量子点材料中存在不可忽略的难题,在沉积过程中原子没有足够的时间来完成充分的迁移,如果提高衬底温度让其获得***能量进而跨越动力学限制势垒,那么又会加剧Ge-Si互混,得到的往往是大尺寸的合金岛。为兼顾效率与效果,本发明采用低溅射功率(为35w)、低溅射气压(为0.3pa)、低Ar气流量(为5sccm)以获得相对较低的沉积速率(为0.18nm/s)来“模拟”MBE与CVD的生长过程,为减少生长过程中的Ge-Si互混,同时兼顾材料的结晶率,沉积Ge时的衬底温度设置为600oC。另外,为得到高密度、小尺寸的Ge量子点,一方面需要提高退火温度让更多的Ge原子进行表面迁移进入Ge岛,同时在迁移过程中相遇形成新核,另一方面要精准的控制退火时间抑制Ge岛的熟化过程,本发明通过不同退火时间和退火温度的尝试,获得的最终参数为700oC、600s。
本发明的有益效果是,设备操作简单、易于维护、量子点的制备生长高效快捷,成点质量高(密度高达1.02×1011cm-2、横向宽度缩小至22nm,纵向高度降低至5nm),这为快速生长多层量子点实现产业化推广提供了可能性方案。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为采用磁控溅射法制备高密度、小尺寸Ge/Si量子点的整体工艺流程;
图2为表征量子点样品二维形貌的AFM检测结果;
图3为表征量子点样品三维形貌的AFM检测结果;
图4为量子点样品直径和高度的统计直方图;
图5为表征量子点结晶性的Raman谱图。
具体实施方式
图1中实施例A的操作流程如下:
1.用分析纯丙酮在室温下超声5min,去离子水冲洗。此步骤重复3遍;
2.用无水乙醇在室温下超声5min,去离子水冲洗。此步骤重复3遍;
3.先浓H2SO4(98%):H2O2=2:1的混合溶液中煮沸3-5min,去离子水冲洗2-3次,后用HF(10%):H2O=1:10的混合溶液浸泡30s,去离子水冲洗2-3次;
4.先浓HNO3煮沸3min,去离子水冲洗2-3次,后用HF(10%):H2O=1:10的混合溶液浸泡30s,去离子水冲洗2-3次。此步骤重复2遍;
5.先浓HNO3:H2O2:H2O=1:1:4的混合溶液煮沸5min,去离子水冲洗2-3次,后后用HF(10%):H2O=1:10的混合溶液浸泡30s,去离子水冲洗2-3次;
6.用HCL:H2O=3:1的混合溶液煮沸后加和H2O等体积的H2O2至溶液透明,去离子水冲洗2-3次;
7.用HF(10%):H2O=1:40的混合溶液漂洗30-60s,去离子水冲洗2-3次;
8.用氮气吹干后,放置在样品托中,送入磁控溅射设备真空室。
图1中实施例B的操作方案如下:
1.磁控溅射室真空度抽至2×10-4Pa;
2. 对衬底先加热至800OC保温600s,后自然降温至700OC保温300s;
3.溅射室内通入纯度为99.999%的Ar气,流量为10sccm,启动Si靶材射频溅射装置,溅射气压调至3-5Pa,溅射功率设置为50-60w,进行预溅射600s;
4.调节工作气压至0.3Pa,溅射功率为50w,溅射700s,对样品保温1800s;
5.降低衬底温度至600OC,保温300s;
6.启动Ge靶材直流溅射装置,溅射气压调至3-5Pa,溅射功率设置为50-60w,进行预溅射600s;
7. 调节工作气压至0.3Pa,溅射功率为35w,溅射16s,自然降温。
图1中实施例C的执行细节如下:
1.快速退火炉内通入N2至气压达0Mpa;
2.打开炉腔,放入样品,先抽真空,后通入N2
3.设置升温曲线,加热升温至700OC,退火时间为600s;
4.水冷降温,关机后取出样品。
图1中实施例D为样品表征常规方法。
图2给出量子点样品的AFM二维形貌图,经统计,密度达1.02×1011cm-2
图3、图4显示量子点的具体三维形貌和横向、纵向尺寸的涨落分布,从统计直方图中容易看出,量子点的横向宽度为22nm左右,纵向高度为5nm左右,高宽比接近1:4。
图5为量子点样品的Raman光谱图,从图中不难看出,频移520cm-2处出现明显的峰位,为Si的横向光学(TO)峰,较高的峰强和较窄的半高宽显示Si衬底良好的结晶性。同时,在300cm-2附近也出现了Ge的晶态峰,综合频移的峰位、Ge膜的厚度以及Raman的测试精度(为1cm-1)来看,量子点样品中Ge组分也获得了较好的结晶性。另一方面,在频移400cm-1处并没有发现结晶峰,说明样品中并没有出现明显的Si-Ge互混,这一结果实现了上文提到的抑制熟化、避免出现大尺寸合金岛的目的。

Claims (6)

1.一种磁控溅射联合快速退火技术制备Ge/Si量子点的方法,该方法以超高真空磁控溅射仪为生长设备,纯度为99.999%的Ar气为工作气体,纯度为99.999%的高纯本征Si和本征Ge为溅射靶材,单面抛光N型单晶Si为衬底,其特征在于采用首先对磁控溅射腔体进行真空化处理和对清洗后的衬底进行溅射前的加热脱气处理,接着于电阻率为1-8Ω.cm的衬底上先溅射生长20-50nm的Si缓冲层,后生长3.4-4.0nm的Ge薄膜,获得初始样品,最后将初始样品放入快速退火炉中进行快速退火处理获得密度高达1.02×1011cm-2、横向宽度缩小至22nm,纵向高度降低至5nm的高密度、小尺寸量子点最终样品。
2.根据权利要求1所述的方法,其特征在于量子点的生长衬底为厚度为0.3-0.6mm、电阻率为1-8Ω.cm的单面抛光单晶Si。
3.根据权利要求1所述的方法,其特征在于溅射沉积薄膜前,对衬底加温至800OC-900OC完成脱气处理。
4.根据权利要求1所述的方法,其特征在于所述步骤中沉积Si缓冲层时先将衬底降温至700OC,以射频溅射为沉积方式,具体条件如下: Ar气流量为10-15sccm;溅射气压为0.3-0.4Pa;射功率为45-60w;沉积厚度为20-50nm;保温时间为30-60min。
5.根据权利要求1所述的方法,其特征在于所述步骤中沉积Ge时先将衬底降温至600-650OC,以直流溅射为沉积方式,具体条件如下: Ar气流量为5-8sccm;溅射气压为0.3-0.4Pa;溅射功率为30-40w;沉积厚度为3.4-4.0nm,溅射完毕后即刻自然降温获得初始样品。
6.根据权利要求1所述的方法,其特征在于所述步骤中对自然降温获得的初始样品的处理为将样品放入快速退火炉中进行快速退火处理,退火参数如下:以N2为保护气体,退火温度为700OC-750 OC,退火时间为600-650s。
CN201510421707.4A 2015-07-18 2015-07-18 磁控溅射联合快速退火技术制备Ge/Si量子点 Expired - Fee Related CN105304736B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510421707.4A CN105304736B (zh) 2015-07-18 2015-07-18 磁控溅射联合快速退火技术制备Ge/Si量子点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510421707.4A CN105304736B (zh) 2015-07-18 2015-07-18 磁控溅射联合快速退火技术制备Ge/Si量子点

Publications (2)

Publication Number Publication Date
CN105304736A CN105304736A (zh) 2016-02-03
CN105304736B true CN105304736B (zh) 2017-10-17

Family

ID=55201743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510421707.4A Expired - Fee Related CN105304736B (zh) 2015-07-18 2015-07-18 磁控溅射联合快速退火技术制备Ge/Si量子点

Country Status (1)

Country Link
CN (1) CN105304736B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899756A (zh) * 2018-06-06 2018-11-27 青岛海信宽带多媒体技术有限公司 金属电极的沉积方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071926B (zh) * 2020-08-27 2022-04-22 深圳市奥伦德元器件有限公司 一种红外探测器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866832B (zh) * 2010-05-25 2011-07-20 云南大学 缓冲层填埋断续生长高均匀尺寸Ge量子点的方法
CN102534533B (zh) * 2012-01-26 2014-03-05 云南大学 磁控溅射技术制备硅基锗量子点的方法
CN104377257B (zh) * 2013-09-05 2017-03-01 国家纳米科学中心 一种硅基锗量子点复合结构材料、其制备方法及应用
CN104762593A (zh) * 2015-04-09 2015-07-08 云南大学 硅基底上溅射制备有序锗量子点的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899756A (zh) * 2018-06-06 2018-11-27 青岛海信宽带多媒体技术有限公司 金属电极的沉积方法
CN108899756B (zh) * 2018-06-06 2020-04-28 青岛海信宽带多媒体技术有限公司 金属电极的沉积方法

Also Published As

Publication number Publication date
CN105304736A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
Karabacak et al. Scaling during shadowing growth of isolated nanocolumns
CN103935990B (zh) 基于聚焦离子束***的He离子刻蚀制备石墨烯纳米带方法
CN109811319B (zh) 一种基于Al纳米颗粒光热的智能温控薄膜及其制备方法
CN108468032B (zh) 一种塑性提升的纳米晶薄膜制备方法
CN108411267A (zh) 一种制备自由态多面体纳米Ag颗粒的方法
Huang et al. The effect of sputtering parameters on the film properties of molybdenum back contact for CIGS solar cells
CN108611603A (zh) 一种金属多层膜的制备方法
CN106119804A (zh) 一种基于快速退火金属薄膜自组装纳米粒子的方法
CN105304736B (zh) 磁控溅射联合快速退火技术制备Ge/Si量子点
Muslim et al. Properties of nickel films growth by radio frequency magnetron sputtering at elevated substrate temperatures
CN105441877B (zh) 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺
CN110896024B (zh) 碳化硅外延氧化镓薄膜方法及碳化硅外延氧化镓薄膜结构
CN110129732B (zh) 一种高电阻率高熵合金薄膜及其制备方法
CN104630711B (zh) 一种塑性金属纳米 Cu/Ru 多层膜的制备方法
CN108004518A (zh) 基于离子束溅射技术制备尺寸均匀、高密度MnGe量子点
CN107119261B (zh) 一种巨自旋霍尔效应合金薄膜材料及其制备方法和用途
US11885040B2 (en) Single crystal epitaxial layer having a rhombohedral lattice
CN110804727B (zh) 应变薄膜异质结、制备方法及应用
CN110344015B (zh) 一种脉冲电场辅助的薄膜制备或处理的装置及方法
Peifang et al. Control of growth and structure of Ag films by the driving frequency of magnetron sputtering
Mueller et al. Influence of Mo–N as diffusion barrier in Mo back contacts for Cu (In, Ga) Se2 solar cells
CN115261810B (zh) 用于立体超导量子比特芯片的vb族硬金属薄膜脉冲磁控溅射方法
Gelali et al. Structure and morphology of the Cu films grown by DC magnetron sputtering
Chao et al. Effect of nanoscale ripples on the formation of ZnO quantum dots
CN114752887B (zh) 一种利用磁控共溅射技术制备MnGe铁磁性量子点材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171017

Termination date: 20190718