CN105271438A - 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法 - Google Patents

一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法 Download PDF

Info

Publication number
CN105271438A
CN105271438A CN201510707828.5A CN201510707828A CN105271438A CN 105271438 A CN105271438 A CN 105271438A CN 201510707828 A CN201510707828 A CN 201510707828A CN 105271438 A CN105271438 A CN 105271438A
Authority
CN
China
Prior art keywords
sea urchin
preparation
magnesium
structure electrode
cobalt acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510707828.5A
Other languages
English (en)
Other versions
CN105271438B (zh
Inventor
许家胜
张�杰
刘楠楠
刘琳
钱建华
钟克利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN201510707828.5A priority Critical patent/CN105271438B/zh
Publication of CN105271438A publication Critical patent/CN105271438A/zh
Application granted granted Critical
Publication of CN105271438B publication Critical patent/CN105271438B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属无机非金属材料制备领域,尤其涉及一种双海胆形貌的钴酸镁多孔结构电极材料制备方法,其以可溶性镁盐、可溶性钴盐、尿素和氟化铵在醇/水混合溶液中充分溶解后,进行水热反应,过滤、洗涤后,再经过干燥、煅烧冷却后即得双海胆形貌的钴酸镁多孔结构电极材料。本发明工艺简便易行、产品纯度高、制备成本低,所得产品是形貌新颖的双海胆形貌,整体粒径的尺寸在5~8?mm之间,每个刺的直径在5~50?nm?之间,长度在3~5?mm之间。且产品的均一性、分散性都很好,将其应用于超级电容器,大大提高了现有容量器的性能,且生产工艺较简单,易于应用于实际大规模生产。

Description

一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法
技术领域
本发明属于无机非金属材料的制备技术领域,具体地说是涉及一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法。
背景技术
超级电容器又叫双电层电容器、电化学电容器,是介于传统电容器与化学电源的一种新型储能元件。超级电容器是一种介于传统静电电容器和蓄电池之间的储能装置,具有充放电时间短、循环寿命长以及比功率大等优点,有望应用于军事、电动汽车、风能、太阳能发电以及消费类电子产品等诸多领域。超级电容器电极材料的优劣是影响其功率性能的重要因素,目前研究较多的电极材料主要有碳基材料、金属氧化物和导电聚合物等。金属氧化物电极与碳材料相比,利用活性材料表面以及体相中发生氧化还原反应来储存能量,因此具有较高的比电容量和能量密度。金属氧化物电极与导电聚合物相比较,金属氧化物具有相对较高的循环稳定性和利用率。另外,金属氧化物还具有形貌可控、储藏丰富等诸多优点。因此,金属氧化物也是一类较有潜力的超级电容器电极材料。
人们对金属氧化物作为超级电容器电极材料做了较多研究,也取得了很大进展。目前的研究主要集中在简单的二元过渡金属氧化物,三元过渡金属氧化物通常包含两种不同的金属离子,由于在多种能源相关领域均具有潜在的应用而受到越来越多的关注。而三元尖晶石结构的钴基金属氧化物更是其中的佼佼者。在三元尖晶石结构的钴基金属氧化物中除了含有氧元素、钴元素外,还含有另外一种金属元素。如钴酸锌、钴酸锰、钴酸镍、钴酸铜、钴酸镁等。其中钴酸镁作为超级电容器电极材料很有潜力,其理论的比电容值为3122F/g,目前报道的值只有320F/g,还有很大的提升空间(参见:KrishnanSG,ReddyMV,HarilalM,etal.CharacterizationofMgCo2O4asanelectrodeforhighperformancesupercapacitors[J].ElectrochimicaActa,2015,161:312-321)。
发明内容
本发明旨在克服现有技术的不足之处而提供一种工艺简单,目的产物收率高,制备成本低,产品纯度高,具有较好电化学性能的双海胆形貌的钴酸镁多孔结构电极材料的制备方法。
为达到上述目的,本发明是这样实现的。
一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:将可溶性镁盐、可溶性钴盐、尿素和氟化铵在醇/水混合溶液中充分溶解后,进行水热反应,过滤、洗涤后,再经过干燥、煅烧冷却后即得目的产物。
作为一种优选方案,本发明所述可溶性镁盐为硝酸镁或氯化镁的一种或两种的混合物;所述可溶性钴盐为硝酸钴或氯化钴的一种或两种的混合物。
作为另一种优选方案,本发明所述可溶性镁盐、可溶性钴盐、尿素和氟化铵的摩尔比依次为1:2:12:4~40。
进一步地,本发明所述醇/水混合溶液中的醇为甲醇、乙醇、乙二醇、正丙醇或异丙醇中的一种或两种以上的混合物,且醇与水的体积比为1∶0.1~100。
更进一步地,本发明所述可溶性镁盐的摩尔浓度均为0.01~2.0mol/L。
更进一步地,本发明所述水热反应温度在110~220°C,反应时间为6~48小时。
更进一步地,本发明所述干燥时间为5~10小时,干燥温度为60~120°C,升温速率为2~10°C/分钟。
更进一步地,本发明所述煅烧时间为5~20小时,煅烧温度为300~500°C,升温速率为2~20°C/分钟。
本发明利用水热-煅烧两步法,成功的制备了双海胆形貌的钴酸镁多孔结构电极材料。由于纳米孔道超级结构的存在,使得材料具有较大的比表面积和丰富的空隙,这些结构有利于电解质的浸润和电子的传输。是一种非常有潜力的超级电容电极材料。
与现有技术相比,本发明具有如下特点。
(1)钴酸镁电极材料的传统方法杂质含量高,不能达到工业应用要求。本发明工艺路线简单,制备成本低,操作容易控制,具有较高的生产效率,通过对合成条件的有效控制,合成的双海胆形貌的钴酸镁多孔结构电极材料具有双海胆多刺的形貌,并且双海胆刺是多孔结构,由很多个纳米粒子组成,纳米粒子的尺寸为5~20nm。
(2)本发明制备的目的产物双海胆形貌的钴酸镁多孔结构电极材料,其纯度高(99.90%~99.96%),杂质含量低,分散性好(通过SEM图可以看出)。双海胆形貌的钴酸镁整体的尺寸在5~8mm之间。每个刺的直径在5~50nm之间,长度在3~5mm之间。钴酸镁多孔结构材料作为电极材料其比电容高,循环性能好,这种优异的性能与双海胆形貌钴酸镁多孔结构有密切的关系。
(3)目的产物收率高(99.0%~99.9%),可满足工业应用领域对钴酸镁多孔结构电极材料产品的要求。
附图说明
下面结合附图和具体实施方式对本发明作进一步说明。本发明的保护范围不仅局限于下列内容的表述。
图1为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的红外谱图。
图2为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的X射线衍射花样图。
图3为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的SEM形貌图。
图4为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的SEM形貌图。
图5为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的SEM形貌图。
图6为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的SEM形貌图。
图7为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的SEM形貌图。
图8为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的SEM形貌图。
图9为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的EDX-Map图。
图10为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的EDX-Map图。
具体实施方式
本发明将可溶性镁盐、可溶性钴盐、尿素和氟化铵在醇/水混合溶液中充分溶解后,进行水热反应(温度在110~220°C,时间为6~48小时),过滤、洗涤、干燥、煅烧冷却后即得目的产物(干燥时间为5~10小时,温度为60~120°C,升温速率为2~10°C/分钟。煅烧时间为5~20小时,温度为300~500°C,升温速率为2~20°C/分钟)。
其制备步骤是。
(1)将可溶性镁盐、可溶性钴盐、尿素和氟化铵按照一定的摩尔比称量后,放入在醇水混合溶液中充分溶解。
(2)将得到的混和溶液在一定温度下,进行水热反应,水热反应温度在110~220°C,水热反应时间为6~48小时。
(3)水热反应结束,自然冷却至室温后,将反应得到的产品过滤、洗涤后放入烘箱中,程序升温速率为2~10°C/分钟,在60~120°C条件下,干燥5~10小时。
(4)上述干燥过后,将所得到的产品直接在马弗炉中煅烧,马弗炉中程序升温的升温速率范围在2~20°C/min。煅烧时间为5~20小时,煅烧温度为300~500°C。自然冷却后即制得钴酸镁多孔结构电极材料微晶材料。
图1为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的红外谱图。
图2为本发明所制备的双海胆形貌钴酸镁多孔结构电极材料的X射线衍射花样图。
参见图3~8所示,为本发明所制备的双海胆形貌的钴酸镁多孔结构电极材料进行的扫描电镜(SEM)图,其结果是,所得产品钴酸镁多孔结构电极材料是具有双海胆形貌。整体粒径的尺寸在5~8mm之间。产品的分散性和均一性都很好。并且双海胆刺是多孔结构,由很多个纳米粒子组成,纳米粒子的尺寸为5~20nm。每个刺的直径在5~50nm之间,长度在3~5mm之间。
参见图9~10所示,为本发明所制备的双海胆形貌的钴酸镁多孔结构电极材料EDX-Map图,其结果是,所得产品钴酸镁多孔结构电极材料由镁、钴和氧三种元素组成。
实施例1。
将硝酸镁、硝酸钴、尿素和氟化铵按照摩尔比为1:2:12:10,准确称量后放入乙醇水溶液(醇水体积比1:1.5)中搅拌溶解。将得到的混和溶液进行水热反应,水热反应温度在150°C,水热反应时间为6小时。水热反应结束后,自然冷却至室温,将反应得到的产品过滤洗涤后放入烘箱中,程序升温速率5°C/分钟,在150°C条件下干燥5小时。然后放在马弗炉中煅烧,煅烧时间为5小时,煅烧温度为500°C,升温速率为10°C/分钟。自然冷却后即得到双海胆形貌的钴酸镁多孔结构电极材料。(见附图1-10)。
其产品的收率为99.9%。产品纯度不低于99.95%,杂质含量:碳小于0.02%;氮小于0.03%。以所制备的双海胆形貌钴酸镁多孔结构材料作为电极的活性材料,以导电乙炔黑作为导电剂,以PVDF作为交联剂,按照质量比80:15:5比例,用石墨纸为集流体做成电极,该电极作为工作电极。在三电极体系下测量其电容性能,对电极为铂电极,参比电极为饱和甘汞电极,测试恒流充放电,电流密度为5A/g时,其比电容值高达675F/g。循环5000次后比电容值仅衰减了3.2%。
实施例2。
将硝酸镁、硝酸钴、尿素和氟化铵按照摩尔比为1:2:12:20,准确称量后放入异丙醇水溶液(醇水体积比1:1.5)中搅拌溶解。将得到的混和溶液进行水热反应,水热反应温度在150°C,水热反应时间为6小时。水热反应结束后,自然冷却至室温,将反应得到的产品过滤洗涤后放入烘箱中,程序升温速率5°C/分钟,在150°C条件下干燥5小时。然后放在马弗炉中煅烧,煅烧时间为5小时,煅烧温度为450°C,升温速率为10°C/分钟。自然冷却后即得到双海胆形貌的钴酸镁多孔结构电极材料。
其产品的收率为99.3%。产品纯度不低于99.92%,杂质含量:碳小于0.04%;氮小于0.04%。以所制备的双海胆形貌钴酸镁多孔结构材料作为电极的活性材料,以导电乙炔黑作为导电剂,以PVDF作为交联剂,按照质量比80:15:5比例,用石墨纸为集流体做成电极,该电极作为工作电极。在三电极体系下测量其电容性能,对电极为铂电极,参比电极为饱和甘汞电极,测试恒流充放电,电流密度为5A/g时,其比电容值高达585F/g。循环5000次后比电容值仅衰减了3.5%。
实施例3。
将硝酸镁、硝酸钴、尿素和氟化铵按照摩尔比为1:2:12:30,准确称量后放入甲醇水溶液(醇水体积比1:3)中搅拌溶解。将得到的混和溶液进行水热反应,水热反应温度在150°C,水热反应时间为8小时。水热反应结束后,自然冷却至室温,将反应得到的产品过滤洗涤后放入烘箱中,程序升温速率5°C/分钟,在150°C条件下干燥5小时。然后放在马弗炉中煅烧,煅烧时间为5小时,煅烧温度为450°C,升温速率为10°C/分钟。自然冷却后即得到双海胆形貌的钴酸镁多孔结构电极材料。
其产品的收率为99.2%。产品纯度不低于99.93%,杂质含量:碳小于0.04%;氮小于0.03%。以所制备的双海胆形貌钴酸镁多孔结构材料作为电极的活性材料,以导电乙炔黑作为导电剂,以PVDF作为交联剂,按照质量比80:15:5比例,用石墨纸为集流体做成电极,该电极作为工作电极。在三电极体系下测量其电容性能,对电极为铂电极,参比电极为饱和甘汞电极,测试恒流充放电,电流密度为5A/g时,其比电容值高达512F/g。循环5000次后比电容值仅衰减了4.1%。
实施例4。
将氯化镁、氯化钴、尿素和氟化铵按照摩尔比为1:2:12:30,准确称量后放入正丙醇水溶液(醇水体积比1:2)中搅拌溶解。将得到的混和溶液进行水热反应,水热反应温度在150°C,水热反应时间为10小时。水热反应结束后,自然冷却至室温,将反应得到的产品过滤洗涤后放入烘箱中,程序升温速率5°C/分钟,在150°C条件下干燥5小时。然后放在马弗炉中煅烧,煅烧时间为5小时,煅烧温度为450°C,升温速率为10°C/分钟。自然冷却后即得到双海胆形貌的钴酸镁多孔结构电极材料。
其产品的收率为99.1%。产品纯度不低于99.91%,杂质含量:碳小于0.04%;氯小于0.05%。以所制备的双海胆形貌钴酸镁多孔结构材料作为电极的活性材料,以导电乙炔黑作为导电剂,以PVDF作为交联剂,按照质量比80:15:5比例,用石墨纸为集流体做成电极,该电极作为工作电极。在三电极体系下测量其电容性能,对电极为铂电极,参比电极为饱和甘汞电极,测试恒流充放电,电流密度为5A/g时,其比电容值高达425F/g。循环5000次后比电容值仅衰减了4.4%。
实施例5。
将氯化镁、氯化钴、尿素和氟化铵按照摩尔比为1:2:12:20,准确称量后放入乙二醇水溶液(醇水体积比1:1)中搅拌溶解。将得到的混和溶液进行水热反应,水热反应温度在160°C,水热反应时间为8小时。水热反应结束后,自然冷却至室温,将反应得到的产品过滤洗涤后放入烘箱中,程序升温速率5°C/分钟,在150°C条件下干燥5小时。然后放在马弗炉中煅烧,煅烧时间为5小时,煅烧温度为500°C,升温速率为10°C/分钟。自然冷却后即得到双海胆形貌的钴酸镁多孔结构电极材料。
其产品的收率为99.5%。产品纯度不低于99.90%,杂质含量:碳小于0.05%;氯小于0.05%。以所制备的双海胆形貌钴酸镁多孔结构材料作为电极的活性材料,以导电乙炔黑作为导电剂,以PVDF作为交联剂,按照质量比80:15:5比例,用石墨纸为集流体做成电极,该电极作为工作电极。在三电极体系下测量其电容性能,对电极为铂电极,参比电极为饱和甘汞电极,测试恒流充放电,电流密度为5A/g时,其比电容值高达412F/g。循环5000次后比电容值仅衰减了4.5%。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:将可溶性镁盐、可溶性钴盐、尿素和氟化铵在醇/水混合溶液中充分溶解后,进行水热反应,过滤、洗涤后,再经过干燥、煅烧冷却后即得目的产物。
2.根据权利要求1所述的一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:所述可溶性镁盐为硝酸镁或氯化镁的一种或两种的混合物;所述可溶性钴盐为硝酸钴或氯化钴的一种或两种的混合物。
3.根据权利要求2所述的一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:所述可溶性镁盐、可溶性钴盐、尿素和氟化铵的摩尔比依次为1:2:12:4~40。
4.根据权利要求3所述的一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:所述醇/水混合溶液中的醇为甲醇、乙醇、乙二醇、正丙醇或异丙醇中的一种或两种以上的混合物,且醇与水的体积比为1:0.1~100。
5.根据权利要求4所述的一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:所述可溶性镁盐的摩尔浓度为0.01~2.0mol/L。
6.根据权利要求1~5之任一所述的一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:所述水热反应温度在110~220°C,反应时间为6~48小时。
7.根据权利要求6所述的一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:所述干燥时间为5~10小时,干燥温度为60~150°C,升温速率为2~10°C/分钟。
8.根据权利要求7所述的一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法,其特征在于:所述煅烧时间为5~20小时,煅烧温度为300~500°C,升温速率为2~20°C/分钟。
CN201510707828.5A 2015-10-27 2015-10-27 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法 Expired - Fee Related CN105271438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510707828.5A CN105271438B (zh) 2015-10-27 2015-10-27 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510707828.5A CN105271438B (zh) 2015-10-27 2015-10-27 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN105271438A true CN105271438A (zh) 2016-01-27
CN105271438B CN105271438B (zh) 2017-07-11

Family

ID=55141377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510707828.5A Expired - Fee Related CN105271438B (zh) 2015-10-27 2015-10-27 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN105271438B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538631A (zh) * 2018-04-12 2018-09-14 江苏大学 溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用
CN110212174A (zh) * 2019-05-13 2019-09-06 福建江夏学院 钴酸镁及氮掺杂二氧化锡复合材料及其制备方法、用途
CN110885100A (zh) * 2018-09-07 2020-03-17 湖北大学 一种新型分等级结构镍锰酸锂正极材料的制备方法
CN113046778A (zh) * 2021-03-05 2021-06-29 北京化工大学 一种氨刻蚀海胆状球形结构铜锰尖晶石材料及其制备方法和应用
CN113845149A (zh) * 2021-07-26 2021-12-28 江汉大学 一种纳米钴酸镁及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956483A (zh) * 2014-04-30 2014-07-30 新疆维吾尔自治区产品质量监督检验研究院 钴酸锌/氧化镍核壳纳米线阵列的制备方法和应用
CN103979618A (zh) * 2014-05-05 2014-08-13 同济大学 一种超级电容器用钴酸镍纳米材料的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956483A (zh) * 2014-04-30 2014-07-30 新疆维吾尔自治区产品质量监督检验研究院 钴酸锌/氧化镍核壳纳米线阵列的制备方法和应用
CN103979618A (zh) * 2014-05-05 2014-08-13 同济大学 一种超级电容器用钴酸镍纳米材料的合成方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538631A (zh) * 2018-04-12 2018-09-14 江苏大学 溶剂热-原位氧化聚合法制备镍基钴酸镁复合电极材料的方法及应用
CN110885100A (zh) * 2018-09-07 2020-03-17 湖北大学 一种新型分等级结构镍锰酸锂正极材料的制备方法
CN110212174A (zh) * 2019-05-13 2019-09-06 福建江夏学院 钴酸镁及氮掺杂二氧化锡复合材料及其制备方法、用途
CN110212174B (zh) * 2019-05-13 2022-03-18 福建江夏学院 钴酸镁及氮掺杂二氧化锡复合材料及其制备方法、用途
CN113046778A (zh) * 2021-03-05 2021-06-29 北京化工大学 一种氨刻蚀海胆状球形结构铜锰尖晶石材料及其制备方法和应用
CN113046778B (zh) * 2021-03-05 2022-11-15 北京化工大学 一种氨刻蚀海胆状球形结构铜锰尖晶石材料及其制备方法和应用
CN113845149A (zh) * 2021-07-26 2021-12-28 江汉大学 一种纳米钴酸镁及其制备方法和应用

Also Published As

Publication number Publication date
CN105271438B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
Venkatachalam et al. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications
Chen et al. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution
Tao et al. Construction of NiCo 2 O 4 nanosheet-decorated leaf-like Co 3 O 4 nanoarrays from metal–organic framework for high-performance hybrid supercapacitors
Zhou et al. Chemical precipitation synthesis of porous Ni2P2O7 nanowires for supercapacitor
CN106953076B (zh) 一种钠离子电池碳/碳复合材料及其制备方法
CN105244191A (zh) 一种钴酸锰多孔纳米片/泡沫镍复合电极材料的制备方法
CN102664103B (zh) 钴酸锌纳米棒/泡沫镍复合电极、制备方法及其应用
Yao et al. Nanostructured transition metal vanadates as electrodes for pseudo-supercapacitors: a review
CN102664107B (zh) 一种纳米二氧化锰电极的制备方法
CN103318978B (zh) 一种介孔钴酸镍纤维的制备方法及其应用
CN105845904B (zh) 一种钠离子电池金属氧化物/聚吡咯空心纳米管负极复合材料及其制备方法
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN105271438A (zh) 一种双海胆形貌的钴酸镁多孔结构电极材料的制备方法
CN105244192A (zh) 一种钴酸镁多孔纳米线阵列/泡沫镍复合电极材料的制备方法
CN112233912A (zh) 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用
CN107045948B (zh) NaxMnO2正极材料、制备方法及其应用
Dong et al. Tunable growth of perpendicular cobalt ferrite nanosheets on reduced graphene oxide for energy storage
CN104176783A (zh) 一种氮碳材料包覆二氧化锰纳米线的制备及应用方法
CN106971855A (zh) 一种铁酸镍纳米颗粒电极材料及制备方法和用途
Chen et al. Low-temperature performance of aqueous electrochemical capacitors based on manganese oxides
CN103359796A (zh) 一种超级电容器氧化钴电极材料的制备方法
CN106409520A (zh) 一种锂离子混合电容器电极材料的制备方法及应用
CN106710891B (zh) 一种NiCo2O4/活性炭复合材料的制备方法
CN105314688B (zh) 一种氧化镍纳米片的制备方法及其应用
CN103151182B (zh) 一种纳米氧化镍电极材料及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170711

Termination date: 20171027

CF01 Termination of patent right due to non-payment of annual fee