CN104979428B - 一种铜铟镓硫硒纳米晶的合成方法 - Google Patents

一种铜铟镓硫硒纳米晶的合成方法 Download PDF

Info

Publication number
CN104979428B
CN104979428B CN201510290298.9A CN201510290298A CN104979428B CN 104979428 B CN104979428 B CN 104979428B CN 201510290298 A CN201510290298 A CN 201510290298A CN 104979428 B CN104979428 B CN 104979428B
Authority
CN
China
Prior art keywords
selenium
reaction
nanocrystalline
indium gallium
sulphur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510290298.9A
Other languages
English (en)
Other versions
CN104979428A (zh
Inventor
江智渊
徐璐
谢兆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201510290298.9A priority Critical patent/CN104979428B/zh
Publication of CN104979428A publication Critical patent/CN104979428A/zh
Application granted granted Critical
Publication of CN104979428B publication Critical patent/CN104979428B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种铜铟镓硫硒纳米晶的合成方法,涉及一种太阳能电池材料。提供一种工艺步骤简单、禁带宽度可调的铜铟镓硫硒纳米晶的合成方法。1)将氯化亚铜,氯化铟,氯化鎵,硫粉,硒粉与油胺混合,加入乙二硫醇调控硫元素比例,得混合溶液;2)将步骤1)所得混合溶液加热搅拌,抽真空,充氮气,在氮气氛围反应,得深棕色溶液;3)将步骤2)中所得深棕色溶液离心,所得沉淀分别用三氯甲烷和乙醇清洗,即得铜铟镓硫硒纳米晶。反应温度低,反应时间短,合成装置简单,只需要简单的容器即可,合成路线简单,可操作性强,且所用反应物均对环境无污染,反应过程清洁无污染,反应效率高,反应成本低廉,有较大的合成应用前景。

Description

一种铜铟镓硫硒纳米晶的合成方法
技术领域
本发明涉及一种太阳能电池材料,尤其是涉及一种铜铟镓硫硒纳米晶(记为CuIn1-xGax(SySe1-y)2)的合成方法。
背景技术
能源是人类社会生存和发展的基础,当今社会的能源危机已经是刻不容缓的问题。人们在努力寻求新的能量,以解决日益增长的能源需求。太阳能是人类取之不尽,用之不竭的清洁能源。在太阳能的应用中,最广泛及最有活力的领域是光伏发电,其工作原理就是利用半导体的光生伏特效应将太阳能转变成可供人类广泛应用的电能。从1800年发现光伏效应太阳能电池材料也一直在发展。历经第一代单晶硅和多晶硅太阳能电池,目前也是产业化最广泛的太阳能电池。第二代太阳能电池是基于薄膜技术的太阳能电池,薄膜技术的应用能较大地降低成本也能大面积进行产业化生产。目前,薄膜太阳能电池主要有非晶硅和多晶硅薄膜电池,碲化镉以及CuInSe2薄膜电池。
I-III-VI2半导体纳米晶因为具有优秀的光电属性而成为薄膜太阳能电池研究中最具潜力的材料之一,基于半导体纳米晶或量子点的新型太阳能电池中,以胶态纳米晶为“墨水”来制备光伏层是一个重要的方向。其中,以铜铟镓硒(CIGS)为代表的I-III-VI2黄铜矿型化合物纳米晶尤其引人注目,成为科学家们研究无机半导体新型太阳能电池的理想体系(Q.J.Guo,S.J.Kim,M.Kar,W.N.Shafarman,R.W.Birkmire,E.A.Stach,R.Agrawal,H.W.Hillhouse.Nano Lett.,2008,8,2982.):1)I-III-VI2半导体光电转换效率高,性能稳定、抗辐射能力强,不存在光致衰退问题;2)I-III-VI2半导体已在薄膜太阳能电池中取得不俗的应用,CIGS薄膜电池实验室最高效率为20.8%,不低于多晶硅薄膜电池的20.4%。成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一;3)不同I-III-VI2半导体的带宽变化范围大,如铜铟硒(CuInSe2)为1.04eV,铜镓硒(CuGaSe2)为1.68eV,铜镓硫(CuGaS2)为2.43eV,由于结构的相似还可通过组分改变进一步精细调节带宽,如CuIn1-xGax(SySe1-y)2(CIGSSe)的禁带宽度可以在0.98-2.40之间进行调节,为不同太阳能电池的设计提供优越条件。另一方面,当物质尺寸在纳米级时,其一系列的化学物理性质也会随着改变。所以当将I-III-VI2半导体纳米晶的尺寸控制在纳米大小时,其禁带宽度也会随之改变,以表现出更优异的光吸收性质,最终提高太阳能电池材料光电转换效率达到更有效地利用太阳光。所以如何制备出禁带宽度可控的I-III-VI2半导体纳米晶是一项非常有意义的工作。
发明内容
本发明的目的在于提供一种工艺步骤简单、禁带宽度可调的铜铟镓硫硒纳米晶的合成方法。
所述一种铜铟镓硫硒纳米晶的合成方法,包括以下步骤:
1)将氯化亚铜,氯化铟,氯化鎵,硫粉,硒粉与油胺混合,加入乙二硫醇调控硫元素比例,得混合溶液;
2)将步骤1)所得混合溶液加热搅拌,抽真空,充氮气,在氮气氛围反应,得深棕色溶液;
3)将步骤2)中所得深棕色溶液离心,所得沉淀分别用三氯甲烷和乙醇清洗,即得铜铟镓硫硒纳米晶。
在步骤1)中,按摩尔比,氯化铟∶氯化鎵=1∶8~8∶1;硒粉∶硫粉含量=1∶8~8∶1;按硫元素含量摩尔比,乙二硫醇∶硫粉=1∶15~1∶5。
步骤2)中,所述反应最好是先在130℃下反应1h,随后将温度升高到240℃下反应1.5h。
所述抽真空、充氮气的温度条件最好为80℃,所述抽真空、充氮气最好反复3次。
步骤3)中,所述清洗的次数一般为3次。
与现有技术比较,本发明的突出优点在于:
1)加入乙二硫醇可有效调控各元素比例,这是因为乙二硫醇属液态,相比于固态反应物更易于与其他反应物充分反应,且液态乙二硫醇的加入使晶体更易成核,得到的晶粒更小;另外,通过加入乙二硫醇可以有效地调控CuIn1-xGax(SySe1-y)2中各元素的比例,从而调节它们的禁带宽度,这样可以适应不同太阳能电池制备的需求。且液态乙二硫醇的加入可以调控纳米晶颗粒粒径大小在10nm左右。2)反应温度比相对于传统合成CuInSe2纳米晶的反应温度260℃甚至280℃要低。3)反应时间也比传统方法要缩短很多。4)本发明不仅采用的合成装置简单,只需要简单的容器即可,合成路线简单,可操作性强,而且所用反应物均对环境无污染,反应过程清洁无污染,反应效率高,反应成本低廉,有较大的合成应用前景。
附图说明
图1为本发明采用油胺为反应溶剂所得的CuIn0.5Ga0.5(S0.5Se0.5)2纳米晶的TEM图。
图2为本发明采用油胺为反应溶剂所得的CuIn0.3Ga0.7(S0.7Se0.3)2纳米晶的TEM图。
图3为本发明采用油胺为反应溶剂所得的CuIn0.5Ga0.5(S0.5Se0.5)2纳米晶的EDX图。在图3中,横坐标为能量/KeV;显示有Cu,In,Ga,S,Se。
图4为本发明采用油胺为反应溶剂所得的不同比例的CuIn1-xGax(SySe1-y)2的XRD图,图4中,横坐标为衍射角2Theta/°,纵坐标为衍射强度Intensity;衍射峰从左至右分别111,220,311,400,331,422和511。曲线a为CuIn0.2Ga0.8(S0.8Se0.2)2;曲线b为CuIn0.3Ga0.7(S0.7Se0.3)2;曲线c为CuIn0.5Ga0.5(S0.5Se0.5)2;曲线d为CuInSe2
具体实施方式
下面实施例将结合附图对本发明作进一步说明。
由图1与图2可见,本发明制备的CuIn1-xGax(SySe1-y)2纳米晶颗粒较小,颗粒大小相对较为均匀,颗粒形貌基本接近于圆形颗粒。纳米晶颗粒平均约为5到10nm之间。
由图3可见,可以证明Cu,In,Ga,S,Se的存在,且可判断产物各元素比例与投料比接近。
由图4可见,可以看出得到的CuIn1-xGax(SySe1-y)2为纯相,没有杂质峰存在。
下面给出本发明的具体实施例:
实施例1
(1)取250L三颈烧瓶,在手套箱中称取0.2475g CuCl,0.1105g InCl3,0.3520gGaCl3,0.0640g S粉,0.0395g Se粉并量取50mL油胺,16.8μL乙二硫醇,加入三颈烧瓶中。
(3)安装反应装置:三颈瓶的一边侧口用橡胶塞封住,另一边侧管连接玻璃套管内置加热套的温度探头,以测量反应液温度。中口连接回流冷凝管,冷凝管上面连接真空线管用以抽真空和通氮气。最后将三颈瓶放置于磁力加热搅拌器中。
(4)在室温下将体系抽真空然后通入氮气并重复操作3次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后使体系处于氮气氛的保护中。
(5)边磁力搅拌边升温至80℃再次抽真空通氮气重复操作2次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后形成深棕色的溶液。
(6)边磁力搅拌边升温至130℃维持加热搅拌反应1h。
(7)继续搅拌并迅速升温至240℃维持加热搅拌反应1.5h。
(8)降温至100℃,加入10mL氯仿使反应停止,并加入5mL无水乙醇,在8000rpm下离心10min,去除上清液,将沉淀分散在10mL氯仿中,在7000rpm下离心5min,取上清液,加入0.2mL油胺,从而使纳米晶分散均匀,为了除去多余的有机物,再加入5mL乙醇,在8000rpm下离心10min,再将下层沉淀分散在10mL氯仿中,如此反复3次即得到较纯净的CuIn1-xGax(SySe1-y)2纳米晶。
参见图1~4,从图1与图2可以看出得到的纳米晶颗粒大小在5~10nm之间;由图3的EDX图可以得到制备的CuIn1-xGax(SySe1-y)2纳米晶中各元素比例与投料比匹配,说明各元素的比例得到了有效调控;由图4的XRD图可看出得到的CuIn1-xGax(SySe1-y)2均为无杂峰,说明得到的产物均为纯相。
实施例2
(1)取50mL三颈烧瓶,在手套箱中称取0.0495g CuCl,0.0553g InCl3,0.0440gGaCl3,0.0160g S粉,0.0395g Se粉并量取10mL油胺,2.1μL乙二硫醇,加入三颈烧瓶中。
(3)安装反应装置:三颈瓶的一边侧口用橡胶塞封住,另一边侧管连接玻璃套管内置加热套的温度探头,以测量反应液温度。中口连接回流冷凝管,冷凝管上面连接真空线管用以抽真空和通氮气。最后将三颈瓶放置于磁力加热搅拌器中。
(4)在室温下将体系抽真空然后通入氮气并重复操作3次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后使体系处于氮气氛的保护中。
(5)边磁力搅拌边升温至80℃再次抽真空通氮气重复操作2次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后形成深棕色的溶液。
(6)边磁力搅拌边升温至130℃维持加热搅拌反应1h。
(7)继续搅拌并迅速升温至240℃维持加热搅拌反应1.5h。
(8)降温至100℃,加入10mL氯仿使反应停止,并加入5mL无水乙醇,在8000rpm下离心10min,去除上清液,将沉淀分散在10mL氯仿中,在7000rpm下离心5min,取上清液,加入0.2mL油胺,从而使纳米晶分散均匀,为了除去多余的有机物,再加入5mL乙醇,在8000rpm下离心10min,再将下层沉淀分散在10mL氯仿中,如此反复3次即得到较纯净的CuIn1-xGax(SySe1-y)2纳米晶。
实施例3
(1)取50mL三颈烧瓶,在手套箱中称取0.0495g CuCl,0.0443g InCl3,0.0528gGaCl3,0.0096g S粉,0.0158g Se粉并量取10mL油胺,2.52μL乙二硫醇,加入三颈烧瓶中。
(3)安装反应装置:三颈瓶的一边侧口用橡胶塞封住,另一边侧管连接玻璃套管内置加热套的温度探头,以测量反应液温度。中口连接回流冷凝管,冷凝管上面连接真空线管用以抽真空和通氮气。最后将三颈瓶放置于磁力加热搅拌器中。
(4)在室温下将体系抽真空然后通入氮气并重复操作3次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后使体系处于氮气氛的保护中。
(5)边磁力搅拌边升温至80℃再次抽真空通氮气重复操作2次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后形成深棕色的溶液。
(6)边磁力搅拌边升温至130℃维持加热搅拌反应1h。
(7)继续搅拌并迅速升温至240℃维持加热搅拌反应1.5h。
(8)降温至100℃,加入10mL氯仿使反应停止,并加入5mL无水乙醇,在8000rpm下离心10min,去除上清液,将沉淀分散在10mL氯仿中,在7000rpm下离心5min,取上清液,加入0.2mL油胺,从而使纳米晶分散均匀,为了除去多余的有机物,再加入5mL乙醇,在8000rpm下离心10min,再将下层沉淀分散在10mL氯仿中,如此反复3次即得到较纯净的CuIn1-xGax(SySe1-y)2纳米晶。
实施例4
(1)取50mL三颈烧瓶,在手套箱中称取0.0495g CuCl,0.0332g InCl3,0.0616gGaCl3,0.0112g S粉,0.0118g Se粉并量取10mL油胺,2.94μL乙二硫醇,加入三颈烧瓶中。
(3)安装反应装置:三颈瓶的一边侧口用橡胶塞封住,另一边侧管连接玻璃套管内置加热套的温度探头,以测量反应液温度。中口连接回流冷凝管,冷凝管上面连接真空线管用以抽真空和通氮气。最后将三颈瓶放置于磁力加热搅拌器中。
(4)在室温下将体系抽真空然后通入氮气并重复操作3次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后使体系处于氮气氛的保护中。
(5)边磁力搅拌边升温至80℃再次抽真空通氮气重复操作2次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后形成深棕色的溶液。
(6)边磁力搅拌边升温至130℃维持加热搅拌反应1h。
(7)继续搅拌并迅速升温至240℃维持加热搅拌反应1.5h。
(8)降温至100℃,加入10mL氯仿使反应停止,并加入5mL无水乙醇,在8000rpm下离心10min,去除上清液,将沉淀分散在10mL氯仿中,在7000rpm下离心5min,取上清液,加入0.2mL油胺,从而使纳米晶分散均匀,为了除去多余的有机物,再加入5mL乙醇,在8000rpm下离心10min,再将下层沉淀分散在10mL氯仿中,如此反复3次即得到较纯净的CuIn1-xGax(SySe1-y)2纳米晶。
实施例5
(1)取50mL三颈烧瓶,在手套箱中称取0.0495g CuCl,0.0553g InCl3,0.0440gGaCl3,0.0160g S粉,0.0395g Se粉并量取10mL油胺,2.1μL乙二硫醇,加入三颈烧瓶中。
(3)安装反应装置:三颈瓶的一边侧口用橡胶塞封住,另一边侧管连接玻璃套管内置加热套的温度探头,以测量反应液温度。中口连接回流冷凝管,冷凝管上面连接真空线管用以抽真空和通氮气。最后将三颈瓶放置于磁力加热搅拌器中。
(4)在室温下将体系抽真空然后通入氮气并重复操作3次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后使体系处于氮气氛的保护中。
(5)边磁力搅拌边升温至80℃再次抽真空通氮气重复操作2次,每次抽真空时间至少10min,使体系真空度达到-0.1MPa,最后形成深棕色的溶液。
(6)边磁力搅拌边升温至130℃维持加热搅拌反应1h。
(7)继续搅拌并迅速升温至240℃维持加热搅拌反应1.5h。
(8)降温至100℃,加入10mL氯仿使反应停止,并加入5mL无水乙醇,在8000rpm下离心10min,去除上清液,将沉淀分散在10mL氯仿中,在7000rpm下离心5min,取上清液,加入0.2mL油胺,从而使纳米晶分散均匀,为了除去多余的有机物,再加入5mL乙醇,在8000rpm下离心10min,再将下层沉淀分散在10mL氯仿中,如此反复3次即得到较纯净的CuIn1-xGax(SySe1-y)2纳米晶。
当增加反应容器大小,扩大投料量的时候仍然能得到比例可控的CuIn1-xGax(SySe1-y)2纳米晶,说明这一方法是实际可行的。
本发明的主要优点在于:1)加入液态的乙二硫醇可有效调控各元素比例,且可以调控纳米晶颗粒粒径大小在10nm左右,相比于常见的全固态反应物有一定优势(可以使反应进行的更充分)。2)反应温度相比于传统合成CuInSe2纳米晶的反应温度260℃甚至280℃要低。3)反应时间也比传统方法中的4h要缩短很多。4)本发明不仅采用的合成装置简单,只需要简单的容器(三颈烧瓶、双排管、电热套)即可,合成路线简单,可操作性强,反应效率高(得到的产物比例与投料比相近),反应成本低廉,有较大的合成应用前景,且可以适应不同太阳能电池制备的需求。

Claims (4)

1.一种铜铟镓硫硒纳米晶的合成方法,其特征在于,包括以下步骤:
1)将氯化亚铜,氯化铟,氯化鎵,硫粉,硒粉与油胺混合,加入乙二硫醇调控硫元素比例,得混合溶液;按摩尔比,氯化铟∶氯化鎵=1∶8~8∶1;硒粉∶硫粉含量=1∶8~8∶1;按硫元素含量摩尔比,乙二硫醇∶硫粉=1∶15~1∶5;
2)将步骤1)所得混合溶液加热搅拌,抽真空,充氮气,在氮气氛围反应,得深棕色溶液;
3)将步骤2)中所得深棕色溶液离心,所得沉淀分别用三氯甲烷和乙醇清洗,即得铜铟镓硫硒纳米晶。
2.如权利要求1所述一种铜铟镓硫硒纳米晶的合成方法,其特征在于,步骤2)中,所述反应是先在130℃下反应1h,随后将温度升高到240℃下反应1.5h。
3.如权利要求1所述一种铜铟镓硫硒纳米晶的合成方法,其特征在于,步骤2)中,所述抽真空、充氮气的温度条件为80℃,所述抽真空、充氮气反复3次。
4.如权利要求1所述一种铜铟镓硫硒纳米晶的合成方法,其特征在于,步骤3)中,所述清洗的次数为3次。
CN201510290298.9A 2015-05-31 2015-05-31 一种铜铟镓硫硒纳米晶的合成方法 Expired - Fee Related CN104979428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510290298.9A CN104979428B (zh) 2015-05-31 2015-05-31 一种铜铟镓硫硒纳米晶的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510290298.9A CN104979428B (zh) 2015-05-31 2015-05-31 一种铜铟镓硫硒纳米晶的合成方法

Publications (2)

Publication Number Publication Date
CN104979428A CN104979428A (zh) 2015-10-14
CN104979428B true CN104979428B (zh) 2017-03-08

Family

ID=54275752

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510290298.9A Expired - Fee Related CN104979428B (zh) 2015-05-31 2015-05-31 一种铜铟镓硫硒纳米晶的合成方法

Country Status (1)

Country Link
CN (1) CN104979428B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191986B (zh) * 2016-07-13 2018-09-07 中国科学技术大学 液相回流一步法可控制备正交相AgIn1-xGaxSe2单晶纳米颗粒的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698472B (zh) * 2009-11-03 2011-04-06 厦门大学 一种铜铟硒纳米晶的合成方法
CN102126708B (zh) * 2010-01-20 2013-03-27 电子科技大学 一种铜铟镓硒硫纳米粉末材料的制备方法
CN103359776A (zh) * 2012-12-29 2013-10-23 尚越光电科技有限公司 一种黄铜矿结构纳米粒子的制备方法
CN103334081B (zh) * 2013-06-07 2016-05-18 徐东 一种低温硒化制备cigs薄膜的方法
US9960314B2 (en) * 2013-09-13 2018-05-01 Nanoco Technologies Ltd. Inorganic salt-nanoparticle ink for thin film photovoltaic devices and related methods

Also Published As

Publication number Publication date
CN104979428A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
Asim et al. A review on the role of materials science in solar cells
Razykov et al. Solar photovoltaic electricity: Current status and future prospects
Sagadevan Recent trends on nanostructures based solar energy applications: a review
CN101698472B (zh) 一种铜铟硒纳米晶的合成方法
Makhlouf et al. Study of Cu2O\ZnO nanowires heterojunction designed by combining electrodeposition and atomic layer deposition
Zhang et al. CuInSe2 nanocrystals/CdS quantum dots/ZnO nanowire arrays heterojunction for photovoltaic applications
CN103000381A (zh) 一种制备ZnO/CuInS2核壳结构纳米棒薄膜的方法
CN101804971A (zh) 一种铜铟硒纳米晶材料的制备方法
Li et al. A facile arrested precipitation method for synthesis of pure wurtzite Cu2ZnSnS4 nanocrystals using thiourea as a sulfur source
Dallaev et al. Overview of the current state of flexible solar panels and photovoltaic materials
CN104979428B (zh) 一种铜铟镓硫硒纳米晶的合成方法
CN102500758A (zh) 一种金与铜铟硒的核壳纳米晶及其制备方法
CN100449793C (zh) 一种铜铟硒CuInSe2太阳能电池及其制备方法
CN102496639A (zh) 等离激元增强型中间带太阳能电池及其光电转换薄膜材料
Tiwari et al. Advanced energy materials
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN103668361B (zh) 一种用于光伏发电***的光伏电池的铜铟锌硒薄膜的制备方法
CN102437227A (zh) 一种含有InAs量子点结构的多结太阳电池
CN107059131A (zh) 一种半导体纳米晶及其制备方法与应用
Deb Recent developments in high-efficiency PV cells
Nahar et al. Effect of Cell Material on the performance of PV System
Guo et al. A green synthesis of CISe nanocrystal ink and preparation of quantum dot sensitized solar cells
CN102923763B (zh) 离子交换法合成铜铟硒纳米片的方法
CN102543465B (zh) CdS单晶纳米线太阳能电池及其制备方法
Slaoui Inorganic materials for photovoltaics: Status and futures challenges

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170308