CN105200097A - 改进的等位基因特异性扩增 - Google Patents

改进的等位基因特异性扩增 Download PDF

Info

Publication number
CN105200097A
CN105200097A CN201510625732.4A CN201510625732A CN105200097A CN 105200097 A CN105200097 A CN 105200097A CN 201510625732 A CN201510625732 A CN 201510625732A CN 105200097 A CN105200097 A CN 105200097A
Authority
CN
China
Prior art keywords
oligonucleotide
nucleotide
target sequence
variant
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510625732.4A
Other languages
English (en)
Inventor
S.G.威尔
N.牛顿
A.特桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN105200097A publication Critical patent/CN105200097A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification

Abstract

本发明包括使用等位基因特异性寡核苷酸的等位基因特异性扩增的方法,所述寡核苷酸与靶序列的一种以上变体至少部分互补,具有与靶序列的仅一种变体互补的3’-端核苷酸,并具有至少一个具有在环外氨基被共价修饰的碱基的核苷酸,其中当所述寡核苷酸和与其具有的所述3’-端核苷酸互补的靶序列变体杂交时,核苷酸参入生物催化剂优势地延伸所述等位基因特异性寡核苷酸。

Description

改进的等位基因特异性扩增
本申请是以下申请的分案申请:申请日:2009年10月17日;申请号:200980141303.2;发明名称:同上。
技术领域
本申请涉及改进的等位基因特异性扩增。
背景技术
核酸的等位基因特异性扩增允许靶序列的同步扩增和分析。当怀疑靶核酸在其序列中具有一个或多个具有变异(多态性)的亚群时通常使用等位基因特异性扩增。DNA多态性用于DNA序型(profile)分析(法医取证、亲子鉴定、用于器官移植的组织分型),遗传作图,以及稀有突变的检测,例如在具有正常DNA的细胞背景下在癌细胞中发生的那些稀有突变。
在成功的等位基因特异性扩增中,期望的靶核酸变体得到扩增,而其他变体不扩增,至少不扩增至可检测的水平。通常的等位基因特异性扩增测定包括聚合酶链式反应(PCR),其中至少一种引物与具有可疑多态性的区域互补。等位基因特异性引物的设计成如此以使仅在存在多态性的特定变体时才发生引物延伸。最简单形式的等位基因特异性引物具有与靶中的多态核苷酸期望变体互补的3’-端核苷酸。通常在引物3’-端的单个错配就足够阻止靶序列的非期望变体的扩增。然而,扩增的特异性在不同的3’-端序列中变化很大:一些错配有效地阻止聚合酶的延伸,而其他不能,见美国专利号5,639,611。
等位基因鉴别的成功取决于DNA聚合酶延伸错配引物的无能性(inability)。DNA聚合酶的此无能性可通过调整反应条件来调节以获得最大选择性。然而,对许多多态序列,等位基因特异性PCR的低选择性仍然是个问题。
增加特异性的一种方法包括设计具有内部错配核苷酸或多个核苷酸的扩增引物。此方法在一些***中被证明是成功的,见美国专利号5,137,806。
增加特异性的另一种方法包括引物的化学修饰。例如,发现引物中一些核苷酸的脱氧核糖的特定2’-C和4’-C修饰提高了聚合酶的等位基因鉴别,见Gaster,J.和Marx,A.,Chem.Eur.J.2005,11:1861-1870。在另一个研究中,发现通过在引物的一个核苷酸中使用非天然嘧啶碱基,特别是在嘧啶环的6-位具有不同取代的假异胞嘧啶(pseudoisocytidine),提高了等位基因的鉴别,见美国专利号7,408,051。
在实时等位基因特异性PCR的情况下,可通过匹配和错配模板间阈值循环数(Ct)的差异来测量测定的选择性。更大的差异指示错配模板扩增的更大延迟,从而更好的鉴别等位基因。修饰的脱氧核糖已显示导致1至14个循环之间的Ct差异。假异胞嘧啶的使用导致错配模板扩增的7个循环的延迟。此程度的鉴别对许多应用是不足的,在这些应用中样品包含几种均竞争扩增的模板变体。错配模板通常以比匹配模板多许多的量存在。例如,在组织样品中,仅小部分的细胞可能是恶性的并携带等位基因特异性扩增测定靶向的突变(“匹配模板”)。正常细胞中存在的模板可能被较低效的扩增,但是正常细胞的压倒性数量将克服在扩增中的任何延迟并清除突变模板的任何优势。为了检测在野生型模板存在下的稀有突变,需要改进等位基因特异性扩增测定的特异性。
发明内容
在第一个方面,本发明涉及等位基因特异性扩增的改进方法,其中在等位基因特异性引物或多个引物中的一个或多个核苷酸通过修饰基团和核碱基环外氨基的共价连接来修饰。修饰可发生在引物内部或3’-末端,或二者均有。
在第二个方面,本发明涉及以几种变体序列形式存在的靶序列变体的等位基因特异性扩增的方法,所述方法包括:
(a)提供样品,其可能含有靶序列的至少一种变体;
(b)提供第一种寡核苷酸,其与靶序列的一种或多种变体至少部分互补;
(c)提供第二种寡核苷酸,其与靶序列的一种或多种变体至少部分互补,并具有至少一个与靶序列的仅一种变体互补的3’-端核苷酸;其中所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;
(d)提供适于所述第一种和第二种寡核苷酸与靶序列的至少一种变体杂交的条件;和
(e)提供适于第二种寡核苷酸通过核苷酸参入生物催化剂延伸的条件;其中当所述第二种寡核苷酸和与其具有的所述3’-端核苷酸互补的靶序列变体杂交时,所述生物催化剂能够延伸所述第二种寡核苷酸,当所述第二种寡核苷酸和与其具有的3’-端核苷酸不互补的靶序列变体杂交时,所述延伸大大降低。
在第三个方面,本发明涉及检测样品中以几种变体序列形式存在的靶序列变体的方法,所述方法包括:
(a)将第一种和第二种寡核苷酸与靶序列的至少一种变体杂交;其中第一种寡核苷酸与靶序列的一种或多种变体至少部分互补,第二种寡核苷酸与靶序列的一种或多种变体至少部分互补并具有与靶序列的仅一种变体互补的3’-端核苷酸,所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;
(b)使用核苷酸参入生物催化剂延伸第二种寡核苷酸;其中所述生物催化剂能够可检测地延伸仅与靶序列变体杂交的寡核苷酸,所述寡核苷酸具有与所述靶序列变体所述互补的3’-端核苷酸;和
(c)检测所述第二种寡核苷酸延伸的产物,其中延伸表示下述靶序列变体的存在,即所述寡核苷酸具有与之互补的3’-端核苷酸。
在第四个方面,本发明涉及用于以几种变体序列形式存在的靶序列的等位基因特异性扩增的试剂盒,其包含
(a)第一种寡核苷酸,其至少与靶序列的一种或多种变体部分互补;和
(b)第二种寡核苷酸,其至少与靶序列的一种或多种变体部分互补并具有与靶序列的仅一种变体互补的3’-端核苷酸;其中所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸。
在第五个方面,本发明涉及用于进行以几种变体序列形式存在的靶序列的等位基因特异性扩增的寡核苷酸,其包含:
-与所述靶序列的一种或多种变体的一部分至少部分互补的序列;
-与所述靶序列的仅一种变体互补的3’-端核苷酸和
-至少一个具有在环外氨基被共价修饰的碱基的核苷酸。
附图说明
图1为本发明的等位基因特异性扩增测定的示意图。
图2显示了使用具有内部碱基修饰的引物的等位基因特异性扩增结果。
图3显示了使用具有一个或多个内部和3’-端碱基修饰的引物的等位基因特异性扩增结果。
图4显示了使用具有碱基修饰的引物和不同DNA聚合酶的等位基因特异性扩增结果。
图5显示了在过量错配模板存在下使用碱基修饰引物的等位基因特异性扩增结果。
图6显示了在本发明含义内的蝎型或类蝎型探针-引物形式的实例。
图7显示了根据本发明可使用的蝎型ARMS形式结构的图示。
具体实施方式
定义
除非另外定义,本文使用的所有技术和科学术语与此发明所属领域普通技术人员通常理解的具有相同的含义。在描述和要求保护本发明中将使用以下定义。
术语“核酸”指核苷酸(例如核糖核苷酸、脱氧核糖核苷酸、核苷酸类似物等等)的聚合物,包含脱氧核糖核酸(DNA)、核糖核酸(RNA)、DNA-RNA杂交物、寡核苷酸、多核苷酸、适配体、肽核酸(PNA)、PNA-DNA缀合物、PNA-RNA缀合物等等,上述分子包含以线性或分支方式共价连接在一起的核苷酸。核酸通常是单链或双链的,通常包含磷酸二酯键,虽然在一些情况下包括可具有交替骨架的核酸类似物,所述交替骨架包括例如磷酰胺(Beaucage等人(1993)Tetrahedron49(10):1925);硫代磷酸酯(Mag等人(1991)NucleicAcidsRes.19:1437;和美国专利号5,644,048),二硫代磷酸酯(Briu等人(1989)J.Am.Chem.Soc.111:2321),O-甲基亚磷酰胺连接(见Eckstein,OligonucleotidesandAnalogues:APracticalApproach,OxfordUniversityPress(1992)),及肽核酸骨架和连接(见,Egholm(1992)J.Am.Chem.Soc.114:1895)。其他类似物核酸包括具有正电荷骨架(Denpcy等人(1995)Proc.Natl.Acad.Sci.USA92:6097);非离子骨架(美国专利号5,386,023,5,637,684,5,602,240,5,216,141和4,469,863)和非核糖骨架(包括在美国专利号5,235,033和5,034,506中描述的)的类似物核酸。在核酸定义中也包括含有一个或多个碳环糖的核酸(见Jenkins等人(1995)Chem.Soc.Rev.pp.169-176),在例如Rawls,C&ENewsJun.2,1997第35页中也描述了类似物。可进行核糖-磷酸骨架的这些修饰以便于加入另外的部分例如标记物,或改变这些分子在生理环境下的稳定性和半衰期。
除了在核酸中通常可见的天然存在杂环碱基(例如腺嘌呤、鸟嘌呤、胸腺嘧啶、胞嘧啶和尿嘧啶)外,核苷酸类似物还可包括非天然存在的杂环碱基,例如在例如Seela等人(1999)Helv.Chim.Acta82:1640中描述的那些。在核苷酸类似物中使用特定碱基作为解链温度(Tm)修饰剂。例如,这些碱基中的一些包括7-脱氮嘌呤(例如,7-脱氮鸟嘌呤,7-脱氮腺嘌呤,等等),吡唑并[3,4-d]嘧啶,丙炔基-dN(例如,丙炔基-dU,丙炔基-dC等等)等等。见例如美国专利号5,990,303,在此引入作为参考。其他代表性杂环碱基包括例如次黄嘌呤、次黄苷、黄嘌呤;2-氨基嘌呤、2,6-二氨基嘌呤、2-氨基-6-氯嘌呤、次黄嘌呤、次黄苷、黄嘌呤的8-氮杂衍生物;腺嘌呤、鸟嘌呤、2-氨基嘌呤、2,6-二氨基嘌呤、2-氨基-6-氯嘌呤、次黄嘌呤、次黄苷、黄嘌呤的7-脱氮-8-氮杂衍生物;6-氮杂胞嘧啶;5-氟胞嘧啶;5-氯胞嘧啶;5-碘胞嘧啶;5-溴胞嘧啶;5-甲基胞嘧啶;5-丙炔基胞嘧啶;5-溴乙烯基尿嘧啶;5-氟尿嘧啶;5-氯尿嘧啶;5-碘尿嘧啶;5-溴尿嘧啶;5-三氟甲基尿嘧啶;5-甲氧基甲基尿嘧啶;5-乙炔基尿嘧啶;5-丙炔基尿嘧啶等等。
“核苷”指核酸的成分,所述成分包含与糖部分(核糖或脱氧核糖)、糖部分的衍生物或糖部分的功能等价物(例如碳环)共价连接的碱基或碱基基团(包含至少一个同素环、至少一个杂环、至少一个芳基和/或类似物)。例如,当核苷包括糖部分时,碱基通常与该糖部分的1’位连接。如上所述,碱基可为天然存在的碱基或非天然存在的碱基。示例性核苷包括核糖核苷、脱氧核糖核苷、双脱氧核糖核苷和碳环核苷。
“核苷酸”指核苷的酯,例如核苷的磷酸酯,其具有与核苷的糖部分的5’位共价连接的1、2、3或更多个磷酸基团。
“嘌呤核苷酸”指包含嘌呤碱基的核苷酸,而“嘧啶核苷酸”指包含嘧啶碱基的核苷酸。
“寡核苷酸”指核酸聚合物,其包括至少2个,但通常5-50个核苷酸,更通常地15至35个核苷酸。寡核苷酸的精确大小通常取决于多种因素,包括寡核苷酸的最终功能或用途。可通过任意合适的本领域已知方法制备寡核苷酸,包括例如克隆和限制性消化合适的序列,或通过例如下述方法直接化学合成:例如Narang等人(1979)Meth.Enzymol.68:90-99的磷酸三酯法;Brown等人(1979)Meth.Enzymol.68:109-151的磷酸二酯法;Beaucage等人(1981)TetrahedronLett.22:1859-1862的二乙基亚磷酰胺法;Matteucci等人(1981)J.Am.Chem.Soc.103:3185-3191的三酯法;自动化合成法;美国专利号4,458,066的固相支持法或本领域已知的任意其他化学方法。
“引物核酸”或“引物”为可与模板核酸杂交并使用核苷酸参入生物催化剂允许链延伸或延长的寡核苷酸。尽管有时使用其他引物长度,但是引物通常在15至35个核苷酸的范围。短引物核酸通常使用较低的温度以与模板核酸形成足够稳定的杂交复合物。与模板核酸的亚序列至少部分互补的引物核酸通常足以与模板核酸杂交从而发生延伸。然而,延伸的成功通常需要在引物3’-末端的更强互补性(即与模板的更少错配)。如果需要,可通过参入放射性、光谱、光化学、生物化学、免疫化学或化学技术可检测的标记物来标记引物核酸。
“延伸的引物”指已加入一个或多个额外核苷酸的引物。“引物延伸”是酶的作用,通过引物延伸将额外的核苷酸加入引物。
“模板核酸”、“模板”或“靶”指下述核酸,引物核酸可与其杂交并在合适的条件下被延伸。在核酸扩增的情况下,“靶”优选地为双链核酸区域,所述区域由与至少2条引物的至少部分互补的序列和间隔序列组成。靶也可为单链核酸,所述核酸由与一种引物至少部分互补的序列和与第二条引物部分相同的序列组成。模板核酸可以分离的核酸片段存在,或为更长的核酸片段的一部分。靶核酸可源自或分离自基本上任意来源,例如培养的微生物、未培养的微生物、复合生物混合物、组织、血清、古代或防腐的组织或样品、环境分离物或类似物。此外,模板核酸任选地包括或源自cDNA、RNA、基因组DNA、克隆的基因组DNA、基因组DNA文库、酶促断裂的DNA或RNA、化学断裂的DNA或RNA、物理断裂的DNA或RNA等等。模板核酸还可为使用本领域已知技术化学合成的。
如本文使用的,“基因”指与生物功能相关的DNA任意区段。因此,基因包括编码序列和任选地表达编码序列所需要的调控序列。
当额外的核苷酸参入核酸时,例如通过核苷酸参入生物催化剂,在核酸的3’-末端,核酸被“延伸”或“延长”,。
“部分”(“moiety”)或“基”(“group”)指将某物质例如分子分割开的部分之一(例如,功能基团、取代基等等)。例如,核酸通常包含碱基(例如腺嘌呤、胸腺嘧啶、胞嘧啶、鸟嘌呤、尿嘧啶或类似物),糖部分和一个或多个磷酸基。
“烷基”指线性、分支或环状的饱和烃基,并包括所有位置异构物,例如甲基、乙基、丙基、丁基、1-甲基丙基、2-甲基丙基、1,1-二甲基乙基、戊基、1-甲基丁基、2-甲基丁基、3-甲基丁基、2,2-二甲基丙基、1-乙基丙基、己基、1,1-二甲基丙基、1,2-二甲基丙基、1-甲基戊基、2-甲基戊基、3-甲基戊基、4-甲基戊基、1,1-二甲基丁基、1,2-二甲基丁基、1,3-二甲基丁基、2,2-二甲基丁基、2,3-二甲基丁基、3,3-二甲基丁基、1-乙基丁基、2-乙基丁基、1,1,2-三甲基丙基、1,2,2-三甲基丙基、1-乙基-1-甲基丙基和1-乙基-2-甲基丙基、正己基、环己基、正庚基、正辛基、2-乙基己基、正壬基、正癸基等等。烷基通常包含约1-20个碳原子,更通常地包含约2-15个碳原子。烷基可为取代的或未取代的。
“烷氧基”指包含氧原子的烷基,并包括例如甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、庚氧基、辛氧基等等。
“芳基”指源自芳香族化合物的原子或部分的取代基。示例性芳基包括例如苯基等等。芳基任选地包括多个芳香环(例如二苯基等等)。此外,芳基可为取代的或未取代的。
“芳氧基”指包含氧原子的芳基,并包括例如苯氧基、氯苯氧基、甲基苯氧基、甲氧基苯氧基、丁基苯氧基、戊基苯氧基、苄氧基等等。
“烷基-芳基”指包含烷基和芳基的基团。烷基-芳基的实例包括苄基、甲苯基和二甲苯基。
如果扩增测定得到与其他可能的产物相比占优势(即占大多数的但少于100%的)的一种产物,则扩增测定是“选择性的”或“等位基因选择性的”。只要靶序列的非期望(错配)变体的扩增是可检测的,就将测定描述为“等位基因选择性的”。如果唯一地形成可能产物中的一种,则使用术语“特异性”或“等位基因特异性”扩增测定。当检测不到非期望(错配)靶的扩增时,将测定称为“等位基因特异性”的。由于检测方法变得越来越灵敏,一些以前被认为是等位基因特异性的测定逐渐变成等位基因选择性的,即靶的非期望变体的一些扩增变得可检测了。因此,在本发明上下文中,术语“等位基因特异性”旨在同时包含严格的等位基因特异性和等位基因选择性扩增。
“基因型”指细胞或对象,或细胞或对象组的基因组成的全部或部分。例如,基因型包括在给定基因座存在的或在基因组中分布的特定突变和/或等位基因(例如多态性,例如单核苷酸多态性(SNP)等等)。
“核苷酸参入生物催化剂”或“核苷酸参入酶”指催化核苷酸参入核酸的催化剂(或酶)。示例性核苷酸参入酶包括DNA聚合酶,RNA聚合酶,末端转移酶,逆转录酶,端粒酶等等。
“热稳定酶”指当在提高的温度下经受选定的时间时为稳定的(即抵抗降解或变性)并保持足够催化活性的酶。例如,当在提高的温度下经受双链核酸变性所必需的时间时,热稳定聚合酶保持足够的活性进行后续的引物延伸反应。用于核酸变性所必需的加热条件是本领域熟知的,实例见美国专利号4,683,202和4,683,195。如本文使用的,热稳定聚合酶通常适用于温度循环反应,例如聚合酶链式反应(“PCR”)。热稳定核酸聚合酶的实例包括水生栖热菌(Thermusaquaticus)TaqDNA聚合酶,栖热菌属物种Z05聚合酶,黄栖热菌(Thermusflavus)聚合酶,海栖热袍菌(Thermotogamaritima)聚合酶,例如TMA-25和TMA-30聚合酶,TthDNA聚合酶等等。
“修饰的”酶指包含氨基酸聚合物的酶,其中至少一个单体与参考序列(例如天然或野生型形式的酶或其他修饰形式的酶)有差异。示例性修饰包括单体***、缺失或置换。修饰的酶还包括具有源自2个或更多亲本的可辨认成分序列(例如结构或功能结构域,等等)的嵌合酶。在修饰的酶定义范围内还包括包含参考序列的化学修饰的酶。修饰的聚合酶的优选实例包括G46EE678GCS5DNA聚合酶、G46EL329AE678GCS5DNA聚合酶、G46EL329AD640GS671FCS5DNA聚合酶、G46EL329AD640GS671FE678GCS5DNA聚合酶、G46EE678GCS6DNA聚合酶、ΔZ05聚合酶、ΔZ05-Gold聚合酶、ΔZ05R聚合酶、E615GTaqDNA聚合酶、E678GTMA-25聚合酶、E678GTMA-30聚合酶等等。
术语“5’至3’核酸酶活性”或“5’-3’核酸酶活性”指核酸聚合酶的通常与核酸链合成相关的活性,其中从核酸链的5’末端去除核苷酸,例如大肠杆菌DNA聚合酶I具有此活性,而Klenow片段不具有。
“基本上缺乏5’-3’核酸酶活性”的聚合酶指比TaqDNA聚合酶具有50%或更少(例如<25%,<20%,<15%,<10%)的5’-3’核酸酶活性的聚合酶。测量5’-3’核酸酶活性的方法和测量的条件是本领域熟知的,见例如美国专利号5,466,591。基本上缺乏5’至3’核酸酶活性的DNA聚合酶的实例包括大肠杆菌DNA聚合酶I的Klenow片段;缺乏N-端235个氨基酸的水生栖热菌DNA聚合酶(Taq)(例如,如美国专利号5,616,494中描述的,通常在本领域被称为“Stoffel片段”)。其他实例包括具有足够缺失(例如N-端缺失)、突变或修饰的热稳定DNA聚合酶以消除发挥5’-3’核酸酶活性的结构域或使其失活。见例如美国专利号5,795,762。
“标记物”指与分子(共价或非共价)连接的能够提供有关所述分子信息的部分。示例性标记物包括荧光标记物、色度标记物、化学发光标记物、生物发光标记物、放射性标记物、质量修饰基团、抗体、抗原、生物素、半抗原和酶(包括过氧化物酶、磷酸酶,等等)。
在核酸扩增反应的情况下,“热启动”指一种方案,其中在反应混合物中扣留至少一种关键试剂(或,如果在反应混合物中存在,所述试剂保持失活)直至温度被增加至足够提供引物或多个引物的必需杂交特异性。“热启动酶”为在热启动测定方案中能够作为“扣留的”(“withheld”)或失活的试剂的酶,通常为核酸聚合酶。
“Watson-Crick碱基配对”或简称“碱基配对”指在双链核酸分子中“传统的”氢键。Watson-Crick碱基配对为腺嘌呤和胸腺嘧啶、鸟嘌呤和胞嘧啶、腺嘌呤和尿嘧啶以及这些碱基类似物之间的氢键。
术语“蝎型”或“类蝎型”指如Whitcombe等人,(1999),“DetectionofPCRproductsusingself-probingampliconsandfluorescence”,NatureBiotech.17:804-807中描述的单分子引物-探针组合。在本发明含义内的蝎型或类蝎型引物包括通常的蝎型元件,称为探针部分、茎环部分和引物部分。“蝎型”或“类蝎型”单分子引物-探针形式的实例在图7中图示。
如上所述,在一个方面,本发明涉及等位基因特异性扩增的方法,包括:(a)提供样品,其可能含有靶序列的至少一种变体;(b)提供第一种寡核苷酸,其与靶序列的一种以上变体至少部分互补;(c)提供第二种寡核苷酸,其与靶序列的一种或多种变体至少部分互补,并具有与靶序列的仅一种变体互补的3’-端核苷酸;其中所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;(d)提供适于所述第一种和第二种寡核苷酸与靶序列的至少一种变体杂交的条件;(e)提供适于通过核苷酸参入生物催化剂的寡核苷酸延伸的条件;其中当所述第二种寡核苷酸和与其具有的所述3’-端核苷酸互补的靶序列变体杂交时,所述生物催化剂能够延伸所述第二种寡核苷酸,当所述第二种寡核苷酸和与其具有的3’-端核苷酸不互补的靶序列变体杂交时,所述延伸大大降低;和任选地(f)检测所述扩增的产物。
将与靶序列的一种或多种变体至少部分互补,并具有与靶序列的仅一种变体互补的3’-端核苷酸的第二种寡核苷酸称为“选择性寡核苷酸”、“选择性引物”或“等位基因选择性引物”。本发明的选择性寡核苷酸包含10-50个,更优选15-35个核苷酸,其中大部分与靶序列的一种以上变体序列互补。寡核苷酸的3’-端核苷酸与待扩增的靶序列变体互补,而与其他变体不互补。本发明的选择性寡核苷酸包括一个或多个具有在环外氨基被共价修饰的碱基的核苷酸。在优选的实施方案中,碱基修饰的核苷酸出现在3’-端核苷酸上游的1至5个,更优选3个核苷酸之间(本文也称为-1,-2,-3,-4,-5或N-1,N-2,N-3,N-4,N-5位)。在其他实施方案中,碱基修饰的核苷酸为3’-端核苷酸。在一些实施方案中,碱基修饰的核苷酸同时出现在3’-端核苷酸和寡核苷酸中的至少另一个其他位置。
本发明的等位基因特异性引物可包括本领域已知的引物设计的多个方面。例如,引物可采用名为“蝎型”的并在Whitcombe等人,(1999),“DetectionofPCRproductsusingself-probingampliconsandfluorescence”,NatureBiotech.17:804-807中描述的单分子引物-探针组合的形式。根据本发明设计的蝎型引物包括通常的蝎型元件,称为探针部分、茎环部分和引物部分。此外,在根据本发明设计的蝎型中,引物部分具有与变***置互补的3’-末端。根据本发明设计的蝎型中的引物部分含有一个或多个如本文描述的化学修饰核苷酸。在美国专利号6,001,611中描述了具有环外氨基共价修饰的核苷酸。在‘611专利中也描述了这些核苷酸和参入这些核苷酸的寡核苷酸的合成。
根据本发明,可基于以下性质的存在选择环外氨基的合适修饰:(1)修饰影响但不阻碍在双链核酸中修饰的碱基和互补碱基的Watson-Crick碱基配对;(2)修饰影响但不阻碍核酸聚合酶对含有修饰碱基的引物的延伸;(3)修饰允许与参入修饰碱基的链互补的链的合成;和(4)修饰提高参入修饰的引物的选择性。
环外氨基的实例包括腺苷6-位,鸟苷2-位和胞苷4-位的氨基。在核苷酸的多种非常规含氮碱基中也可能存在参与和互补核酸链碱基配对的环外氨基。具有非常规碱基的核苷酸实例包括但不限于3-甲基腺苷、7-甲基鸟苷、3-甲基鸟苷、5-甲基胞苷和5-羟甲基胞苷。根据本发明的经验性方法也可选择这些非常规碱基环外氨基的合适修饰。
分别含有修饰的腺嘌呤、鸟嘌呤和胞嘧啶碱基的修饰的核苷酸的结构显示如下,
其中S代表糖部分,R代表修饰基团。预想了具有上述4种性质的多种修饰基团。在优选的实施方案中,修饰基团具有以下结构:
其中R1和R2独立地选自氢、烷基、烷氧基、未取代或取代的芳基和苯氧基。
烷基可为分支的或非分支的
烷基可为C1-C20烷基,例如C1-C10烷基。
烷氧基可为C1-C20烷氧基,例如C1-C10烷氧基。
芳基可为取代的或未取代的苯基或萘基。
在一个实施方案中,R为苄基或取代的苄基。在优选的实施方案中,取代的苄基可具有以下结构:
其中R3代表C1-C6分支或非分支烷基,更优选C1-C4分支或非分支烷基,烷氧基,或硝基。优选地,R3连接至对位。
在根据本发明优选的实施方案中,使用由下面显示的结构代表的修饰基团:
通常来说,基于上面所列的4种性质的存在,本领域技术人员可常规地进行从本文描述的化合物类型中经验性选择特别合适的修饰基团。优选地,通过在等位基因特异性扩增反应中使用具有修饰的核苷酸的引物经验性确定特定基团的合适性。修饰的合适性通过下述指示,即当与使用非修饰引物的相同反应比较时,使用具有碱基修饰的引物的反应具有提高的选择性。根据本发明特别优选的为下述寡核苷酸,即其中在环外氨基被共价修饰的碱基选自N6-苄基-腺嘌呤,N6-对-叔丁基-苄基-腺嘌呤,N2-烷基-鸟嘌呤和N4-苄基-胞嘧啶。
在本发明的一些实施方案中,扩增涉及聚合酶链式反应,即模板变性、寡核苷酸引物与模板的退火(杂交)和通过核苷酸参入生物催化剂进行引物延伸的重复循环。在一些实施方案中,退火和延伸发生在相同的温度步骤中。
在一些实施方案中,扩增反应涉及热启动测定方案。在等位基因特异性扩增的情况下,通过使用热启动测定方案可提高等位基因特异性引物对错配靶的选择性。许多热启动测定方案是本领域已知的,例如,使用蜡,将关键试剂与其他反应混合物分离(美国专利号5,411,876),使用核酸聚合酶,通过抗体可逆失活(美国专利号5,338,671),通过寡核苷酸可逆失活的核酸聚合酶,其中所述寡核苷酸被设计为特异性与核酸聚合酶活性位点结合(美国专利号5,840,867)或使用具有可逆化学修饰的核酸聚合酶,如例如在美国专利号5,677,152和5,773,528中描述的。
在本发明的一些实施方案中,等位基因特异性扩增测定为实时PCR测定。在实时PCR测定中,通过“达到阈值的循环数”或Ct值测量扩增。较早的Ct值表示快速到达阈值水平和因此更有效的扩增。较晚的Ct值可能表示无效的或受抑制的扩增。在等位基因特异性实时PCR测定的情况下,在匹配和错配模板间Ct值的差异衡量了等位基因之间的区别或测定的选择性。
等位基因特异性扩增测定可使用本领域已知的任意合适核苷酸参入生物催化剂。在等位基因特异性PCR测定中,可使用任意热稳定的核苷酸参入生物催化剂。有时希望使用不具有校正(3’-5’外切酶)活性的酶,例如举例来说TaqDNA聚合酶。根据本发明也可希望和优选使用基本上或完全缺乏5’-3’核酸酶活性的酶,例如在美国专利号5,795,762中描述的。这些酶的实例为Z05聚合酶和ΔZ05聚合酶。有时可希望使用具有“热启动”能力的酶,例如在美国专利号5,677,152和5,773,528中描述的可逆修饰的酶。热启动酶的一个实例为ΔZ05-Gold聚合酶。
可通过本领域已知的任意方法进行扩增产物的检测。这些方法包括使用标记的引物和探针以及多种核酸结合染料。检测的方式可为对靶序列的一种变体特异的,或对靶序列的所有变体或甚至对所有双链DNA通用的。在靶的非期望变体的扩增极少并预期在方法的检测限度以下的情况下,可使用非特异性检测。
在扩增完成后可检测扩增产物,例如通过未标记产物的凝胶电泳并使用核酸结合染料对凝胶染色。可选地,扩增产物可携带放射性或化学标记物,其借助于在合成中参入或者作为标记引物的延伸产物。在电泳后或电泳中,可通过本领域已知的合适放射学或化学工具检测标记的扩增产物。电泳后,也可通过用本领域已知的任意方法之一标记的靶特异性探针检测产物。也可不通过电泳对靶应用标记的探针,即通过“点印迹”测定等等。
在其他实施方案中,可通过均相(homogeneous)测定检测扩增产物的存在,即所述测定在扩增循环中或至少在同一未开启的试管中检测新生产物,而不需要扩增后的操作。均相扩增测定已在例如美国专利号5,210,015中描述。使用核酸***染料的均相扩增测定已在例如美国专利号5,871,908和6,569,627中描述。均相测定也可使用由2种相互作用的荧光团标记的荧光探针,例如“分子信标”探针(Tyagi等人,(1996)Nat.Biotechnol.,14:303-308)或荧光标记的核酸酶探针(Livak等人,(1995)PCRMeth.Appl.,4:357-362)。在这些技术的某些变化中,也可通过其独特的解链温度鉴定扩增产物,见美国专利号5,871,908和6,569,627。也可使用名为“蝎型”的单分子引物-探针组合检测扩增产物。Whitcombe等人,(1999),“DetectionofPCRproductsusingself-probingampliconsandfluorescence”,NatureBiotech.17:804-807。蝎型寡核苷酸的引物部分可为根据本发明设计的等位基因特异性引物。
在另一个方面,本发明提供了用于特异性或选择性扩增选定的靶序列变体的反应混合物,其包含:第一种寡核苷酸,其与靶序列的一种以上变体至少部分互补;第二种寡核苷酸,其与靶序列的一种以上变体至少部分互补,并具有与仅一种靶序列变体互补的3’-端核苷酸,其中所述第二种寡核苷酸包括一个或多个具有在环外氨基被共价修饰的碱基的核苷酸,和已知以一种以上序列变体存在的靶核酸。在一些实施方案中,反应混合物还包含核酸扩增通常所需的试剂和溶液,包括核苷酸参入生物催化剂、核酸前体,即核苷三磷酸,和适于支持核苷酸参入生物催化剂活性的有机和无机离子。
在另一个方面,本发明提供了用于进行根据本发明的等位基因特异性扩增的试剂盒。试剂盒通常包括测定特异性成分和进行DNA扩增试验通常所需的成分。作为测定特异性成分,本发明的等位基因特异性扩增试剂盒通常包括:至少一种等位基因特异性寡核苷酸,其与靶序列的一种以上变体至少部分互补,具有与仅一种靶序列变体互补的3’-端核苷酸,并还具有一个或多个具有在环外氨基被共价修饰的碱基的核苷酸;任选地,第二种寡核苷酸,其与靶序列的一种以上变体至少部分互补;和任选地对照核酸序列,其包含一定量对照靶序列的至少一种变体并与试剂盒中封装的寡核苷酸至少部分互补。在一些实施方案中,可封装对照核酸序列的一种以上变体。优选地,在试剂盒中封装的对照核酸序列的几种变体中,至少一种变体与等位基因选择性寡核苷酸的3’-端核苷酸互补。作为核酸扩增通常所需的成分,本发明的试剂盒通常包括一种或多种核苷酸参入生物催化剂,核酸前体,例如核苷三磷酸(脱氧核糖核苷三磷酸或核糖核苷三磷酸),任选地,用于最小化核酸的焦磷酸解作用的焦磷酸酶,用于保护扩增反应免受残留污染的尿嘧啶N-糖基化酶(UNG),用于扩增反应和检测所需的预制试剂盒缓冲液,和用于进行本发明的等位基因特异性扩增的一套说明书。
在另一个方面,本发明提供了用于等位基因特异性PCR的寡核苷酸。用于本发明的等位基因特异性PCR的典型寡核苷酸包含10-50个,更优选15-35个核苷酸,其大部分与靶序列的一种以上变体互补。然而,寡核苷酸的3’-端核苷酸与靶序列的一种变体互补,与其他变体不互补。此外,本发明的寡核苷酸包括一个或多个具有在环外氨基被共价修饰的碱基的核苷酸。在一些实施方案中,碱基修饰的核苷酸出现在3’-端核苷酸上游1至30,例如1至10,优选1至5,更优选,例如1、2或3个核苷酸中。在其他实施方案中,具有修饰碱基的核苷酸为3’-端核苷酸。在一些实施方案中,具有修饰碱基的核苷酸同时出现在3’-端和寡核苷酸中的其他位置。
不受具体理论束缚,发明者假设本发明的共价碱基修饰,尤其是大体积基团,使引物和模板核酸间在Watson-Crick碱基配对情况下的氢键不稳定但不完全破坏氢键。当所述修饰与在引物中相同或附近位置的非互补碱基(当在非期望或“错配”的靶序列变体上时)联合时,联合的氢键弱化作用使引物-靶核酸复合物不稳定,导致核苷酸参入生物催化剂对寡核苷酸的延伸部分或完全被抑制。然而,当碱基的修饰单独存在而没有非互补碱基时(当在待扩增的期望或“匹配”的靶序列变体上时),引物可被有效地延伸。图1为图表,说明了多态性和引物修饰的位置,和它们允许匹配靶扩增但抑制错配靶扩增的作用。
提供以下实施例和图以帮助理解本发明,本发明的真实范围在随附的权利要求书中阐述。应当理解可以对阐述的方法进行修改而不背离本发明的精神。
实施例
下面的实施例使用“匹配”和“错配”靶。如在实施例中使用的,将匹配靶设计为与等位基因特异性扩增引物互补。将错配靶设计为与等位基因特异性扩增引物的3’-端核苷酸具有错配。
作为匹配靶,实施例使用人BRAF基因的V600E突变。此突变是由BRAF基因在第1799位核苷酸的胸腺嘧啶(T)至腺嘌呤(A)的转换引起的第600位氨基酸的缬氨酸至谷氨酸的改变。所述突变在许多癌症中发现,被认为在癌症发展中起作用,因为其引起MARK途径的组成型活化。在肿瘤细胞群中检测此单核苷酸改变在人癌症的诊断和治疗中具有实用性。
突变靶是“匹配的”,即与各条等位基因特异性引物(表1)的3’-端核苷酸形成A-TWatson-Crick配对。错配靶为野生型BRAF序列。错配靶与等位基因特异性引物的3’-端核苷酸形成A-A错配。
表1
引物和探针
X–N6-苄基-dA
Y–N6-对-叔丁基-苄基-dA
F–cx-FAM供体荧光团
Q–BHQ-2“黑洞”猝灭剂
p–3’-磷酸
3’-端核苷酸对应于靶中的可变位置。
实施例1
使用具有内部碱基修饰的引物的等位基因特异性扩增。
在此实施例中,模板序列的2种变体(与引物序列互补的匹配变体和错配变体)以等量存在。匹配变体为具有参入BRAFV600E突变序列(SEQIDNO:1)的***物的质粒DNA,而错配变体为具有BRAF野生型序列(SEQIDNO:2)的相同质粒。
SEDIDNO:1(BRAFV600E突变序列片段):
5’-AGTAAAAATAGGTGATTTTGGTCTAGCTACAGAGAAATCTCGATGGAGTGGG
TCCCATCAGTTTGAACAGTTGTCTGGATCCATTTTGTGGATGGTAAGAATTGAGGCTA-3’
SEQIDNO:2(BRAF野生型序列片段):
5’-AGTAAAAATAGGTGATTTTGGTCTAGCTACAGTGAAATCTCGATGGAGTGGG
TCCCATCAGTTTGAACAGTTGTCTGGATCCATTTTGTGGATGGTAAGAATTGAGGCTA-3’
表1显示了正向引物(SEQIDNO:3,4,5)和反向引物(SEQIDNO:6)。引物在指示处包含内部N6-苄基-dA或内部N6-对-叔丁基-苄基-dA。
各100μL反应包含106个拷贝的2种靶之一,5%甘油,50mM三羟甲基甲基甘氨酸(pH8.3),25mM醋酸钾(pH7.5),各为200μM的dATP、dCTP和dGTP,400μMdUTP,0.1μM一种正向引物(SEQIDNO:3,4或5),0.7μM反向引物(SEQIDNO:6),2μMSyto-13***染料,1%DMSO,4个单位尿嘧啶-N-糖基化酶(UNG),10个单位ΔZ05聚合酶和4mM醋酸镁。
扩增和分析使用RocheLightCycler480仪器完成。反应使用以下温度概况:50℃5分钟(UNG步骤),95℃10分钟,之后80个循环的95℃15秒和59℃40秒。在各个59℃步骤结束时收集荧光数据。
结果显示于图2。扩增结果以450-500nm波长区间的荧光变化表示。扩增的选择性通过匹配和错配靶之间的Ct值差异(ΔCt)测量。图2显示了各试验的ΔCt。数据显示靶的匹配(突变)变体相对错配(野生型)变体得到选择性扩增。通过引物中核苷酸的碱基修饰提高了选择性。
实施例2
使用具有一个或多个内部和3’-端碱基修饰的引物的等位基因特异性扩增。
在此试验中,使用与实施例1相同的匹配(突变)和错配(野生型)靶。引物在内部位置、3’-端位置或同时含有碱基修饰。
各100μL反应包含106个拷贝的2种靶之一,5%甘油,50mM三羟甲基甲基甘氨酸(pH8.3),90mM醋酸钾(pH7.5),各为200μM的dATP、dCTP和dGTP,400μMdUTP,0.5μM一种正向引物(SEQIDNO:3,5,7或8),0.5μM反向引物(SEQIDNO:6),0.2μM荧光探针(SEQIDNO:9),1%DMSO,4个单位尿嘧啶-N-糖基化酶(UNG),10个单位Z05聚合酶和5mM醋酸镁。
扩增和分析使用RocheLightCycler480仪器完成。反应使用以下温度概况:50℃5分钟(UNG步骤),95℃10分钟,之后60个循环的95℃15秒和59℃40秒。在各个59℃步骤结束时收集荧光数据。
除了在483-553nm波长区间测量荧光以外,结果以和实施例1的结果相同的形式显示于图3。数据表明引物的碱基修饰改进了扩增测定的选择性,一些修饰的碱基可对选择性具有累积效应。
实施例3
使用具有单碱基修饰的引物和多种DNA聚合酶的等位基因特异性扩增。
在此实施例中,使用与实施例1相同的匹配(突变)和错配(野生型)靶,使用具有单个内部碱基修饰的引物扩增。扩增在Z05,ΔZ05,或ΔZ05-Gold聚合酶存在下进行。
Z05反应在100μL中包含106个拷贝的模板,5%甘油,50mM三羟甲基甲基甘氨酸(pH8.3),90mM醋酸钾(pH7.5),各为200μM的dATP、dCTP和dGTP,400μMdUTP,0.5μM正向引物(SEQIDNO:5),0.5μM反向引物(SEQIDNO:6),2μMSyto-13***染料,1%DMSO,4个单位尿嘧啶-N-糖基化酶(UNG),10个单位Z05聚合酶和5mM醋酸镁。
ΔZ05反应在100μL中包含106个拷贝的模板,5%甘油,50mM三羟甲基甲基甘氨酸(pH8.3),25mM醋酸钾(pH7.5),各为200μM的dATP、dCTP和dGTP,400μMdUTP,0.1μM正向引物(SEQIDNO:5),0.7μM反向引物(SEQIDNO:6),2μMSyto-13***染料,1%DMSO,4个单位尿嘧啶-N-糖基化酶(UNG),10个单位ΔZ05聚合酶和4mM醋酸镁。
ΔZ05-Gold反应在100μL中包含106个拷贝的模板,8%甘油,50mM三羟甲基甲基甘氨酸(pH8.3),45mM醋酸钾(pH7.5),各为200μM的dATP、dCTP和dGTP,400μMdUTP,0.1μM正向引物(SEQIDNO:5),0.7μM反向引物(SEQIDNO:6),2μMSyto-13***染料,1%DMSO,2个单位尿嘧啶-N-糖基化酶(UNG),60个单位ΔZ05-Gold聚合酶和3mM醋酸镁。
结果以和实施例2的结果相同的形式显示于图4。数据表明各个酶使用碱基修饰的引物进行等位基因选择性扩增的相对能力。
实施例4
使用碱基修饰的引物在过量错配模板存在下的等位基因特异性扩增。
在此实施例中,使用与实施例1相同的匹配(突变)和错配(野生型)靶。使用具有单个内部烷基修饰的引物扩增靶。为模拟临床样品,反应单独或在大大过量野生型(错配)靶存在下包含极低拷贝数的突变(匹配)靶。在一个独立的反应中,存在大量错配靶而没有任何错配靶。
100μL反应中包含指示量的靶DNA,8%甘油,50mM三羟甲基甲基甘氨酸(pH8.3),45mM醋酸钾(pH7.5),各为200μM的dATP、dCTP和dGTP,400μMdUTP,0.1μM正向引物(SEQIDNO:5),0.7μM反向引物(SEQIDNO:6),0.2μM荧光探针(SEQIDNO:9),1%DMSO,2个单位尿嘧啶-N-糖基化酶(UNG),60个单位ΔZ05-Gold聚合酶和3mM醋酸镁。
结果以和实施例2的结果相同的形式显示于图5。数据表明在示例性条件下,扩增特异性针对匹配靶,与错配靶的存在或相对量无关。
实施例5
使用具有内部碱基修饰的类蝎型ARMS引物的等位基因特异性扩增。
表3
X–N6-苄基-dA
Y–N6-对-叔丁基-苄基-dA
F–cx-FAM供体荧光团
Q–BHQ-2“黑洞”猝灭剂
J-HEG
p–3’-磷酸
*等位基因选择性核苷酸为下划线的(距离3’-端N或N-1位)。
在此实施例中,模板序列的2种变体(与引物序列互补的匹配变体和错配变体)以等量存在。匹配变体为具有代表BRAFV600E突变序列(SEQIDNO:1)的***物的质粒DNA,而错配变体为具有BRAF野生型序列(SEQIDNO:2)的相同质粒。表3描述了正向引物(SEQIDNO:3,5,12和13)和反向引物(SEQIDNO:14)。将正向、ASPCR引物设计为在3’-端位置具有SNP,具有或不具有N6-对-叔丁基-苄基-dA修饰。ASPCR引物与下游检测探针配对或与以封闭的类蝎型形式互补的探针连接。
各50uL反应包含105个拷贝的2种靶之一,5%甘油,50mM三羟甲基甲基甘氨酸(pH8.3),150mM醋酸钾(pH7.5),各为200μM的dATP、dCTP和dGTP,400μMdUTP,0.4μM正向引物,0.4μM反向引物,1%DMSO,2个单位尿嘧啶-N-糖基化酶(UNG),10个单位Z05聚合酶和3mM醋酸镁。在含有引物3和5的反应中加入0.2uM检测探针,其中互补探针不与正向引物连接。
扩增和分析使用RocheLightCycler480仪器完成。反应使用以下温度概况:50℃5分钟(UNG步骤),之后95个循环的95℃15秒和59℃40秒。在各个59℃退火/延伸步骤结束时在495-525nm范围收集荧光数据。
结果显示于图6和表4。扩增的选择性通过匹配和错配靶之间的Ct值差异(ΔCt)测量。各试验的ΔCt在各图表中显示并总结于表4。数据显示,使用单独的引物和探针或以封闭的类蝎型形式连接的引物和探针使靶的匹配(突变)变体相对错配(野生型)变体得到选择性扩增。
表4
尽管通过参考具体实施例已经详细描述了本发明,但是对本领域技术人员显而易见的是可在此发明范围内进行多种修饰。因此本发明的范围不应受限于本文描述的任意实施例,而受限于下面所示的权利要求书。
本发明包括如下实施方案:
1.一种以几种变体序列形式存在的靶序列变体的等位基因特异性扩增的方法,所述方法包括:
(a)提供样品,其可能含有靶序列的至少一种变体;
(b)提供第一种寡核苷酸,其与所述靶序列的一种或多种变体至少部分互补;
(c)提供第二种寡核苷酸,其与所述靶序列的一种或多种变体至少部分互补,并具有与所述靶序列的仅一种变体互补的3’-端核苷酸;其中所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;
(d)提供适于所述第一种和第二种寡核苷酸与所述靶序列的至少一种变体杂交的条件;和
(e)提供适于寡核苷酸通过核苷酸参入生物催化剂延伸的条件;其中当所述第二种寡核苷酸和与其具有的所述3’-端核苷酸互补的靶序列变体杂交时,所述生物催化剂能够延伸所述第二种寡核苷酸,以及当所述第二种寡核苷酸和与其具有的3’-端核苷酸不互补的靶序列变体杂交时,所述延伸实质性降低。
实施方案1的方法,其中具有在环外氨基被共价修饰的碱基的核苷酸位于相对于第二种寡核苷酸3’-端的-5,-4,-3,-2或-1位。
实施方案1的方法,其中当所述寡核苷酸和与其具有的所述3’-端核苷酸互补的靶序列变体杂交时,步骤(e)中的所述核苷酸参入生物催化剂能够专一地延伸所述第二种寡核苷酸。
实施方案1的方法,其中所述在环外氨基被共价修饰的碱基选自N6-苄基-腺嘌呤,N6-对-叔丁基-苄基腺嘌呤,N2-烷基-鸟嘌呤和N4-苄基-胞嘧啶。
实施方案1的方法,其中所述核苷酸参入生物催化剂选自TaqDNA聚合酶、Z05DNA聚合酶、ΔZ05DNA聚合酶和ΔZ05-GoldDNA聚合酶。
实施方案1的方法,其中所述靶序列为SEQIDNO:1和/或SEQIDNO:2。
实施方案1的方法,其中所述第二种核苷酸具有蝎型或类蝎型形式。
实施方案1的方法,其中所述第一种寡核苷酸为SEQIDNO:6和/或所述第二种寡核苷酸选自SEQIDNO:3,4,5,7,8,10,11,12和13。
一种检测样品中以几种变体序列形式存在的靶序列变体的方法,所述方法包括:
(a)将第一种和第二种寡核苷酸与靶序列的至少一种变体杂交;其中所述第一种寡核苷酸与所述靶序列的一种或多种变体至少部分互补,以及所述第二种寡核苷酸与所述靶序列的一种或多种变体至少部分互补并具有与所述靶序列的仅一种变体互补的3’-端核苷酸,所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;
(b)使用核苷酸参入生物催化剂延伸所述第二种寡核苷酸;其中所述生物催化剂能够可检测地延伸仅与靶序列变体杂交的寡核苷酸,所述寡核苷酸具有与所述靶序列变体互补的3’-端核苷酸;和
(c)检测所述第二种寡核苷酸延伸的产物,其中延伸表示下述靶序列变体的存在,即所述寡核苷酸具有与之互补的3’-端核苷酸。
一种用于以几种变体序列形式存在的靶序列的等位基因特异性扩增的试剂盒,其包含:
(a)第一种寡核苷酸,其至少与所述靶序列的一种或多种变体部分互补;
(b)第二种寡核苷酸,其至少与所述靶序列的一种或多种变体部分互补并具有与所述靶序列的仅一种变体互补的3’-端核苷酸;其中所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;和
(c)核苷酸参入生物催化剂,核苷三磷酸,适于核苷酸参入生物催化剂延伸核酸的缓冲液和一套进行等位基因特异性扩增的说明书。
一种用于进行以几种变体序列形式存在的靶序列的等位基因特异性扩增的寡核苷酸,其包含:
-与所述靶序列的一种或多种变体的一部分至少部分互补的序列;
-与所述靶序列的仅一种变体互补的3’-端核苷酸和
-至少一个具有在环外氨基被共价修饰的碱基的核苷酸,其中所述修饰的核苷酸为3’-端核苷酸。
实施方案11的寡核苷酸,其具有选自SEQIDNO:3,4,5,7,8,10,11,12和13的序列。
实施方案11的寡核苷酸,其中具有在环外氨基被共价修饰的碱基的核苷酸的结构选自:
其中S代表糖部分,R代表修饰基团。
实施方案11的寡核苷酸,其中所述在环外氨基被共价修饰的碱基包含以下通式的修饰物:
其中R1和R2独立地选自氢、烷基、烷氧基、未取代或取代的芳基和苯氧基。
实施方案14的寡核苷酸,其中所述修饰物具有以下通式:
其中R3选自C1-C6烷基、烷氧基和硝基。
序列表
<110>F.Hoffmann-LaRocheAG
RocheDiagnosticsGmbH
<120>改进的等位基因特异性扩增
<130>25294WO
<140>PCT/EP2009/007463
<141>17.10.2009
<150>61/106,783
<151>2008-10-20
<160>18
<170>PatentIn版本3.5
<210>1
<211>109
<212>DNA
<213>智人
<400>1
agtaaaaataggtgattttggtctagctacagagaaatctcgatggagtgggtcccatca60
gtttgaacagttgtctggatccattttgtggatggtaagattgaggcta109
<210>2
<211>110
<212>DNA
<213>智人
<400>2
agtaaaaataggtgattttggtctagctacagtgaaatctcgatggagtgggtcccatca60
gtttgaacagttgtctggatccattttgtggatggtaagaattgaggcta110
<210>3
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<400>3
agtaaaaataggtgattttggtctagctacaga33
<210>4
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(31)..(31)
<223>N6-苄基-dA
<400>4
agtaaaaataggtgattttggtctagctacaga33
<210>5
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(31)..(31)
<223>N6-对-叔丁基-苄基-dA
<400>5
agtaaaaataggtgattttggtctagctacaga33
<210>6
<211>25
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(25)..(25)
<223>N6-苄基-dA
<400>6
tagcctcaattcttaccatccacaa25
<210>7
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(33)..(33)
<223>N6-对-叔丁基-苄基-dA
<400>7
agtaaaaataggtgattttggtctagctacaga33
<210>8
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(29)..(29)
<223>N6-对-叔丁基-苄基-dA
<220>
<221>修饰的碱基
<222>(33)..(33)
<223>N6-对-叔丁基-苄基-dA
<400>8
agtaaaaataggtgattttggtctagctacaga33
<210>9
<211>10
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<400>9
tcgatggagt10
<210>10
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(33)..(33)
<223>N6-苄基-dA
<400>10
agtaaaaataggtgattttggtctagctacaga33
<210>11
<211>31
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(27)..(27)
<223>N6-苄基-dA
<220>
<221>修饰的碱基
<222>(31)..(31)
<223>N6-苄基-dA
<400>11
taaaaataggtgattttggtctagctacaga31
<210>12
<211>32
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<400>12
cccgcgcggacccactccatcgagagcgcggg32
<210>13
<211>32
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<400>13
cccgcgcggacccactccatcgagagcgcggg32
<210>14
<211>25
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(25)..(25)
<223>N6-苄基-dA
<400>14
tagcctcaattcttaccatccacaa25
<210>15
<211>18
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<400>15
tctcgatggagtgggtcc18
<210>16
<211>27
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<400>16
gggtcccatcagtttgaacagttgtct27
<210>17
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<400>17
agtaaaaataggtgattttggtctagctacaga33
<210>18
<211>33
<212>DNA
<213>人工序列
<220>
<223>人工序列的描述:合成引物
<220>
<221>修饰的碱基
<222>(31)..(31)
<223>N6-对-叔丁基-苄基-dA
<400>18
agtaaaaataggtgattttggtctagctacaga33

Claims (15)

1.一种以几种变体序列形式存在的靶序列变体的等位基因特异性扩增的方法,所述方法包括:
(a)提供样品,其可能含有靶序列的至少一种变体;
(b)提供第一种寡核苷酸,其与所述靶序列的一种或多种变体至少部分互补;
(c)提供第二种寡核苷酸,其与所述靶序列的一种或多种变体至少部分互补,并具有与所述靶序列的仅一种变体互补的3’-端核苷酸;其中所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;
(d)提供适于所述第一种和第二种寡核苷酸与所述靶序列的至少一种变体杂交的条件;和
(e)提供适于寡核苷酸通过核苷酸参入生物催化剂延伸的条件;其中当所述第二种寡核苷酸和与其具有的所述3’-端核苷酸互补的靶序列变体杂交时,所述生物催化剂能够延伸所述第二种寡核苷酸,以及当所述第二种寡核苷酸和与其具有的3’-端核苷酸不互补的靶序列变体杂交时,所述延伸实质性降低。
2.权利要求1的方法,其中具有在环外氨基被共价修饰的碱基的核苷酸位于相对于第二种寡核苷酸3’-端的-5,-4,-3,-2或-1位。
3.权利要求1的方法,其中当所述寡核苷酸和与其具有的所述3’-端核苷酸互补的靶序列变体杂交时,步骤(e)中的所述核苷酸参入生物催化剂能够专一地延伸所述第二种寡核苷酸。
4.权利要求1的方法,其中所述在环外氨基被共价修饰的碱基选自N6-苄基-腺嘌呤,N6-对-叔丁基-苄基腺嘌呤,N2-烷基-鸟嘌呤和N4-苄基-胞嘧啶。
5.权利要求1的方法,其中所述核苷酸参入生物催化剂选自TaqDNA聚合酶、Z05DNA聚合酶、ΔZ05DNA聚合酶和ΔZ05-GoldDNA聚合酶。
6.权利要求1的方法,其中所述靶序列为SEQIDNO:1和/或SEQIDNO:2。
7.权利要求1的方法,其中所述第二种核苷酸具有蝎型或类蝎型形式。
8.权利要求1的方法,其中所述第一种寡核苷酸为SEQIDNO:6和/或所述第二种寡核苷酸选自SEQIDNO:3,4,5,7,8,10,11,12和13。
9.一种检测样品中以几种变体序列形式存在的靶序列变体的方法,所述方法包括:
(a)将第一种和第二种寡核苷酸与靶序列的至少一种变体杂交;其中所述第一种寡核苷酸与所述靶序列的一种或多种变体至少部分互补,以及所述第二种寡核苷酸与所述靶序列的一种或多种变体至少部分互补并具有与所述靶序列的仅一种变体互补的3’-端核苷酸,所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;
(b)使用核苷酸参入生物催化剂延伸所述第二种寡核苷酸;其中所述生物催化剂能够可检测地延伸仅与靶序列变体杂交的寡核苷酸,所述寡核苷酸具有与所述靶序列变体互补的3’-端核苷酸;和
(c)检测所述第二种寡核苷酸延伸的产物,其中延伸表示下述靶序列变体的存在,即所述寡核苷酸具有与之互补的3’-端核苷酸。
10.一种用于以几种变体序列形式存在的靶序列的等位基因特异性扩增的试剂盒,其包含:
(a)第一种寡核苷酸,其至少与所述靶序列的一种或多种变体部分互补;
(b)第二种寡核苷酸,其至少与所述靶序列的一种或多种变体部分互补并具有与所述靶序列的仅一种变体互补的3’-端核苷酸;其中所述第二种寡核苷酸参入至少一个具有在环外氨基被共价修饰的碱基的核苷酸;和
(c)核苷酸参入生物催化剂,核苷三磷酸,适于核苷酸参入生物催化剂延伸核酸的缓冲液和一套进行等位基因特异性扩增的说明书。
11.一种用于进行以几种变体序列形式存在的靶序列的等位基因特异性扩增的寡核苷酸,其包含:
-与所述靶序列的一种或多种变体的一部分至少部分互补的序列;
-与所述靶序列的仅一种变体互补的3’-端核苷酸和
-至少一个具有在环外氨基被共价修饰的碱基的核苷酸,其中所述修饰的核苷酸为3’-端核苷酸。
12.权利要求11的寡核苷酸,其具有选自SEQIDNO:3,4,5,7,8,10,11,12和13的序列。
13.权利要求11的寡核苷酸,其中具有在环外氨基被共价修饰的碱基的核苷酸的结构选自:
其中S代表糖部分,R代表修饰基团。
14.权利要求11的寡核苷酸,其中所述在环外氨基被共价修饰的碱基包含以下通式的修饰物:
其中R1和R2独立地选自氢、烷基、烷氧基、未取代或取代的芳基和苯氧基。
15.权利要求14的寡核苷酸,其中所述修饰物具有以下通式:
其中R3选自C1-C6烷基、烷氧基和硝基。
CN201510625732.4A 2008-10-20 2009-10-17 改进的等位基因特异性扩增 Pending CN105200097A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10678308P 2008-10-20 2008-10-20
US61/106783 2008-10-20
CN2009801413032A CN102186996A (zh) 2008-10-20 2009-10-17 改进的等位基因特异性扩增

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009801413032A Division CN102186996A (zh) 2008-10-20 2009-10-17 改进的等位基因特异性扩增

Publications (1)

Publication Number Publication Date
CN105200097A true CN105200097A (zh) 2015-12-30

Family

ID=41557754

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2009801413032A Pending CN102186996A (zh) 2008-10-20 2009-10-17 改进的等位基因特异性扩增
CN201510625732.4A Pending CN105200097A (zh) 2008-10-20 2009-10-17 改进的等位基因特异性扩增

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2009801413032A Pending CN102186996A (zh) 2008-10-20 2009-10-17 改进的等位基因特异性扩增

Country Status (8)

Country Link
US (2) US8586299B2 (zh)
EP (1) EP2337865B1 (zh)
JP (1) JP5624044B2 (zh)
CN (2) CN102186996A (zh)
CA (1) CA2740913C (zh)
ES (1) ES2527653T3 (zh)
HK (1) HK1219508A1 (zh)
WO (1) WO2010046067A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964818A (zh) * 2019-11-28 2020-04-07 重庆浦洛通基因医学研究院有限公司 一种人类braf基因v600e突变的检测试剂盒及检测方法
CN113215227A (zh) * 2021-02-04 2021-08-06 郑州华沃生物科技有限公司 一种人维生素d受体基因分型检测用的引物和探针

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186996A (zh) 2008-10-20 2011-09-14 霍夫曼-拉罗奇有限公司 改进的等位基因特异性扩增
US9238832B2 (en) * 2009-12-11 2016-01-19 Roche Molecular Systems, Inc. Allele-specific amplification of nucleic acids
US8614071B2 (en) 2009-12-11 2013-12-24 Roche Molecular Systems, Inc. Preferential amplification of mRNA over DNA using chemically modified primers
US9169514B2 (en) * 2010-12-03 2015-10-27 Brandeis University Detecting nucleic acid variations within populations of genomes
US20120164641A1 (en) 2010-12-22 2012-06-28 Roche Molecular Systems, Inc. Methods and Compositions for Detecting Mutation in the Human Epidermal Growth Factor Receptor Gene
CN107267615A (zh) * 2011-09-23 2017-10-20 霍夫曼-拉罗奇有限公司 G形夹用于改进的等位基因特异性pcr的用途
JP2014532407A (ja) * 2011-10-24 2014-12-08 トローバジーン インコーポレイテッド がんにおけるbraf変異を検出する方法
US9738935B2 (en) 2011-11-10 2017-08-22 Roche Molecular Systems, Inc. Complex mutations in the epidermal growth factor receptor kinase domain
JP2014533508A (ja) * 2011-11-17 2014-12-15 リーアニクス・インコーポレイテッドRheonix, Inc. 選択的分子分析のためのシステムおよび方法
US20160130641A1 (en) * 2012-02-15 2016-05-12 Janssen Diagnostics, Llc Highly sensitive method for detecting low frequency mutations
US20140341884A1 (en) 2012-12-04 2014-11-20 Roche Molecular Systems, Inc. Novel Complex Mutations in the Epidermal Growth Factor Receptor Kinase Domain
US9382581B2 (en) * 2012-12-13 2016-07-05 Roche Molecular Systems, Inc. Primers with modified phosphate and base in allele-specific PCR
CN108130373A (zh) * 2013-03-13 2018-06-08 豪夫迈·罗氏有限公司 在人pi3kca (pik3ca)基因中检测突变的方法和组合物
US10093978B2 (en) 2013-08-12 2018-10-09 Genentech, Inc. Compositions for detecting complement factor H (CFH) and complement factor I (CFI) polymorphisms
ES2705573T3 (es) 2013-10-09 2019-03-26 Hoffmann La Roche Procedimientos y composiciones para detectar mutaciones en el gen EZH2 humano
TW202239429A (zh) 2014-02-08 2022-10-16 美商建南德克公司 治療阿茲海默症之方法
CN103911445B (zh) * 2014-03-20 2015-08-12 上海科亦生物科技有限公司 一种as-pcr引物设计方法、基因多态性检测方法及试剂盒
KR102343605B1 (ko) * 2014-05-19 2021-12-27 윌리엄 마쉬 라이스 유니버시티 비대립 유전자-특이적 프라이머 및 대립 유전자-특이적 블로커 올리고뉴클레오티드를 중첩하는 조성물을 사용한 대립 유전자-특이적 증폭
CN106795567B (zh) 2014-10-09 2021-07-30 豪夫迈·罗氏有限公司 在表皮生长因子受体激酶结构域中的突变
US9909169B2 (en) 2014-12-17 2018-03-06 Roche Molecular Systems, Inc. Allele-specific amplification of nucleic acids using blocking oligonucleotides for wild type suppression
CN104845967B (zh) * 2015-04-15 2020-12-11 苏州新海生物科技股份有限公司 寡聚核苷酸片段及使用其的选择性扩增目标核酸序列变异体的方法及应用
CN105400900A (zh) * 2015-12-29 2016-03-16 杭州迪安生物技术有限公司 焦磷酸测序技术检测braf基因v600e微量突变试剂盒及其应用
CN109312406A (zh) 2016-06-01 2019-02-05 豪夫迈·罗氏有限公司 预测肺癌患者中对alk抑制剂疗法的响应的间变性淋巴瘤激酶中的新型突变

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001611A (en) * 1997-03-20 1999-12-14 Roche Molecular Systems, Inc. Modified nucleic acid amplification primers
EP0974672A1 (en) * 1998-07-21 2000-01-26 Keygene N.V. Improved primers for AFLP amplification
WO2000043544A1 (en) * 1999-01-19 2000-07-27 Dade Behring Inc. Method for controlling the extension of an oligonucleotide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3529478A1 (de) * 1985-08-16 1987-02-19 Boehringer Mannheim Gmbh 7-desaza-2'desoxyguanosin-nukleotide, verfahren zu deren herstellung und deren verwendung zur nukleinsaeure-sequenzierung
IE61148B1 (en) * 1988-03-10 1994-10-05 Ici Plc Method of detecting nucleotide sequences
US5639611A (en) * 1988-12-12 1997-06-17 City Of Hope Allele specific polymerase chain reaction
US5521301A (en) * 1988-12-12 1996-05-28 City Of Hope Genotyping of multiple allele systems
US5137806A (en) * 1989-12-11 1992-08-11 Board Of Regents, The University Of Texas System Methods and compositions for the detection of sequences in selected DNA molecules
US5210015A (en) * 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
WO2002064833A1 (fr) * 2001-02-15 2002-08-22 Takara Bio Inc. Procede de detection de polymorphisme de nucleotide
JP2005524383A (ja) * 2001-08-28 2005-08-18 ファルマシア・アンド・アップジョン・カンパニー・エルエルシー 統合失調症の診断に用いる一塩基多型
US7408051B2 (en) * 2004-04-14 2008-08-05 Applera Corporation Modified oligonucleotides and applications thereof
US8349556B2 (en) * 2006-04-28 2013-01-08 Igor Kutyavin Use of base-modified deoxynucleoside triphosphates to improve nucleic acid detection
CN102186996A (zh) 2008-10-20 2011-09-14 霍夫曼-拉罗奇有限公司 改进的等位基因特异性扩增

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001611A (en) * 1997-03-20 1999-12-14 Roche Molecular Systems, Inc. Modified nucleic acid amplification primers
EP0974672A1 (en) * 1998-07-21 2000-01-26 Keygene N.V. Improved primers for AFLP amplification
WO2000043544A1 (en) * 1999-01-19 2000-07-27 Dade Behring Inc. Method for controlling the extension of an oligonucleotide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110964818A (zh) * 2019-11-28 2020-04-07 重庆浦洛通基因医学研究院有限公司 一种人类braf基因v600e突变的检测试剂盒及检测方法
CN113215227A (zh) * 2021-02-04 2021-08-06 郑州华沃生物科技有限公司 一种人维生素d受体基因分型检测用的引物和探针

Also Published As

Publication number Publication date
WO2010046067A1 (en) 2010-04-29
US9506111B2 (en) 2016-11-29
CA2740913C (en) 2015-02-10
ES2527653T3 (es) 2015-01-28
CA2740913A1 (en) 2010-04-29
EP2337865A1 (en) 2011-06-29
US20140242592A1 (en) 2014-08-28
JP5624044B2 (ja) 2014-11-12
US20100099110A1 (en) 2010-04-22
CN102186996A (zh) 2011-09-14
JP2012505641A (ja) 2012-03-08
US8586299B2 (en) 2013-11-19
EP2337865B1 (en) 2014-11-19
WO2010046067A9 (en) 2010-07-15
HK1219508A1 (zh) 2017-04-07

Similar Documents

Publication Publication Date Title
CN105200097A (zh) 改进的等位基因特异性扩增
EP2173910B1 (en) Suppression of amplification using an oligonucleotide and a polymerase significantly lacking 5&#39;-3&#39; exonuclease activity
CA2781984C (en) Allele-specific amplification of nucleic acids
CN104011224B (zh) 用于降低非特异性扩增的方法和试剂
CN104838015A (zh) 在等位基因特异性pcr中具有经修饰的磷酸酯和碱基的引物
US20160369330A1 (en) Compositions for improved allele-specific pcr
JP2017538429A (ja) 野生型の抑制のためのブロッキングオリゴヌクレオチドを使用する、核酸の対立遺伝子特異的増幅

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1219508

Country of ref document: HK

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151230

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1219508

Country of ref document: HK