CN105261681B - 一种半导体元件及其制备方法 - Google Patents

一种半导体元件及其制备方法 Download PDF

Info

Publication number
CN105261681B
CN105261681B CN201510564961.XA CN201510564961A CN105261681B CN 105261681 B CN105261681 B CN 105261681B CN 201510564961 A CN201510564961 A CN 201510564961A CN 105261681 B CN105261681 B CN 105261681B
Authority
CN
China
Prior art keywords
layer
buffer
semiconductor element
buffer layer
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510564961.XA
Other languages
English (en)
Other versions
CN105261681A (zh
Inventor
周圣伟
卓昌正
林兓兓
张家宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Sanan Optoelectronics Co Ltd
Original Assignee
Anhui Sanan Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Sanan Optoelectronics Co Ltd filed Critical Anhui Sanan Optoelectronics Co Ltd
Priority to CN201510564961.XA priority Critical patent/CN105261681B/zh
Publication of CN105261681A publication Critical patent/CN105261681A/zh
Priority to PCT/CN2016/097754 priority patent/WO2017041661A1/zh
Priority to US15/607,484 priority patent/US10096746B2/en
Application granted granted Critical
Publication of CN105261681B publication Critical patent/CN105261681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明提出了一种半导体元件,包括具有AlxN1‑x层和AlyO1‑y层(0<x<1,0<y<1)的超晶格结构缓冲层,所述超晶格结构缓冲层在芯片制程的侧壁腐蚀过程中,可减小化学溶液的腐蚀程度,提高芯片良率。同时提出一种制备方法,制备该超晶格结构缓冲层,实现本发明效果。

Description

一种半导体元件及其制备方法
技术领域
本发明属于半导体技术领域,特别涉及一种半导体元件及其制备方法。
背景技术
半导体元件的切割技术由金刚石刀切割逐渐发展为普通激光切割,一般来说,激光的波长为355nm或者266nm,其特点在于它既能划开蓝宝石衬底,也能划开各种膜层,比如氮化镓层,布拉格反射层、金属层等。而针对切割而言,既可以利用激光对外延片的表面进行划裂形成表面切割道,也可以利用激光聚焦衬底内部形成隐形切割道,从而达到分离单个芯粒的目的。
当使用激光对外延片的表面进行划裂形成表面切割道时,激光烧灼后形成的杂质附着于切割道侧壁,阻挡了光的出射,影响半导体元件的外量子效率。故为避免该烧灼杂质对发光亮度的影响,通常是在激光形成切割道后再使用化学溶液浸泡腐蚀以去除激光烧灼杂质,清洁切割道的侧壁。
物理气相沉积法(PVD法)具有工艺过程简单、对环境污染小、原材消耗少、成膜均匀致密、与基板的结合力强等特点,目前被越来越多地应用于半导体元件的制备中,通常较多地用于外延片底层的制备,例如沉积氮化铝层作为缓冲层,可降低及缓冲衬底与外延层之间因晶格失配和热失配产生的缺陷和应力,改善半导体元件的器件质量。
然而由于PVD法形成的氮化铝层具有多晶格及各向异性等特性,其较易被化学溶液腐蚀,故当外延片包含PVD法形成的缓冲层时,再利用激光对外延片表面切割后浸泡化学溶液时容易产生缓冲层或缓冲层与衬底接触表面的过腐蚀现象,导致形成的芯粒电性异常,降低生产良率。
发明内容
针对上述问题,本发明提出了一种半导体元件,包括至少具有AlxN1-x层和AlyO1-y层,0<x<1,0<y<1,的超晶格结构缓冲层,所述超晶格结构缓冲层在芯片制程的侧壁腐蚀过程中,用于减小化学溶液的腐蚀程度,提高芯片良率。同时提出一种制备方法,制备获得该超晶格结构缓冲层,实现本发明效果。
本发明提供的技术方案为:一种半导体元件,包括:衬底、缓冲层、N型半导体层、发光层和P型半导体层,其中,所述缓冲层为包括AlxN1-x层和AlyO1-y层,0<x<1,0<y<1,循环层叠的超晶格结构层,所述超晶格结构层的第一个循环层叠层中AlxN1-x层置于AlyO1-y层与所述衬底之间;所述缓冲层在芯片制程的侧壁腐蚀过程中,用于减小化学溶液的腐蚀程度,提高芯片良率。
优选的,所述缓冲层中第一个循环层叠层中AlxN1-x层置于AlyO1-y层与所述衬底之间。
优选的,所述 AlxN1-x层厚度≥AlyO1-y层厚度。
优选的,所述 AlxN1-x层厚度为5~500埃。
优选的,所述 AlyO1-y层厚度为5~500埃。
优选的,所述缓冲层与N型半导体层之间还包括一非掺杂半导体层。
优选的,所述超晶格结构层的循环次数≥2。
相较于常规氮化铝单层结构,本发明提出的超晶格结构缓冲层,相当于将常规氮化铝单层缓冲层分割成多层薄膜结构,并在多层膜中***AlyO1-y层,实验结果发现,AlxN1-x层和AlyO1-y层的接触面较AlxN1-x层本体对化学溶液的腐蚀耐受性更强,因此本结构的超晶格结构增加了AlxN1-x层和AlyO1-y层的接触面,从而提升缓冲层的抗化学溶液腐蚀的特性;且由于AlyO1-y层的存在,使得缓冲层的晶格应力发生改变,最终形成的超晶格缓冲层较原氮化铝缓冲层的晶体质量得到提高,从而在后续芯片制程的侧壁腐蚀过程中,即使用化学溶液腐蚀处理去除芯粒侧壁附着物时,降低对缓冲层的腐蚀程度,减小对芯粒电性能的影响。同时,由于多层膜对于光的折射角度的改变,此超晶格结构层可增加光的取出效率,提升半导体元件的外量子效率。
同时,为制备上述半导体底层结构,本发明提供一种半导体元件的制备方法,所述方法包括步骤:
S1、提供一衬底;
S2、利用物理气相沉积法于所述衬底表面沉积AlxN1-x层和AlyO1-y层,0<x<1,0<y<1,组成的超晶格结构缓冲层,所述缓冲层在后续芯片制程时减小化学溶液的腐蚀程度,提高芯片良率;
S3、利用化学气相沉积法于所述缓冲层表面沉积N型半导体层、发光层和P型半导体层组成的外延层,其中,低温制备的缓冲层在后续高温外延层制备过程中实现退火再结晶,用于释放在后沉积制程中的应力。
其中,所述步骤S2具体为:利用物理气相沉积法先于衬底表面沉积AlxN1-x层,再于所述AlxN1-x层表面沉积AlyO1-y层,并依次循环层叠形成超晶格结构缓冲层。
因为常规化学气相沉积法(MOCVD)无法在沉积过程中掺入氧元素,故本方法利用PVD法沉积形成超晶格结构缓冲层,引入AlyO1-y层,利用其抗腐蚀特性,及与AlxN1-x层晶格特性差异,改善本发明半导体元件中缓冲层特性,释放后续沉积外延层产生的应力,同时使其更利于后续芯片端制程。
优选的,所述步骤S2中,利用物理气相沉积法先于衬底表面沉积AlxN1-x层,再于所述AlxN1-x层表面沉积AlyO1-y层,并依次循环层叠形成超晶格结构缓冲层。
优选的,所述两种方法中步骤S3还包括,于缓冲层表面先沉积一非掺杂半导体层,再沉积N型半导体层。
优选的,所述 AlxN1-x层厚度≥AlyO1-y层厚度。
优选的,所述 AlxN1-x层厚度为5~500埃。
优选的,所述 AlyO1-y层厚度为5~500埃。
优选的,所述超晶格结构层的循环次数≥2。
本发明至少具有以下有益效果:
1、本发明提出的一种半导体元件,其缓冲层为包括AlxN1-x层和AlyO1-y层,0<x<1,0<y<1,的超晶格结构,由于AlxN1-x层与AlyO1-y层界面处,对化学溶液的腐蚀耐受性较强,因此,相对于单层AlxN1-x层,AlxN1-x层和AlyO1-y层的交替排列,使其界面增多,从而整体提高缓冲层的抗腐蚀性,同时AlyO1-y材料层本身具有的抗腐蚀性,进一步增强缓冲层的抗腐蚀性,避免芯片制程侧壁腐蚀时的过腐蚀现象。
2、相较于MOCVD法沉积膜层,PVD在沉积过程中可掺入氧元素,因此本发明利用PVD法沉积包括AlyO1-y层的超晶格结构缓冲层,AlyO1-y层的抗腐蚀性及其与AlxN1-x层的晶格特性差异,改善了缓冲层特性,进而释放后续沉积外延沉积过程产生的应力。
3、利用超晶格多层膜结构对于光的折射角度的影响,改善光的取出效率,进而提升半导体元件的内外量子效率。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1为本发明实施例一之半导体元件结构示意图。
图2为本发明实施例一之缓冲层结构示意图。
图3为本发明实施例二之半导体元件结构示意图。
图4为本发明实施例三之半导体元件结构示意图。
图中标示:10.衬底;20. 缓冲层;21. AlxN1-x层;22. AlyO1-y层;30. N型半导体层;40.发光层;50.P型半导体层;60. 非掺杂半导体层;a. AlxN1-x层本体;b. AlxN1-x层21与AlyO1-y层22接触界面。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式进行详细说明。
实施例1
参看附图1~2,本发明中的一种半导体元件,包括衬底10,缓冲层20,N性半导体层30、发光层40和P型半导体层50,其中,缓冲层20为至少包含厚度为5~500埃的AlxN1-x层21和厚度为5~500埃的AlyO1-y层22,0<x<1,0<y<1,的超晶格结构层,且超晶格结构层的循环次数≥2,AlxN1-x层21的厚度≥AlyO1-y层22厚度。实验发现,当AlxN1-x层21厚度与AlyO1-y层22厚度比值越大时,缓冲层20的晶格质量越优。本发明结构中,利用包含AlxN1-x层21和AlyO1-y层22的超晶格结构形成缓冲层20,减小后续芯片制程的侧壁腐蚀过程中,化学溶液对侧壁的腐蚀程度,提高芯片良率。
继续参看附图1~2,相对于AlxN1-x层21本体a,AlxN1-x层21与AlyO1-y层22接触界面位置b对化学溶液的腐蚀耐受性更强,因此,相对于常规结构中的单层氮化铝层,AlxN1-x层21和AlyO1-y层22的交替排列使其接触界面b增多,从而整体提高缓冲层20的抗腐蚀性;同时由于AlyO1-y层材料22本身具有的抗腐蚀性,进一步增强缓冲层20的抗腐蚀性,避免芯片制程中侧壁腐蚀时的过腐蚀现象。另外,因AlxN1-x层21和AlyO1-y层22晶格差异较大,故超晶格结构中AlxN1-x层21和AlyO1-y层22接触界面被挤压变形,从而使得缓冲层20整体释放应力的能力增加,缓解后续沉积外延层的晶格应力,改善因应力造成的翘曲。同时,当缓冲层20为多层膜层叠结构时,利用其不同材料层对光的折射率差异,调节缓冲层20对发光层40发射光的折射角度,增大光取出效率,提高半导体元件的外量子效率。
为实现上述结构及其作用,本发明提出一种半导体元件的制备方法:
S1、提供衬底10,所述衬底为蓝宝石、SiC(6H-SiC或4H-SiC)、Si、GaAs 、GaN衬底或晶格常数(lattice constant)接近于氮化物半导体的单晶氧化物,此处优选蓝宝石衬底。
S2、将衬底10置入PVD机台腔室,利用PVD法于衬底10表面沉积至少包括厚度为5~500埃的AlxN1-x层21和厚度为5~500埃的AlyO1-y层22,0<x<1,0<y<1,的超晶格结构缓冲层20,超晶格结构的循环次数≥2,AlxN1-x层21的厚度≥AlyO1-y层22厚度。缓冲层20在后续芯片制程的侧壁腐蚀过程,可减小化学溶液的腐蚀程度,提高芯片良率;而因为常规MOCVD法无法沉积含氧元素的AlyO1-y层22,故本发明利用PVD法引入AlyO1-y层22,实现了本发明的结构特征。
S3、将沉积有缓冲层20的晶片转入MOCVD腔室,利用MOCVD法于缓冲层20表面沉积N型半导体层30、发光层40和P型半导体层50组成的外延层,其中,后续外延层制备过程中的高温环境对低温PVD生长的缓冲层20起到使其退火再结晶的作用,缓冲层的退火过程有利于释放在后沉积制程中的应力,改善半导体元件的晶体质量。
本发明方法利用PVD法与MOCVD法相结合的方式制备半导体元件,首先利用PVD法沉积缓冲层20,获得含氧元素的缓冲层20,在不影响PVD法沉积的氮化铝层形成缓冲层的基础上减小缓冲层20被化学溶液腐蚀的程度,改善化学溶液处理后的元件电学性能。随后,在缓冲层20表面利用MOCVD法沉积N型半导体层30、发光层40和P型半导体层50组成的外延层形成半导体元件。
实施例2
参看附图3,本实施例与实施例1的区别在于,本发明的缓冲层20为包括厚度为5~500埃的AlxN1-x层21和厚度为5~500埃的AlyO1-y层22,0<x<1,0<y<1,的超晶格结构层,且在该超晶格结构层的第一个循环层叠层中AlxN1-x层21置于AlyO1-y层22与所述衬底10之间,所述超晶格结构层的循环次数≥2,AlxN1-x层21的厚度≥AlyO1-y层22厚度。
本实施例采取的制备方法与实施例1的制备方法区别为:S2、将衬底10置入PVD机台腔室,利用PVD法先于衬底10表面沉积厚度为5~500埃的AlxN1-x层21和厚度为5~500埃的AlyO1-y层22,0<x<1,0<y<1,组成的超晶格结构缓冲层20,此步骤中,先于衬底10表面沉积一AlxN1-x层21,再于AlxN1-x层21表面沉积AlyO1-y层22,依次循环层叠形成超晶格结构;超晶格结构的循环次数至少2个。试验结果表明,于衬底10表面既可以先沉积AlxN1-x层21,也可以先沉积AlyO1-y层22,此处优先选用在衬底10表面先沉积AlxN1-x层21。同样,本实施例制备的缓冲层20在后续芯片制程的侧壁腐蚀过程中,可减小化学溶液的腐蚀程度,提高芯片良率。
实施例3
参看附图4,本实施例与实施例1的区别在于,在缓冲层20与N型半导体层30之间沉积非掺杂半导体层60,利用该层进一步改善后续外延层的晶体质量,提升半导体元件的光电性能。
应当理解的是,上述具体实施方案为本发明的优选实施例,本发明的范围不限于该实施例,凡依本发明所做的任何变更,皆属本发明的保护范围之内。

Claims (7)

1.一种半导体元件,包括:衬底、缓冲层、N型半导体层、发光层和P型半导体层,其特征在于:所述缓冲层为包括AlxN1-x层和AlyO1-y层,0<x<1,0<y<1,循环层叠的超晶格结构层,所述超晶格结构层的第一个循环中所述AlyO1-y层置于所述AlxN1-x层之上,所述超晶格结构层在芯片制程的侧壁腐蚀过程中,用于减小化学溶液的腐蚀程度,提高芯片良率。
2.根据权利要求1所述的一种半导体元件,其特征在于:所述超晶格结构层的循环次数≥2。
3.根据权利要求1所述的一种半导体元件,其特征在于:所述 AlxN1-x层厚度≥AlyO1-y层厚度。
4.根据权利要求1所述的一种半导体元件,其特征在于:所述 AlxN1-x层厚度、AlyO1-y层厚度为5~500埃。
5.根据权利要求1所述的一种半导体元件,其特征在于:所述缓冲层与N型半导体之间包括一非掺杂半导体层。
6.一种半导体元件的制备方法,其特征在于,所述方法包括步骤:
S1、提供一衬底;
S2、利用物理气相沉积法于所述衬底表面沉积包括AlxN1-x层和AlyO1-y层,0<x<1,0<y<1,循环层叠的超晶格结构缓冲层,所述缓冲层在后续芯片制程的侧壁腐蚀过程中,用于减小化学溶液的腐蚀程度,提高芯片良率;
S3、利用化学气相沉积法于所述缓冲层表面沉积N型半导体层、发光层和P型半导体层组成的外延层;
其中,所述步骤S2中,利用物理气相沉积法先于衬底表面沉积AlxN1-x层,再于所述AlxN1-x层表面沉积AlyO1-y层,并依次循环层叠形成超晶格结构缓冲层。
7.根据权利要求6所述的一种半导体元件的制备方法,其特征在于:所述步骤S3还包括,于缓冲层表面先沉积一非掺杂半导体层,再沉积N型半导体层。
CN201510564961.XA 2015-09-08 2015-09-08 一种半导体元件及其制备方法 Active CN105261681B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510564961.XA CN105261681B (zh) 2015-09-08 2015-09-08 一种半导体元件及其制备方法
PCT/CN2016/097754 WO2017041661A1 (zh) 2015-09-08 2016-09-01 一种半导体元件及其制备方法
US15/607,484 US10096746B2 (en) 2015-09-08 2017-05-27 Semiconductor element and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510564961.XA CN105261681B (zh) 2015-09-08 2015-09-08 一种半导体元件及其制备方法

Publications (2)

Publication Number Publication Date
CN105261681A CN105261681A (zh) 2016-01-20
CN105261681B true CN105261681B (zh) 2019-02-22

Family

ID=55101268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510564961.XA Active CN105261681B (zh) 2015-09-08 2015-09-08 一种半导体元件及其制备方法

Country Status (3)

Country Link
US (1) US10096746B2 (zh)
CN (1) CN105261681B (zh)
WO (1) WO2017041661A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261681B (zh) * 2015-09-08 2019-02-22 安徽三安光电有限公司 一种半导体元件及其制备方法
CN108630791A (zh) * 2018-03-29 2018-10-09 华灿光电(浙江)有限公司 氮化镓基发光二极管外延片及其制造方法
CN108847436B (zh) * 2018-04-28 2019-10-29 华灿光电(浙江)有限公司 一种发光二极管的外延结构及其制造方法
CN109148660A (zh) * 2018-08-20 2019-01-04 浙江大学 一种提高led生产效率的复合缓冲层外延结构
CN111884046B (zh) * 2020-07-06 2021-11-09 武汉光谷量子技术有限公司 一种分布式布拉格反射镜及其制作方法和设计方法
US11811000B2 (en) * 2020-12-30 2023-11-07 Applied Materials, Inc. Methods for forming light emitting diodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267008A (zh) * 2007-03-16 2008-09-17 先进开发光电股份有限公司 具三族氮化合物半导体缓冲层的光电半导体组件和其制造方法
US7736728B2 (en) * 2004-08-18 2010-06-15 Dow Corning Corporation Coated substrates and methods for their preparation
CN102534488A (zh) * 2010-12-30 2012-07-04 鸿富锦精密工业(深圳)有限公司 具有硬质涂层的被覆件及其制备方法
EP2579339A2 (en) * 2011-10-04 2013-04-10 Palo Alto Research Center Incorporated Ultraviolet light emitting devices having enhanced light extraction
CN103262215A (zh) * 2010-12-16 2013-08-21 应用材料公司 具有物理气相沉积形成氮化铝缓冲层的氮化镓类发光二极管的制造

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050201439A1 (en) * 2002-09-06 2005-09-15 Mitsubishi Chemical Corporation Semiconductor light emitting device and semiconductor light emitting device module
JP4468744B2 (ja) * 2004-06-15 2010-05-26 日本電信電話株式会社 窒化物半導体薄膜の作製方法
JP2007067077A (ja) * 2005-08-30 2007-03-15 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体素子およびその製造方法
US8647904B2 (en) * 2010-03-01 2014-02-11 Sharp Kabushiki Kaisha Method for manufacturing nitride semiconductor device, nitride semiconductor light-emitting device, and light-emitting apparatus
KR20120004159A (ko) * 2010-07-06 2012-01-12 삼성전자주식회사 기판구조체 및 그 제조방법
GB2487531A (en) * 2011-01-20 2012-08-01 Sharp Kk Substrate system consisting of a metamorphic transition region comprising a laminate of AlxGa1-x N and the same material as the substrate.
WO2014002339A1 (ja) * 2012-06-29 2014-01-03 パナソニック株式会社 窒化物半導体発光素子
KR20140006295A (ko) * 2012-07-02 2014-01-16 삼성전자주식회사 반도체 디바이스
CN105765742B (zh) * 2013-10-02 2018-09-14 传感器电子技术股份有限公司 包括阳极氧化铝层的异质结构
CN105261681B (zh) * 2015-09-08 2019-02-22 安徽三安光电有限公司 一种半导体元件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736728B2 (en) * 2004-08-18 2010-06-15 Dow Corning Corporation Coated substrates and methods for their preparation
CN101267008A (zh) * 2007-03-16 2008-09-17 先进开发光电股份有限公司 具三族氮化合物半导体缓冲层的光电半导体组件和其制造方法
CN103262215A (zh) * 2010-12-16 2013-08-21 应用材料公司 具有物理气相沉积形成氮化铝缓冲层的氮化镓类发光二极管的制造
CN102534488A (zh) * 2010-12-30 2012-07-04 鸿富锦精密工业(深圳)有限公司 具有硬质涂层的被覆件及其制备方法
EP2579339A2 (en) * 2011-10-04 2013-04-10 Palo Alto Research Center Incorporated Ultraviolet light emitting devices having enhanced light extraction

Also Published As

Publication number Publication date
US10096746B2 (en) 2018-10-09
US20170263822A1 (en) 2017-09-14
CN105261681A (zh) 2016-01-20
WO2017041661A1 (zh) 2017-03-16

Similar Documents

Publication Publication Date Title
CN105261681B (zh) 一种半导体元件及其制备方法
KR100905977B1 (ko) 광전자 적용 기판 제조방법
JP2013219391A (ja) 窒化物半導体素子ならびにその製法
JP2018087128A (ja) 窒化物半導体層の成長方法
TWI648872B (zh) 具有包含InGaN之作用區域之半導體結構、形成此等半導體結構之方法及由此等半導體結構所形成之發光裝置
TWI593135B (zh) 具有含氮化銦鎵之主動區域之半導體結構,形成此等半導體結構之方法,以及應用此等半導體結構形成之發光元件
CN106030834A (zh) 用于制造光电子半导体芯片的方法和光电子半导体芯片
CN105336830A (zh) 一种双面发光深紫外二极管外延片、芯片的制备方法
US9520527B1 (en) Nitride semiconductor template and ultraviolet LED
Dinh et al. Semipolar (202̅3) nitrides grown on 3C–SiC/(001) Si substrates
CN107004724B (zh) 半导体装置及其制造方法
JP5551131B2 (ja) 窒化物半導体積層構造体の製造方法
CN105098001B (zh) 发光设备及其制造方法
KR20150061252A (ko) 자외선 발광 다이오드 및 그것을 제조하는 방법
WO2010038740A1 (ja) 半導体発光素子の製造方法
CN102640258B (zh) 一种制作氮化物半导体器件的方法
JP6117821B2 (ja) 複合基板および機能素子
JP5881560B2 (ja) 半導体発光装置及びその製造方法
US9620670B2 (en) Solid state lighting dies with quantum emitters and associated methods of manufacturing
Chen et al. Growth and fabrication of semi-polar InGaN/GaN multi-quantum well light-emitting diodes on microstructured Si (001) substrates
CN107251195A (zh) 氮化物半导体模板及其制造方法
JP2016082200A (ja) 結晶積層構造体及びその製造方法、並びに半導体素子
US20210135050A1 (en) Template substrate, electronic device, light emitting device, method of manufacturing template substrate, and method of manufacturing electronic device
KR100834698B1 (ko) 질화 갈륨 박막 형성 방법 및 이 방법에 의해 제조된 질화갈륨 박막 기판
JP2010524267A (ja) (al,in,ga,b)nの堆積の方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant