CN105084388B - 一种y型分子筛的制备改性方法 - Google Patents

一种y型分子筛的制备改性方法 Download PDF

Info

Publication number
CN105084388B
CN105084388B CN201410213442.4A CN201410213442A CN105084388B CN 105084388 B CN105084388 B CN 105084388B CN 201410213442 A CN201410213442 A CN 201410213442A CN 105084388 B CN105084388 B CN 105084388B
Authority
CN
China
Prior art keywords
molecular sieve
directed agents
nay molecular
ammonium
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410213442.4A
Other languages
English (en)
Other versions
CN105084388A (zh
Inventor
鲁玉莹
付强
李永祥
胡合新
慕旭宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201410213442.4A priority Critical patent/CN105084388B/zh
Publication of CN105084388A publication Critical patent/CN105084388A/zh
Application granted granted Critical
Publication of CN105084388B publication Critical patent/CN105084388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种Y型分子筛的制备改性方法,其特征在于包括NaY分子筛经铵交换、在水热条件下处理以及加入硅溶胶、醇类物质和柠檬酸溶液改性等步骤,所说的NaY分子筛是依照导向剂、硅源、铝源和水的顺序依次加入混料罐后得到的混合物A进行水热晶化得到,其中,所说的导向剂是将偏铝酸钠与水玻璃混合,使水玻璃中铝元素的摩尔浓度由零渐升至形成摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2的混合物B,再顺序经过动态陈化、静置陈化,再补加水得到的。该方法得到的分子筛产品,晶胞参数为2.461‑2.467nm,具有更高的结晶保留度,晶粒平均直径为50~800nm。

Description

一种Y型分子筛的制备改性方法
技术领域
本发明涉及一种Y型分子筛的制备改性方法,更具体的说本发明涉及一种Y型分子筛的非模板剂下的制备改性方法。
背景技术
五十年代末,Milton和Breck成功地合成出Y型分子筛。由于Y型分子筛的结构中SiO2与Al2O3之比大于X型分子筛,从而热稳定性和水热稳定性得到改善。七十年代初,Grace公司发展了导向剂法合成NaY分子筛,原料以水玻璃代替了昂贵的硅溶胶,工艺得到简化,生长周期变短,从而使NaY分子筛迅速而广泛地应用到石油化工尤其是石油裂化催化领域。迄今为止,在已经开发的上百种分子筛中,在工业上使用量最大的是Y型分子筛。目前,Y型分子筛的合成在工业上主要采用晶种胶法。由于晶种胶的使用与改进,使Y型分子筛的合成晶化的时间大大缩短,为Y型分子筛的工业化奠定了基础。
工业上的应用和发展对分子筛的合成及其产品性能提出了更高的要求,反过来也促进了分子筛合成技术的深入研究。对Y型分子筛合成的更高要求主要集中在合成小晶粒及超细颗粒的分子筛产品、提高硅铝比以及合成高硅铝比比且小晶粒及超细颗粒的分子筛产品等三个方面。
小晶粒尺寸的Y型分子筛由于具有较大的外表面积和较高的晶内扩散速率,在提高转化大分子能力、减小产物的二次裂化及降低催化剂结焦等方面,表现出比常规晶粒尺寸Y型分子筛更为优越的性能,因此小晶粒的Y型分子筛的合成研究成为热点。以常规方法合成的Y型分子筛一般具有约1000nm的晶粒尺寸,而小晶粒甚至可以达到纳米级(<100nm)晶粒尺寸这方面的合成报道仍然较少。
用热粉碎技术处理Y型分子筛,虽然可以使其晶粒度减小到100nm,但这种物理粉碎处理的方式不仅耗费较大能量,而且破坏了分子筛的晶体结构,使之部分无定形化。如果能够直接合成小晶粒Y型分子筛则是最简便可行的方法,因此,必须将优化常规Y型分子筛的合成条件,通过改善和增加导向剂量、提高投料碱度等方法降低分子筛粒径,以获取小晶粒Y型分子筛产品和适合分子筛商业化的最佳条件。
合成条件的优化通常包括如晶种胶的制备、老化时间的影响、硅铝凝胶的制备和水热晶化的条件,包括碱度、晶化温度和晶化时间等。硅铝凝胶的组成一般受晶化条件的影响而导致分子筛不同;水热晶化条件更直接的影响着分子筛的合成,它们既相互制约,又相互影响着分子筛的硅铝比、结晶度和晶粒度。硅铝凝胶的碱度是分子筛合成过程中一个十分关键的因素,提高合成体系的碱度可以制备出微细NaY分子筛。由于工业上大多采用含多聚态硅的水玻璃为硅源,提高体系碱度,不仅可以增大多聚态硅的解聚,而且有利于硅铝凝胶中形成更多的晶核,从而使晶粒尺寸减小。Schhoeman等(Sehoeman B J,Sterte J,Chemical Communications,1993:994~99)采用高碱度、高硅铝比的方法,从液相中直接合成了晶粒尺寸小于150nm的NaY分子筛。但是,随着体系碱度的增大,合成产物的收率下降。Bi-ZengZ等人在研究中还发现当合成体系n(Na2O)/n(Al2O3)=6~15,并在转速大于3000r/min的高速搅拌下制备均相、流动性硅铝胶,可以制得粒径在100nm以下的Y型分子筛,但硅铝比一般小于4.5(Bi-Zeng Z,Mary A.W,Miehael L.Control of Particle size andsurfaceProPertles of CrystaIs of NaX Zeolite,Chemistry of Materials,2002,14:363-3642)。
Y型分子筛的合成方法中,包括有基于工业合成的导向剂法和基于模板剂的清液合成法。基于工业合成的导向剂法中,通过向合成体系中添加稀土离子、铝络合剂和表面活性剂等添加剂,可降低NaY分子筛的平均粒径,但其缺点是粒径分布较宽。Linder等(Lindner T.,Lech ert H.,Zeolites,1996,16:196-206)在研究矿化剂对八面沸石合成的影响时发现,向合成体系中添加少量的可与铝形成稳定络合物的有机络合剂,一般都能促进分子筛的成核及晶体的生长,因而使得分子筛的晶粒尺寸减小,粒径分布变窄,而且不会降低分子筛骨架硅铝比。Maher等在US3516786中公开了一种合成八面沸石型分子筛的方法,在合成体系升温晶化步骤之前,向合成体系中加入了少量可与水混溶的有机溶剂,如二甲砜、N,N-二甲基甲酰胺、四氢呋喃、甲醇、乙醇、丙酮等,最终分子筛晶粒尺寸为0.01~0.1μm。Ambs等在US4372931中为了减小因升温而带来的有机溶剂的挥发,使用了葡萄糖,最终晶粒尺寸为0.035~0.069μm。但是,添加有机溶剂后,分子筛的骨架SiO2/Al2O3比较低,一般低于2.5。而另一种基于模板剂的清液合成法,该法可以获得纳米级的NaY分子筛,且具有晶体粒径分布较窄的优点,但其产品收率很低,成本很高。Holmberg等通过加入四甲基溴化铵和四甲基氢氧化铵双模板剂,通过优化TMA+和阴离子的浓度控制Y型分子筛晶粒尺寸和收率,最终合成出粒度为37nm的Y型分子筛,但其产品收率很低且成本很高(Holmberg B.A.,Wang H.,Controlling size and yieldof zeolite Y nanocrystals Using tetramethylammonium bromide,MicroPorous and MesoPorous Material,2003,59:13-28)。
骨架硅铝比的高低及其孔道的结构决定了分子筛的主要性质与功能。一般来讲,硅铝比越高的分子筛往往具有更强的耐热、耐水蒸气和抗酸能力;另外,不同类型的分子筛对某些催化反应,随其硅铝比的变化也表现出不同的特定规律性。因此,可以通过直接合成或通过改性的方法(即二次合成)得到不同类型分子筛的硅铝比,从而调控其性质和功能。
用常规方法合成的Y型分子筛的硅铝比小于5.0,一般将硅铝比大于6.0的叫高硅Y型分子筛。得到高硅Y型分子筛的常用的方法有两种:一种是直接合成的方法,另一种是在一次合成的基础上,将产物采用特定的路线进行再加工,即通过二次合成的方法提高骨架硅铝比。目前,二次合成法主要有:高温水热法(US3449370)、高温气相反应法(US4701313)、氟硅酸铵液相反应法(US4093560)等,这些方法的缺点是制备步骤繁杂、沸石结晶度损失较大、制备工艺流程比较复杂、收率低和环境污染较大等。
而直接合成的方法中需要综合考虑较多的因素,例如:反应混合物的组成、制备方式、反应物来源、导向剂的制备、搅拌与否、凝胶酸碱度和晶化条件等等。通常硅铝比越低的Y型分子筛越易制得,反之硅铝比越高要求的制备条件就越苛刻,较难合成出理想的样品。在直接合成的方法中,常用提高硅铝比的途径主要有以下几种:一种途径是延长晶化时间,但是,该途径在硅铝比大于5.5后,晶化速率呈指数形式下降,使合成因耗时、成本高而不适用于工业生产;另一种途径是使用有机胺(US5116590,US4965059,CN96105159.7,CN97196899)或无机盐(US4333859,US4309313)作为模板剂,但是这同样存在成本高、晶化时间长、硅的利用率偏低等问题,同时,大量高浓度的硅废液被排出,既浪费亦污染环境。
直接合成高硅铝比Y型分子筛的方法中,采用非模板剂法一直是研究的热点和难点。CN102198950A公开了一种高硅铝比NaY分子筛的制备方法;将硅源、铝源和去离子水混合,按照下述凝胶物料摩尔比取两种不同摩尔比的导向剂、水玻璃、酸性铝盐和铝酸钠溶液混合均匀制得两种凝胶,分别晶化;凝胶物料摩尔比为:(1.0~6.5)Na2O:Al2O3:(5.0~18)SiO2:(100~280)H2O,其中导向剂的Al2O3占Al2O3总重量的0.01~15%;两种凝胶按照质量比为1:(0.1~10)均匀混合,制得混合凝胶;将制得的混合凝胶在80~120℃下晶化2~50小时,制得NaY分子筛。在投料摩尔比相同的条件下,该方法可以在更短的时间内制备出高硅铝比的NaY分子筛。CN1785807A和CN1785808A公开的方法是预先在15~60℃下搅拌陈化0.5~48小时制得导向剂,然后将导向剂、水、硅源、铝源制成反应混合物,搅拌均匀后将反应混合物分两步晶化,第一步动态晶化,第二步静态晶化,最后经过滤、洗涤、干燥,制得相对结晶度大于80%、骨架硅铝比即SiO2/Al2O3摩尔比在6.0~7.0之间,且平均晶粒在300~800nm之间的高硅铝比小晶粒NaY分子筛。CN1789125公开的高硅铝比、小晶粒的NaY分子筛的制备方法,是首先合成NaY分子筛导向剂,然后用水玻璃、导向剂、酸性铝盐和偏铝酸钠制得凝胶,将凝胶在50~100℃下晶化0~70h后,补加硅源,再在90~120℃下继续晶化0.5~50h,最后经过滤、洗涤、干燥,得到硅铝比为5.2~7.0、晶粒为100~400nm的NaY分子筛。
Y型分子筛在应用以前要对其进行改性处理,得到具有不同SiO2/Al2O3比、酸性和孔结构的分子筛。通常是通过改变铝的含量来实现分子筛的改性处理,其中酸脱铝是Y型分子筛改性的一个重要方法。酸处理的条件一般比较温和,可不破坏分子筛结构,选择性的脱除分子筛中的非骨架铝。但对于部分难脱除的非骨架铝,采用一般的酸处理不能将其有效、均匀的脱除,若靠提高酸浓度,则会造成部分骨架铝的脱除,使得改性后的分子筛结构破坏、结晶度下降、酸分布不合理,从而直接导致催化性能的下降。用硅化物处理分子筛是另一种改性方法。CN1382632A公开了一种小晶粒Y型沸石的超稳化方法,该方法是用四氯化硅的干燥气体与小晶粒NaY沸石接触,洗涤后得到的,由于其原料自身的热和水热稳定性就较差,同时该发明方法是采用气相脱铝补硅的方式处理分子筛,这使得产品的热和水热稳定性更差,活性低;另外这种气相处理方法在工业生产中存在批量小,耗能较高等缺点。CN101941713A公开了一种小晶粒高硅Y型分子筛的制备方法,该方法选择适宜的改性过程,即铵交换、六氟硅酸铵脱铝补硅、水热处理和铝盐水溶液处理等得到产品;CN102311129A公开了一种高硅Y型分子筛的制备方法,该方法首先对分子筛浆液进行氟硅酸处理,氟硅酸处理后直接加入铵盐,得到改性高硅Y型分子筛。上述两种改性方法虽能提高分子筛的骨架硅铝比,但添加物引入的氟离子很难从浆液中洗脱,分子筛水洗后的液体残留大量的氟离子,工业生产中造成环保问题。
发明内容
本发明的目的是针对现有技术的不足,提供一种环境友好、低成本的提高硅铝比、具有更好的结晶保留度的小晶粒Y型分子筛的制备改性方法。
发明人在大量的Y型分子筛的合成试验中发现,同时优化导向剂原料接触状态、动态老化、静态老化、导向剂的组成和在反应混合物中加入量、反应混合物的原料加入顺序和晶化温度和时间等参数,意外地可得到高硅铝比、平均粒径为50-800nm的NaY分子筛,且分子筛稳定性更好,以其为基础进一步进行硅改性操作得到的高硅铝比分子筛,结晶保留度更好。
因此,本发明提供的Y型分子筛的制备改性方法,其特征在于包括如下步骤:(1)制备NaY分子筛;(2)将NaY分子筛经铵交换得到氧化钠的重量含量为2.5-5%的NH4NaY分子筛;(3)在水热条件下处理NH4NaY分子筛;和(4)将NH4NaY分子筛打浆后,加入pH为2-4的硅溶胶和C2-C4的有机醇类物质并用柠檬酸溶液调pH为3-6,在温度为80-120℃下充分混合,再经水洗和干燥得到改性产品;其中,所说的步骤(1)中制备NaY分子筛的过程是在合成NaY分子筛的条件下,将依照导向剂、硅源、铝源和水的顺序依次加入混料罐后得到的混合物A进行水热晶化并回收得到的产物,所说的导向剂是将偏铝酸钠与水玻璃混合,使水玻璃中铝元素的摩尔浓度由零渐升至形成摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2的混合物B,再顺序经过动态陈化、静置陈化,再补加水得到的。
本发明中步骤(1)所说的制备NaY分子筛的过程是使用直接合成法:先制备导向剂,再制备反应混合物,最后经晶化、过滤、洗涤、干燥而得到中高硅铝比小晶粒NaY分子筛。在所说的反应混合物中不加入任何模板剂或添加剂,也无须对合成得到的分子筛进行化学或物理方法进行脱铝,或者脱铝补硅即二次合成来提高硅铝比。所用原料价廉、易得,工艺简单易行,有利于降低制造成本。
本发明中,步骤(1)所说的导向剂的制备不同于常规法合成NaY分子筛导向剂的制备过程(将硅源和铝源以任意次序混合,混合均匀后在静止的条件下老化),也不同于CN1785807A、CN1785808A中所说的在15~60℃下搅拌老化制得导向剂。本发明中的导向剂的制备是将偏铝酸钠与水玻璃混合,使水玻璃中铝元素的摩尔浓度由零渐升至形成摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2的混合物B,再顺序经过动态陈化、静置陈化,再补加水得到的。更具体的制备过程包括以下步骤:(1)在15~60℃温度及搅拌条件下,将偏铝酸钠向水玻璃中加入,形成摩尔比为(6~25)Na2O:A12O3:(6~25)SiO2的所说的混合物B;(2)将混合物B在15~60℃下动态陈化5~48小时,再在15~60℃下静置陈化5~48小时;(3)陈化完毕后,在搅拌的条件下加入水,使导向剂的最终摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2:(200~400)H2O。
经上述过程得到导向剂后,本发明步骤(1)所说的NaY分子筛的制备进一步的步骤为:在室温下加入水、硅源、铝源、导向剂得到混合物A,混合物A的摩尔配比为(2~6)Na2O:A12O3:(8~20)SiO2:(200~400)H2O,导向剂的加入量按照导向剂中铝元素的摩尔数占总铝元素摩尔数的3~30%计算。所说的混合物A是依照导向剂、硅源、铝源和水的顺序依次加入混料罐后得到的。其中,所说的水是去离子水或蒸馏水,硅源可以是水玻璃、硅溶胶、硅胶和白炭黑中的一种或多种的混合物,所说的铝源为偏铝酸钠、硫酸铝、氯化铝、硝酸铝、氢氧化铝和拟薄水铝石中的一种或多种的混合物。所说的混合物A的水热晶化是在90-100℃下密闭反应釜中进行15-48小时。
步骤(1)中采用不同于现有技术的导向剂制备过程并结合特定的原料加料顺序水热合成得到的NaY分子筛,具有中高硅铝比和小晶粒的特点,骨架SiO2/Al2O3摩尔比在5.0~6.0之间,且平均晶粒可在50~800nm,并能够在50~200nm、200~500nm、500~800nm之间调整。该步骤不用额外加模板剂或添加剂,所用原料价廉、易得,工艺简单易行,有利于降低制造成本。
本发明的方法中,还有步骤(2)将NaY分子筛经铵交换得到氧化钠的重量含量为2.5-5%的NH4NaY分子筛。所说的铵交换的过程进行一次或多次,所说的铵交换的过程包括采用铵离子浓度为0.1~1.0mol/L的铵盐溶液,在温度50~100℃、液固重量比为8~15:1的条件下,恒温处理0.5~1.5小时。所说的铵盐为硝酸铵、硫酸铵、氯化铵和醋酸铵中的一种或多种。
本发明的方法中,进一步还有步骤(3)水热条件下处理NH4NaY分子筛。所说的水热条件下处理的过程是在100%水蒸气、表压0.1~0.2MPa、温度500~650℃下处理1~3小时。
本发明的方法中,进一步还有步骤(4)将NH4NaY分子筛打浆后,加入pH为2-4的硅溶胶和C2-C4的小分子有机醇类物质并用柠檬酸溶液调pH为3-6,在温度为80-120℃下充分混合,再经水洗和干燥得到改性产品。所说的打浆,液固重量比为3-10:1;所说的pH为2-4的硅溶胶是打浆浆料80-120℃下加入,按照每100克分子筛加入以SiO2计0.1-10克的硅溶胶的比例加入。所说的C2-C4的有机醇类物质作为分散剂能够降低硅溶胶的高表面能,增加了胶粒间的斥力,保证了胶粒的良好分散,所说的C2-C4的有机醇类物质优选丙三醇、乙二醇和异丙醇中的一种或多种。所说的C2-C4的有机醇类物质按照每100g分子筛1-30g的醇类物质的比例加入。调节pH为3-6是采用柠檬酸溶液,所说的柠檬酸溶液的浓度可以是0.1-0.3mol/L;所说的充分混合,可以是在恒温恒速下搅拌0.5-5小时。本发明加入酸性硅溶胶,使硅溶胶中的硅补充至分子筛表面和骨架中因水热老化产生的一些晶体缺陷,提高了分子筛的结晶保留度,并能大幅度增加Y型分子筛的硅铝比。
本发明方法制备过程简单,生产成本低,生产过程中对环境的污染小。
经本发明提供的制备改性方法得到的Y型分子筛,为小晶粒Y型分子筛,平均晶粒可在50-800nm之间调整,体相SiO2/Al2O3摩尔比5-10,结晶保留度大于85%,相对结晶度为85%-95%,产品晶胞只有微小收缩,晶胞参数为2.461-2.467nm,氧化钠重量含量≤0.1wt%。
具体实施方式
下面通过实施例对本发明作进一步的说明,但并不因此而限制本发明的范围。
在各实施例和对比例中,样品形貌由电镜照片给出,由JSM-5610LV型扫描电镜仪观测。
NaY分子筛硅铝比是按SH/T0339-92标准方法(《化学工业标准汇编》,中国标准出版社,2000年出版)计算NaY分子筛的晶胞常数a,然后按照Breck-Flanigen公式SiO2/Al2O3=2(25.858-a)/(a-24.191)得出。相对结晶度根据SH/T0340-92标准方法测定(《化学工业标准汇编》,中国标准出版社,2000年出版)。改性后分子筛样品体相SiO2/Al2O3摩尔比采用XRF方法测定,结晶保留度:Y型分子筛的XRD图谱中5个特征峰的峰高和为依据,以经过改性处理后的Y型分子筛样品的5个特征峰的峰高之和除以原料Y型分子筛5个特征峰的峰高之和的百分比,5个特征峰分别是2θ为15.8、20.7、24.0、27.4和31.8峰位所对应的特征峰。XRD谱图用SIMADU XRD6000型X射线衍射仪测定(实验条件为:CuKa辐射,管压40kv,管电流40mA。)。
实施例1
将50.39g高碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为40.2g/L,Na2O含量为255g/L,比重为1.324)加入到65.56g水玻璃(中石化股份有限公司催化剂长岭分公司提供,SiO2含量为260.6g/L,Na2O含量为81.6g/L,比重为1.2655,模数为3.3)中,在室温下搅拌陈化48小时,然后在60℃温度下静态陈化5小时,最后在搅拌的条件下加入15g去离子水,得到的导向剂最终摩尔比为15Na2O:A12O3:15SiO2:320H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的3%计算。
在室温和高速搅拌的条件下按照导向剂(前述步骤制备)、1682.6g水玻璃(同上)、134.19g低碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为194g/L,Na2O含量为286.2g/L,比重为1.413)、448.02g硫酸铝(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为88.9g/L,比重为1.2829)和150.4g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为3Na2O:A12O3:12SiO2:209H2O。搅拌均匀后,将其装入不锈钢反应釜中,在100℃静态晶化24小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD谱图测其硅铝比为5.8,相对结晶度为93.7%,电镜照片显示平均晶粒尺寸为300nm。
配制浓度为0.5mol/L硝酸铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O的含量达到2.5wt%。得到干燥后的样品在500℃、100%水蒸气表压0.1MPa的条件下水热处理1.5h。量取1升净水并将200克上述样品溶于净水中,快速升温搅拌,温度为80℃,搅拌转速为300rpm。快速向分子筛浆料中加入酸性硅溶胶、丙三醇,共加入以SiO2计18克的酸性硅溶胶溶液,36g丙三醇,用0.1mol/L的柠檬酸溶液调节溶液的pH为3.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-1,性质列于表1。
对比例1
本对比例说明在合成导向剂过程中改变导向剂陈化条件、仅采用静置陈化以及反应混合物的投料顺序改变的情况。
各原料来源同实施例1。
将50.39g高碱偏铝酸钠溶液加入到65.56g水玻璃中,在室温下静置陈化28小时,再加入15g去离子水得到的导向剂最终摩尔比为15Na2O:A12O3:15SiO2:320H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的3%计算。
在室温和高速搅拌的条件下在混料罐中先加入1682.6g水玻璃,再依次加入150.4g水、134.19g低碱偏铝酸钠溶液、导向剂(前述步骤制备)和448.02g硫酸铝,反应混合物的总投料摩尔比为3Na2O:A12O3:12SiO2:209H2O。搅拌均匀后,将其装入不锈钢反应釜中,在100℃静态晶化24小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD谱图测其硅铝比为4.8,相对结晶度为88.7%,电镜照片显示平均晶粒尺寸为1000nm。
配制浓度为0.5mol/L硝酸铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O的含量达到2.5wt%。得到干燥后的样品在500℃、100%水蒸气表压0.1MPa的条件下水热处理1.5h。量取1升净水并将200克上述样品溶于净水中,快速升温搅拌,温度为80℃,搅拌转速为300rpm。快速向分子筛浆料中加入酸性硅溶胶、丙三醇,共加入以SiO2计20克的酸性硅溶胶溶液,40g丙三醇,用0.1mol/L的柠檬酸溶液调节溶液的pH为3.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-D-1,性质列于表1。
实施例2
将50.39g高碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为40.2g/L,Na2O含量为255g/L,比重为1.324)加入到65.56g水玻璃(中石化股份有限公司催化剂长岭分公司提供,SiO2含量为260.6g/L,Na2O含量为81.6g/L,比重为1.2655,模数为3.3)中,60℃温度下搅拌陈化5小时,然后在60℃温度下静态陈化5小时,最后在搅拌的条件下加入15g去离子水,得到的导向剂最终摩尔比为15Na2O:A12O3:15SiO2:320H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的3%计算。
在室温和高速搅拌的条件下按照导向剂(前述步骤制备)、1682.6g水玻璃(同上)、134.19g低碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为194g/L,Na2O含量为286.2g/L,比重为1.413)、448.02g硫酸铝(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为88.9g/L,比重为1.2829)和1419.4g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为3Na2O:A12O3:12SiO2:350H2O。搅拌均匀后,将其装入不锈钢反应釜中,在100℃静态晶化32小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.9,相对结晶度为90.6%,电镜照片显示平均晶粒尺寸为800nm。
铵交换。配制浓度为0.2mol/L硫酸铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到3wt%。得到干燥后的样品在580℃、100%水蒸气表压0.2MPa的条件下水热处理2.0h。量取1升净水并将300克前述步骤所得的样品溶于净水中,快速升温搅拌,温度为90℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和乙二醇,共加入以SiO2计20克的酸性硅溶胶溶液,50g乙二醇,用0.2mol/L的柠檬酸溶液调节溶液的pH为4.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-2,性质列于表1
对比例2
本对比例说明改变导向剂制备中硅源、铝源的加料顺序的情况。
各原料来源同实施例2。
将65.56g水玻璃加入到50.39g高碱偏铝酸钠溶液中,60℃温度下搅拌陈化5小时,然后在60℃温度下静态陈化5小时,最后在搅拌的条件下加入15g去离子水,得到的导向剂最终摩尔比为15Na2O:A12O3:15SiO2:320H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的3%计算。
在室温和高速搅拌的条件下按照导向剂(前述步骤制备)、1682.6g水玻璃、134.19g低碱偏铝酸钠溶液、448.02g硫酸铝和1419.4g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为3Na2O:A12O3:12SiO2:350H2O。搅拌均匀后,将其装入不锈钢反应釜中,在100℃静态晶化32小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.0,相对结晶度为87%,电镜照片显示平均晶粒尺寸为1000nm。
配制浓度为0.2mol/L硫酸铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到3wt%。得到干燥后的样品在580℃、100%水蒸气表压0.2MPa的条件下水热处理2.0h。量取1升净水并将300克前述步骤所得的样品溶于净水中,快速升温搅拌,温度为90℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和乙二醇,共加入以SiO2计20克的酸性硅溶胶溶液,50g乙二醇,用0.2mol/L的柠檬酸溶液调节溶液的pH为4.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-D-2,性质列于表1
实施例3
将164.54g高碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为40.2g/L,Na2O含量为340g/L,比重为1.297)加入到291.37g水玻璃(中石化股份有限公司催化剂长岭分公司提供,SiO2含量为260.6g/L,Na2O含量为81.6g/L,比重为1.2655,模数为3.3)中,30℃温度下搅拌陈化20小时,然后在40℃温度下静态陈化15小时,最后在搅拌的条件下加入60g去离子水。得到的导向剂最终摩尔比为20Na2O:A12O3:20SiO2:380H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的10%计算。
在室温和高速搅拌的条件下按照导向剂(前述步骤制备)、1092.62g水玻璃(同上)、166.31低碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为194g/L,Na2O含量为286.2g/L,比重为1.413)、332.87g硫酸铝(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为88.9g/L,比重为1.2829)和479.4g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为4Na2O:A12O3:9SiO2:220H2O。搅拌均匀后,将其装入不锈钢反应釜中,在95℃静态晶化24小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.2,相对结晶度为95.1%,电镜照片显示平均晶粒尺寸为300nm。
配制浓度为0.5mol/L氯化铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到3.5wt%。得到干燥后的样品在550℃、100%水蒸气表压0.2MPa的条件下水热处理2.5h。量取1升净水并将上述实验所得的样品溶于净水中,快速升温搅拌,温度为90℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和异丙醇,共加入以SiO2计20克的酸性硅溶胶溶液,40g异丙醇,用0.3mol/L的柠檬酸溶液调节溶液的pH为5.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-3,性质列于表1
对比例3
本对比例说明在合成导向剂过程中改变导向剂陈化条件,仅采用动态陈化的情况。
原料来源同实施例3。
将164.54g高碱偏铝酸钠溶液加入到291.37g水玻璃中,30℃温度下搅拌陈化20小时,最后在搅拌的条件下加入60g去离子水,得到的导向剂最终摩尔比为20Na2O:A12O3:20SiO2:380H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的10%计算。
在室温和高速搅拌的条件下按照导向剂(前述步骤制备)、1092.62g水玻璃、166.31低碱偏铝酸钠溶液、332.87g硫酸铝和479.4g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为4Na2O:A12O3:9SiO2:220H2O。搅拌均匀后,将其装入不锈钢反应釜中,在95℃静态晶化24小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.0,相对结晶度为55.1%,电镜照片显示平均晶粒尺寸为1000nm。
配制浓度为0.5mol/L氯化铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到3.5wt%。得到干燥后的样品在550℃、100%水蒸气表压0.2MPa的条件下水热处理2.5h。量取1升净水并将上述实验所得的样品溶于净水中,快速升温搅拌,温度为90℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和异丙醇,共加入以SiO2计20克的酸性硅溶胶溶液,40g异丙醇,用0.3mol/L的柠檬酸溶液调节溶液的pH为5.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-D-3,性质列于表1
实施例4
将251.76g高碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为40.2g/L,Na2O含量为270g/L,比重为1.323)加入到349.64g水玻璃(中石化股份有限公司催化剂长岭分公司提供,SiO2含量为260.6g/L,Na2O含量为81.6g/L,比重为1.2655,模数为3.3)中,40℃温度下搅拌陈化15小时,然后在15℃温度下静态陈化20小时,最后在搅拌的条件下加入78g去离子水。得到的导向剂最终摩尔比为16Na2O:A12O3:16SiO2:290H2O。
制得导向剂全部用于下述反应混合物的制备。导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的15%计算。
在室温和高速搅拌的条件下按照导向剂(前述步骤制备)、1129.04g水玻璃(同上)、55.90g低碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为194g/L,Na2O含量为286.2g/L,比重为1.413)、514.81g硫酸铝(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为88.9g/L,比重为1.2829)和489.2g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为3Na2O:A12O3:10SiO2:250H2O。搅拌均匀后,将其装入不锈钢反应釜中,在95℃静态晶化36小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.8,相对结晶度为97.6%,电镜照片显示平均晶粒尺寸为100nm。
配制浓度为0.7mol/L氯化铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到4.5wt%。得到干燥后的样品在600℃、100%水蒸气表压0.2MPa的条件下水热处理1h。量取1升净水并将上述实验所得的样品200克溶于净水中,快速升温搅拌,温度为95℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和丙三醇,共加入以SiO2计10克的酸性硅溶胶溶液,20克丙三醇,用0.3mol/L的柠檬酸溶液调节溶液的pH为5.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-4,性质列于表1
对比例4
本对比例说明在制备反应混合物过程中,原料的加入顺序改变的情况。
各原料来源同实施例4。
将251.76g高碱偏铝酸钠溶液加入到349.64g水玻璃中,40℃温度下搅拌陈化15小时,然后在15℃温度下静态陈化20小时,最后在搅拌的条件下加入78g去离子水。得到的导向剂最终摩尔比为16Na2O:A12O3:16SiO2:290H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的15%计算。
在室温和高速搅拌的条件下按照55.90g低碱偏铝酸钠溶液、514.81g硫酸铝、1129.04g水玻璃、导向剂(前述步骤制备)和489.2g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为3Na2O:A12O3:10SiO2:250H2O。搅拌均匀后,将其装入不锈钢反应釜中,在95℃静态晶化36小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.0,相对结晶度为87%,电镜照片显示平均晶粒尺寸为1000nm。
配制浓度为0.7mol/L氯化铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到4.5wt%。得到干燥后的样品在600℃、100%水蒸气表压0.2MPa的条件下水热处理1h。量取1升净水并将上述实验所得的样品200克溶于净水中,快速升温搅拌,温度为95℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和丙三醇,共加入以SiO2计10克的酸性硅溶胶溶液,20克丙三醇,用0.3mol/L的柠檬酸溶液调节溶液的pH为5.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-D-4,性质列于表1
实施例5
将335.69g高碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为40.2g/L,Na2O含量为270g/L,比重为1.323)加入到466.18g水玻璃(中石化股份有限公司催化剂长岭分公司提供,SiO2含量为260.6g/L,Na2O含量为81.6g/L,比重为1.2655,模数为3.3)中,50℃温度下搅拌陈化10小时,然后在20℃温度下静态陈化36小时,最后在搅拌的条件下加入104g去离子水。得到的导向剂最终摩尔比为16Na2O:A12O3:16SiO2:290H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的20%计算。
在室温和高速搅拌的条件下按照导向剂(前述步骤制备)、815.83g水玻璃(同上)、15.29g低碱偏铝酸钠溶液(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为194g/L,Na2O含量为286.2g/L,比重为1.413)、558.48g硫酸铝(中石化股份有限公司催化剂长岭分公司提供,Al2O3含量为88.9g/L,比重为1.2829)和528.7g水的顺序依次加入混料罐中,反应混合物的总投料摩尔比为2.7Na2O:A12O3:8.6SiO2:250H2O。搅拌均匀后,将其装入不锈钢反应釜中,在90℃静态晶化48小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.6,相对结晶度为92.5%,电镜照片显示平均晶粒尺寸为100nm。
配制浓度为0.5mol/L氯化铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到4wt%。得到干燥后的样品在600℃、100%水蒸气表压0.2MPa的条件下水热处理1h。量取1升净水并将上述实验所得的样品200克溶于净水中,快速升温搅拌,温度为100℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和乙二醇,共加入以SiO2计10克的酸性硅溶胶溶液,25克乙二醇,用0.2mol/L的柠檬酸溶液调节溶液的pH为4.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-5,性质列于表1。
对比例5
本对比例说明导向剂的制备依照本发明的过程,但是反应混合物的原料同时加入的情况。
各原料来源同实施例5
将335.69g高碱偏铝酸钠溶液加入到466.18g水玻璃中,50℃温度下搅拌陈化10小时,然后在20℃温度下静态陈化36小时,最后在搅拌的条件下加入104g去离子水,得到的导向剂最终摩尔比为16Na2O:A12O3:16SiO2:290H2O。
制得导向剂全部用于下述反应混合物的制备,导向剂的加入量,按照导向剂中铝元素的摩尔数占总铝元素摩尔数的20%计算。
在室温和高速搅拌的条件下,在混料罐中同时加入导向剂(前述步骤制备)、815.83g水玻璃、15.29g低碱偏铝酸钠溶液、558.48g硫酸铝和528.7g水,反应混合物的总投料摩尔比为2.7Na2O:A12O3:8.6SiO2:250H2O。搅拌均匀后,将其装入不锈钢反应釜中,在90℃静态晶化48小时,然后过滤、洗涤、干燥得NaY分子筛产品。
XRD测得其硅铝比为5.0,相对结晶度为88%,电镜照片显示平均晶粒尺寸为1000nm。
配制浓度为0.5mol/L氯化铵水溶液10升。称取小晶粒NaY分子筛1000克,溶于10升配制好的硝酸铵水溶液中,搅拌转速为300rpm,在90℃下恒温搅拌1小时,然后过滤分子筛。重复上述操作,直到分子筛中Na2O含量的达到4wt%。得到干燥后的样品在600℃、100%水蒸气表压0.2MPa的条件下水热处理1h。量取1升净水并将上述实验所得的样品200克溶于净水中,快速升温搅拌,温度为90℃,搅拌转速为300rpm。迅速向分子筛浆料中加入酸性硅溶胶和乙二醇,共加入以SiO2计10克的酸性硅溶胶溶液,25克乙二醇,用0.2mol/L的柠檬酸溶液调节溶液的pH为4.0,然后恒温恒速搅拌2小时,过滤,干燥,得到产品编号NY-D-5,性质列于表1
由表1中数据可知,本方法制备改性得到的Y型分子筛,具有晶粒小、硅铝比高,结晶保留度高的特点。

Claims (10)

1.一种Y型分子筛的制备改性方法,其特征在于包括如下步骤:(1)制备NaY分子筛;(2)将NaY分子筛经铵交换得到氧化钠的重量含量为2.5-5%的NH4NaY分子筛;(3)在水热条件下处理NH4NaY分子筛;和(4)将NH4NaY分子筛打浆后,加入pH为2-4的硅溶胶和C2-C4的有机醇类物质并用柠檬酸溶液调pH为3-6,在温度为80-120℃下充分混合,再经水洗和干燥得到改性产品;其中,所说的步骤(1)中制备NaY分子筛的过程是在合成NaY分子筛的条件下,将依照导向剂、硅源、铝源和水的顺序依次加入混料罐后得到的混合物A进行水热晶化并回收得到的产物,所说的导向剂是在15~60℃温度及搅拌条件下,将偏铝酸钠向水玻璃中加入,使水玻璃中铝元素的摩尔浓度由零渐升至形成摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2的混合物B,将混合物B在搅拌条件、15~60℃下进行5~48小时,再在静置条件、15~60℃下进行5~48小时,之后再补加水,使最终摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2:(200~400)H2O得到的。
2.按照权利要求1的方法,其中,所说的混合物A的摩尔配比为(2~6)Na2O:A12O3:(8~20)SiO2:(200~400)H2O。
3.按照权利要求1的方法,其中,导向剂中铝元素的摩尔数占混合物A中总铝元素的摩尔数的3~30%。
4.按照权利要求1的方法,其中,所说的水热晶化是在90~100℃下进行15~48小时。
5.按照权利要求1的方法,其中,所说的步骤(2)的铵交换是采用铵离子浓度为0.1-1mol/L的铵盐溶液,在温度为50-100℃,液固重量比为8-15:1的条件下进行。
6.按照权利要求5的方法,其中,所说的铵盐为硝酸铵、硫酸铵、氯化铵和醋酸铵中的一种或多种。
7.按照权利要求1的方法,其中,所说的步骤(3)的水热条件为100%水蒸气、表压0.1-0.2MPa、温度500-650℃,处理时间1-3小时。
8.按照权利要求1的方法,其中,步骤(4)所说的打浆是在常温下进行,液固重量比为3-10:1;所说的pH为2-4的硅溶胶是打浆浆料80-120℃下加入,每100克分子筛加入以SiO2计0.1-10克的硅溶胶。
9.按照权利要求1的方法,其中,步骤(4)中C2-C4的有机醇类物质的加入比例为每100g分子筛1-30g的有机醇类物质。
10.按照权利要求1或9的方法,其中,步骤(4)中所说的C2-C4的有机醇类物质选自丙三醇、乙二醇和异丙醇中的一种或多种。
CN201410213442.4A 2014-05-20 2014-05-20 一种y型分子筛的制备改性方法 Active CN105084388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410213442.4A CN105084388B (zh) 2014-05-20 2014-05-20 一种y型分子筛的制备改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410213442.4A CN105084388B (zh) 2014-05-20 2014-05-20 一种y型分子筛的制备改性方法

Publications (2)

Publication Number Publication Date
CN105084388A CN105084388A (zh) 2015-11-25
CN105084388B true CN105084388B (zh) 2017-05-24

Family

ID=54565844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410213442.4A Active CN105084388B (zh) 2014-05-20 2014-05-20 一种y型分子筛的制备改性方法

Country Status (1)

Country Link
CN (1) CN105084388B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107344721B (zh) * 2016-05-05 2019-05-21 中国石油化工股份有限公司 一种改性y型分子筛及其制备方法和应用
TWI831784B (zh) 2018-05-28 2024-02-11 大陸商中國石油化工科技開發有限公司 表面富鋁的NaY分子篩及其製備方法
CN115722189A (zh) * 2021-08-31 2023-03-03 中国石油化工股份有限公司 一种用于脱除低分子烃中含氧化合物的吸附剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354134A (zh) * 2001-10-19 2002-06-19 中国石油化工股份有限公司 一种小晶粒y型分子筛的合成方法
CN101759198A (zh) * 2008-12-24 2010-06-30 中国石油化工股份有限公司 小晶粒y型分子筛及其制备方法
CN102951655A (zh) * 2012-11-27 2013-03-06 华东师范大学 一种y型分子筛的改性方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1354134A (zh) * 2001-10-19 2002-06-19 中国石油化工股份有限公司 一种小晶粒y型分子筛的合成方法
CN101759198A (zh) * 2008-12-24 2010-06-30 中国石油化工股份有限公司 小晶粒y型分子筛及其制备方法
CN102951655A (zh) * 2012-11-27 2013-03-06 华东师范大学 一种y型分子筛的改性方法

Also Published As

Publication number Publication date
CN105084388A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN102451740B (zh) 一种纳米y型分子筛/无定形硅铝复合材料的制备方法
CN106268919B (zh) 一种含稀土和磷的改性y型分子筛催化剂
CN101723400A (zh) 一种小晶粒y型分子筛及其制备方法
CN102602958B (zh) 一种介孔丝光沸石的制备方法
CN105080589B (zh) 一种含有y型分子筛的催化剂及制备方法
CN100404418C (zh) 一种高硅铝比小晶粒NaY分子筛的制备方法
CN103204515A (zh) 一种高分散沸石分子筛的制备方法
CN102942192A (zh) 一种高分散纳米沸石分子筛的制备方法
CN107265478A (zh) 一种硼改性镁碱沸石分子筛催化剂及其制备方法与应用
CN100443407C (zh) 一种高硅铝比小晶粒NaY分子筛
CN103626203A (zh) 一种纳米zsm-5分子筛的制备
CN101205073B (zh) 含铝的mcm-41分子筛的制备方法
CN104418357A (zh) 一种zsm-35分子筛的制备方法
CN102451745B (zh) 一种含y型分子筛/无定形硅铝的加氢裂化催化剂及制备方法
CN105621449B (zh) 一种NaY型分子筛及其制备方法
CN105084388B (zh) 一种y型分子筛的制备改性方法
US10287172B2 (en) Preparation method for beta zeolite
CN107344721B (zh) 一种改性y型分子筛及其制备方法和应用
CN105080590B (zh) 一种含有小晶粒y型分子筛的催化剂的制备方法
CN106946268B (zh) 一种mor/zsm-35复合分子筛及其合成方法
CN105314651B (zh) 一种小晶粒NaY分子筛的制备方法
CN109205636A (zh) Y/sapo-34/zsm-11/asa多级孔材料的制备方法
CN105084387B (zh) 一种小晶粒NaY分子筛的合成方法
CN105084386B (zh) 一种表面富硅小晶粒y型分子筛及其制备方法
CN100389066C (zh) 一种NaY分子筛的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant