CN104823373B - 用于使至少两个转换器同步的设备 - Google Patents

用于使至少两个转换器同步的设备 Download PDF

Info

Publication number
CN104823373B
CN104823373B CN201380062987.3A CN201380062987A CN104823373B CN 104823373 B CN104823373 B CN 104823373B CN 201380062987 A CN201380062987 A CN 201380062987A CN 104823373 B CN104823373 B CN 104823373B
Authority
CN
China
Prior art keywords
converter
equipment
signal
synchronizing signal
synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380062987.3A
Other languages
English (en)
Other versions
CN104823373A (zh
Inventor
B·布克利
E·勒克吕克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Advances Co
Original Assignee
Technology Advances Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Advances Co filed Critical Technology Advances Co
Publication of CN104823373A publication Critical patent/CN104823373A/zh
Application granted granted Critical
Publication of CN104823373B publication Critical patent/CN104823373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1563Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators without using an external clock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种用于使至少两个DC/DC转换器同步的设备(3)。其特征在于,所述设备包括;用于接收由转换器中的每个生成的切换信号的接收器件(21A、21B、23A、23B);用于检测接收到的切换信号的跃迁类型的器件(25);用于当检测到跃迁时,生成同步信号的器件(27);以及,用于将同步信号供应到转换器中的一个并且被配置为每当检测到跃迁,将同步信号以连续的顺序供应到不同的转换器的器件(27、Sl、S2)。

Description

用于使至少两个转换器同步的设备
本发明要求于2012年10月2日提交的法国申请号1259318的优先权,通过引用将其内容(文本、附图和权利要求)并入本文。
技术领域
本发明总体上涉及一种用于使至少两个转换器同步的设备,以及更具体地,一种用于使车辆的至少两个变频电压降压/升压(DC/DC)电流转换器同步的设备。
背景技术
在汽车工业中的现有的交错多相位转换器以固定频率运行(例如,每相位150kHz)。然而,在狭窄射频谱上存在传导和辐射发射,并且滤波器是必要的以满足车辆部件的所需的EMI标准。
另外,以固定频率操作的转换器不能维持超过50%的占空比的调节稳定性,并且这限制转换器的功率输出部。
另外,这些固定频率交错转换器原理上要求最小控制占空比(例如1%),以维持输出电压的锁相环稳定性。由此,该原理涉及消耗至少几安培的负载电流,其意味着较差的性能。
变频转换器很难交错。以不同频率操作的若干转换器的同步操作很难实施,这是因为,即当在频率的扩展范围上要求同步时,其要求复杂***。同步通常要求数字设备在每个时期计算每个转换器的精确的同步时刻。一般,操作频率范围非常有限。
此外,在所述设备故障的情况下,同步设备通常生成所有转换器的总关机。
文献US7933132描述了包括多个变频转换器的***,与每个转换器相关联以使每个转换器的相同频率的操作同步的同步电路,以及用于使同步电路的操作同步的控制设备。
发明内容
本发明的目的是解决以上提到的问题,以及即,提供一种允许在转换器的整个操作频率范围上使至少两个变频电压升压/降压DC/DC电流转换器的操作交错和同步的同步设备。
为此,本发明的第一方面涉及一种用于使至少两个DC/DC电流转换器同步的设备,通过事实其包括:
●用于接收由转换器中的每个生成的切换信号的器件;
●用于检测来自接收到的切换信号的跃迁类型的器件;
●用于当检测到跃迁时生成同步信号的器件;以及
●用于将同步信号递送到转换器中的一个并且被配置为每当检测到跃迁,将同步信号按顺序递送到不同转换器的器件。
这样的同步设备在转换器的整个操作频率范围上使多个DC/DC变频转换器的操作同步。降压或升压电压转换器能够交错操作,不管转换器的操作频率(例如,在4kHz到40kHz的范围)。另外,同步故障不引起所有转换器的被迫停止。并且其允许在滤波能力中减少纹波电流。
在非常有利的方式中,其也包括能够将同步信号提供到预定转换器的用于同步的器件。
特别感兴趣的实现方式在于这样的事实:同步起动器器件包括用于接收流过在转换器之间的转换器的电感的电流值的器件,和当所述电流值达到预定值时生成起动器信号的器件。这允许同步的良好起动。
在有利的方式中,同步的起动器器件包括用于接收表示流过在转换器之间的转换器电感的电流的电压的器件,和当所述电流值达到预定值时生成起动器信号的器件。
在有利的方式中,接收器件包括微分电路,所述微分电路用于处理从每个转换器接收的切换信号。
在非常有利的方式中,接收器件包括整形电路,所述整形电路用于处理从每个转换器接收的切换信号。
在非常有利的方式中,检测切换信号的跃迁类型的检测器件包括或电路。
在非常有利的方式中,当检测到跃迁时用于生成同步信号的器件包括D触发器。
在特别感兴趣的实现方式中,转换器是变频转换器。
作为第二部分,本发明涉及一种由上述同步设备组成的***,至少两个交错电压升压转换器或至少两个交错电压降压转换器,以及与每个转换器相关联的加法器,所述加法器用于将同步信号添加到控制信号,所述控制信号被递送到转换器。
作为第三部分,本发明涉及一种包括上述同步设备或上述***的机动车辆。
附图说明
当阅读本发明的实施方法的以下详细描述时,本发明的其他特征和优点将变得更显而易见,所述本发明的实施方法被提供作为非限制范例,并通过附图进行图示,其中:
●图1图示了根据本发明的包括同步设备和两个电压降压转换器的***;
●图2图示了根据本发明的同步设备;
●图3图示了根据本发明的包括同步设备和两个电压降压转换器的***的实施范例;
●图4图示了流过在图1中图示的***的每个电压降压转换器的电感的电流的同步演变;
●图5图示了在图1中图示的***的输出电容器中的有效电流;
●图6图示了DC/DC电压降压转换器的同步故障的影响;
●图7图示了在2ms期间转换器同步故障的影响;
●图8图示了根据本发明的包括同步设备和两个电压升压转换器的***;
●图9图示了根据本发明的包括同步设备和两个电压升压转换器的***的实施范例;
●图10图示了流过在图8中图示的***的每个电压降压转换器的电感的电流的同步演变;
●图11图示了在图8中图示的***的输出电容器中的有效电流;
●图12图示了迟滞信号、Q和Qbarre输出部值、L1电感的值、L2电感的值和当L1电感值等于L2电感值时L1、L2电感中的电流;
●图13和图14示出了电感分量的+50%(自切换)的偏差不引起同步停止;以及
●图15和图16示出了电感分量的-50%的偏差不引起同步停止。
具体实施方式
图1图示了根据本发明的包括同步设备3和两个变频电压降压转换器5A、5B的***1。在电流模式中调节每个转换器5。
每个转换器5包括:电感7;二极管9;开关11;发电机13(例如迟滞比较器),其用于生成切换信号以控制开关11,以便生成通过电感7的电流;以及,控制器15,其将非反相输入部提供到迟滞比较器,流过电感7的电流的VREG调节电压。
在图1中图示的实施方法中,仅仅具有一个调节器15,并且转换器5A、5B共享相同的调节器15。
每个转换器5A、5B包括器件17,以将表示流过电感7A和电感7B的IL1和IL2电流的VL1电压和VL2电压(IL1和IL2电流的图像)分别提供到迟滞比较器13A的反相输入部和迟滞比较器13B的反相输入部。器件17包括电阻R,以将流过电感7A、7B的IL1和IL2电流的采样转换为电压VL1、VL2
***1也包括滤波电容器C1。
如图1中图示的,转换器5A和5B通过输入端E被连接到第一电能存储设备ST1,通过输出端S被连接到第二电能存储设备ST2。电能存储设备ST1和ST2被连接到接地设备M。第一能量存储设备ST1是电池,诸如电化学电池,并且第二能量存储设备ST2是超级电容器或电池或负载。
每个开关11A、11B在一侧被电连接到输入端E,并且在另一侧以串联方式被连接到电感7A、7B,其继而在另一侧被连接到输出端S。每个二极管9A、9B在阴极侧被电连接在开关和电感之间,并且每个二极管9A、9B在阳极侧被电连接到接地设备M。迟滞比较器13A被电连接到开关11A来传送允许开关11A关闭和打开的切换信号,以在电感7A中生成电流。迟滞比较器13B被电连接到开关11B来传送允许开关11B关闭和打开的切换信号,以在电感7B中生成电流。
迟滞比较器13A在其反相输入部处接收表示流过电感7A的IL1电流的VL1电压,并且在其非反相输入部处接收由调节器15提供的VREG调节电压。迟滞比较器13B在其反相输入部处接收表示流过电感7B的IL2电流的VL2电压,并且在其非反相输入部处接收由调节器15提供的VREG调节电压。
控制器15能够接收来自转换器(反馈)的Vout输出电压中的反馈电压信号,和设置点信号Vconsigne。控制器15能够根据Vout输出电压值并且根据设置点信号Vconsigne值确定VREG电压调节值。VREG电压调节同时被供应到迟滞比较器13A和迟滞比较器13B,并且以VREG电压调节值调节流过电感7A、7B的电流。
滤波电容器C1在一侧被电连接在电容器5A的电感7A和输出端S之间,并且在另一侧被电连接到接地设备M。
双相***1也包括加法器19A、19B,其与每个转换器5A、5B相关联。每个加法器19A、19B能够将由同步设备3递送的同步信号添加到由控制器15供应的VREG电压调节值。加法器19A能够将结果递送到迟滞比较器13A的非反相输入部,并且加法器19B能够将结果递送到迟滞比较器13B的非反相输入部。
在图2中示出了根据本发明的同步设备3的详细图示。
同步设备3能够在第一输入端b1处接收来自迟滞比较器13A的切换信号,并且在第二输入端b2处接收来自迟滞比较器13B的切换信号。
同步设备3包括接收器件,其接收由转换器中的每个生成的切换信号。接收器件包括:微分电路21A和整形电路23A,其用于接收和处理由迟滞比较器13A递送的切换信号;以及,微分电路21B和整形电路23B,其用于接收和处理由迟滞比较器13B递送的切换信号。
同步设备3也包括检测接收到的切换信号的跃迁类型的器件。检测跃迁类型的器件包括或电路25。
微分电路21A在一侧被连接到第一输入端b1,并且在另一侧被连接到整形电路23A。整形电路23A也被连接到或电路的输入端。微分电路21B在一侧被连接到第一输入端b2,并且在另一侧被连接到整形电路23B。整形电路23B被连接到或电路的其他输入端。
同步设备3也包括,当检测到跃迁时用于生成同步信号的器件,以及将同步信号递送到转换器5A、5B中的一个的器件。
当检测到跃迁时用于生成同步信号的器件包括D 27触发器。
或电路的输出部被连接到D触发器的CLK时钟输入部。D触发器的Q输出部被连接到电阻R2(例如,200kΩ),并且D触发器Q(Qbarre)补充输出部被连接到电阻R1(例如,200kΩ)。D触发器的其他输入部D被连接到Q(Qbarre)补充输出部和电阻R1。
电阻R1也被连接到第一输出端S1,并且电阻R2被连接到设备3的第二输出端S2。
每当CLK时钟输入部接收来自或电路的有源信号,D触发器能够交替地生成到输出部Q的同步信号,和到Q(Qbarre)补充输出部的同步信号。
将同步信号递送到转换器5A、5B中的一个的器件包括D触发器,电阻R1被连接到第一输出端S1,并且电阻R1被连接到第二输出端S2。
同步设备3接收来自每个转换器5A、5B的输出切换信号作为输入。切换信号是脉宽调制信号(PWM),并且通过所述信号的占空比确定在电感7A、7B中生成的电流的强度。
通过微分电路21A并且通过整形电路23A处理来自比较器13A的输出切换信号的每个跃迁,并且将其供应到或电路的输入部。通过微分电路21B并且通过整形电路23B处理来自比较器13B的输出切换信号的每个跃迁,并且将其供应到或电路的其他输入部。
或电路25仅仅考虑正跃迁,并且将其供应到D触发器的CLK时钟输入部。在D触发器的CLK时钟输入部从或电路接收到的每个正跃迁处,D触发器使Q和Qbarre输出部状态交替。在Q和Qbarre输出部中交替地产生同步信号(例如,+5V的信号)。由此,每当或电路检测到正跃迁,在不同转换器(通过电阻R1、R2)并且以连续的顺序(例如,5A、5B、5A、5B...)提供同步信号(如果***包括三个转换器5A、5B和5C,那么顺序将是5A、5B、5C、5A、5B、5C...)。
同步信号通过电阻R1或R2被供应到加法器19A或加法器19B。加法器19A或19B将VREG电压调节值添加到同步信号(例如,+290mV的电压)。结果被递送到迟滞比较器的非反相输入部以改变迟滞比较器的幅度。
0V的电压被供应到另一个加法器,并且被连接到另一个加法器的迟滞比较器仅仅接收在其非反相输入部处的VREG电压调节值。
当通过或电路检测到正跃迁时,将同步信号交替地供应到加法器19A和加法器19B以改变迟滞比较器的幅度允许使转换器5A和5B的操作同步。
同步设备3也包括同步起动器设备31,其能够向预定转换器提供同步信号。
同步起动器设备31包括比较器32、线性电流/电压增益转换器R和整形电路33,所述整形电路33能够防止两个转换器5A、5B的同时同步起动,所述整形电路33在一侧被连接到比较器32的非反相输入部并且在另一侧通过线性电流/电压增益转换器R被连接到输入端b3。设备31也包括VREF电压参考源(例如,等于VREG电压的10%的电压),所述VREF电压参考源被连接到比较器32的反相输入部。比较器32的输出部被连接到D触发器的CLR复位输入部。
设备31确保同步的适当起动。当给转换器5A或5B或***1供能时,输入端b3接收分别流过电感7A或电感7B的电流IL1或IL2的值(电流IL1或IL2的图像)。
比较器32将电压VL1或VL2的值与VREF电压参考值进行比较。电流IL1或IL2的高值的情况下,比较器32生成复位脉冲,并且向D触发器提供该起动器信号。当D触发器接收复位脉冲时,其能够向预定点(例如,S1)提供同步信号。由此同步设备3的输出S1在正电压(例如,+290mV)处被初始化,以及输出S2在零电压处被初始化。
然后,如上所述,当或电路检测到正跃迁时,设备3将同步信号提供到输出部S2(以及然后到输出部S1、S2、S1、S2...)。
图3图示了***1的实施范例。
图4示出了流过电感7A的电流IL1的值和流过电感7B的电流IL2的值。图4示出了使电流IL1和IL2的生成同步,并且***1提供稳定输出电压VOUT并且加载能量存储设备ST2直到请求的12V值。图5示出了在输出电容器ST2中的有效3A功率。
图6图示了电压降压DC/DC转换器的同步故障的影响。在中断期间所有转换器并未完全停止,并且输出电容ST2中的有效功率被加倍(6A)。图7图示了在2ms期间的同步故障。两个降压转换器在中断期间操作,没有交错。在故障消失之后,在延迟(在图7中0.6ms)之后转换器使它们自己同步。
本发明也应用到***100,所述***100由同步设备3和如图8中图示的电压升压DC/DC转换器组成。同步设备与在图2中示出和以上所述的同步设备相同。
电压升压DC/DC转换器不同于电压降压转换器01(如图1中图示的),因为电感7A、7B在一侧被电连接到输入端E,并且在另一侧以串联方式与二极管9A、9B的阳极侧电连接。二极管9A、9B的阴极侧被连接到输出端S。开关11A、11B在一侧被电连接在二极管9A、9B和电感7A、7B之间,并且在另一侧被电连接到接地设备M。
图9图示了包括同步设备3和电压升压DC/DC转换器的***100的实施范例。
图10图示了流过电感7A的电流IL1的值和流过电感7B的电流IL2的值。图10示出了电流IL1和IL2的生成被同步,并且***100提供稳定VOUT输出电压直到要求的13V值。图11示出了在输出电容器ST2中的有效电流。
图12示出了来自迟滞的信号,Q和Qbarre输出值、电感L1值、电感L2值,以及当电感L1值等于电感L2值时在电感L1、L2中的电流。
图13和图14图示了来自迟滞的信号,Q和Qbarre输出值、电感L1值、电感L2值,以及在电感L1与电感L2(L2=150%L1)的偏差期间在电感L1、L2中的电流。这些图示出了电感分量的+50%的偏差(自切换)不引起同步故障。
图15和图16图示了来自迟滞的信号,Q和Qbarre输出部值、电感L1值、电感L2值,以及在电感L1与电感L2(L1L2=-150%)的偏差期间在电感L1、L2中的电流。这些图示出了电感分量的-50%偏差不引起同步故障。
由此,本发明提供一种遍及转换器的整个操作频率范围用于使多个变频DC/DC转换器的操作同步的同步设备。降压或升压电压转换器能够交错操作,不管转换器的工作频率(例如,在4kHz到40kHz的范围)。另外,同步故障不引起所有转换器的被迫停止。然后它们在它们自己相应的频率上操作。另外,电感分量的强烈异常(+1-50%)(自切换)不引起同步停止。由此执行同步计算以修正转换器分量的异常是无用的。另外,本发明允许在滤波能力中减少纹波电流。
应当理解,有经验的人员可以显而易见地对本说明书中描述的本发明的各种实施方法进行各种修改和/或改进,不超出由所附权利要求定义的本发明的框架。
例如在电流模式和电压模式中能够调节每个转换器。另外,所述***可以包括多于两个的转换器,并且所述同步设备能够使多于两个的转换器同步。

Claims (10)

1.一种用于使至少两个DC/DC转换器(5A、5B)同步的设备(3),其特征在于,所述设备包括:
●用于接收由所述转换器中的每个生成的切换信号的器件(21A、21B、23A、23B);
●检测来自接收到的切换信号的跃迁类型的器件(25);
●用于当检测到跃迁时生成同步信号的器件(27);以及
●用于将所述同步信号递送到所述转换器(5A、5B)中的一个并且被配置为每当检测到跃迁,将所述同步信号按顺序递送到不同转换器(5A、5B)的器件(27、S1、S2)。
2.根据权利要求1所述的设备(3),其特征在于,其也包括同步起动器器件(31),所述同步起动器器件能够将同步信号递送到预定转换器(5A、5B)。
3.根据权利要求1或2所述的设备(3),其特征在于,所述同步启动器件包括用于接收通过所述转换器(5A、5B)流过转换器的电感(7A、7B)的电流的值的器件,以及当所述电流的所述值达到预定值时生成启动信号的器件(32、27)。
4.根据权利要求1或2所述的设备(3),其特征在于,接收器件包括微分电路(21A、21B),所述微分电路用于处理来自每个转换器(5A、5B)的所述接收到的切换信号。
5.根据权利要求1或2所述的设备(3),其特征在于,接收器件包括整形电路(23A、23B),所述整形电路用于处理来自每个转换器(5A、5B)的所述接收到的切换信号。
6.根据权利要求1或2所述的设备(3),其特征在于,用于检测切换信号的跃迁类型的所述器件包括或电路(25)。
7.根据权利要求1或2所述的设备(3),其特征在于,用于当检测到跃迁时生成同步信号的所述器件包括D触发器(27)。
8.根据权利要求1或2所述的设备(3),其特征在于,所述转换器(5A、5B)是变频转换器。
9.一种***(1;100),包括:根据权利要求1至8中的任一项所述的设备(3);至少两个交错电压升压转换器(5A、5B)或至少两个交错电压降压转换器(5A、5B);以及,加法器(19A、19B),所述加法器与每个转换器(5A、5B)相关联,用于将所述同步信号添加到控制信号,所述控制信号被供应到所述转换器(5A、5B)。
10.一种机动车辆,包括根据权利要求1至8中的任一项所述的设备(3),或根据权利要求9所述的***。
CN201380062987.3A 2012-10-02 2013-09-27 用于使至少两个转换器同步的设备 Active CN104823373B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1259318A FR2996380A1 (fr) 2012-10-02 2012-10-02 Dispositif de synchronisation d’au moins deux convertisseurs
FR1259318 2012-10-02
PCT/FR2013/052286 WO2014053750A1 (fr) 2012-10-02 2013-09-27 Dispositif de synchronisation d'au moins deux convertisseurs

Publications (2)

Publication Number Publication Date
CN104823373A CN104823373A (zh) 2015-08-05
CN104823373B true CN104823373B (zh) 2018-04-10

Family

ID=47754627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380062987.3A Active CN104823373B (zh) 2012-10-02 2013-09-27 用于使至少两个转换器同步的设备

Country Status (6)

Country Link
US (1) US10038371B2 (zh)
EP (1) EP2904696B1 (zh)
CN (1) CN104823373B (zh)
ES (1) ES2738993T3 (zh)
FR (1) FR2996380A1 (zh)
WO (1) WO2014053750A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174796A (zh) * 2006-10-31 2008-05-07 崇贸科技股份有限公司 用于使功率转换器同步的具有同步输入的切换控制器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793191A (en) * 1995-08-03 1998-08-11 Celestica, Inc. Zero voltage switching supplies connected in parallel
US7944721B2 (en) * 2008-03-24 2011-05-17 System General Corp. Switching control circuit for multi-channels and multi-phases power converter operated at continuous current mode
US7933132B2 (en) * 2008-04-29 2011-04-26 Fairchild Semiconductor Corporation Synchronizing frequency and phase of multiple variable frequency power converters
FR2964515A1 (fr) * 2010-09-07 2012-03-09 Peugeot Citroen Automobiles Sa Circuit de commande des interrupteurs commandables d'un hacheur
CN103051039A (zh) * 2011-10-11 2013-04-17 台达电子工业股份有限公司 高压电池充电***及其适用的充电器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174796A (zh) * 2006-10-31 2008-05-07 崇贸科技股份有限公司 用于使功率转换器同步的具有同步输入的切换控制器

Also Published As

Publication number Publication date
EP2904696B1 (fr) 2019-06-19
CN104823373A (zh) 2015-08-05
ES2738993T3 (es) 2020-01-28
FR2996380A1 (fr) 2014-04-04
US20150263607A1 (en) 2015-09-17
US10038371B2 (en) 2018-07-31
WO2014053750A1 (fr) 2014-04-10
EP2904696A1 (fr) 2015-08-12

Similar Documents

Publication Publication Date Title
Baek et al. Digital adaptive frequency modulation for bidirectional DC–DC converter
Chen et al. Modified interleaved current sensorless control for three-level boost PFC converter with considering voltage imbalance and zero-crossing current distortion
EP2506420B1 (en) Power conversion apparatus
EP2978118B1 (en) Power converter and power conditioner
Shi et al. Automatic current sharing of an input-parallel output-parallel (IPOP)-connected DC–DC converter system with chain-connected rectifiers
CN118199231A (zh) 电动车电池充电器
CN110014886B (zh) 车载充电***
WO2014205452A1 (en) Apparatus and method for grid-to-vehicle battery charging
US9896048B2 (en) Power supply unit for supplying power to an on-board electrical network of a vehicle
KR101558794B1 (ko) 전기 자동차용 배터리 충전 장치
Kiratipongvoot et al. Phase-shift interleaving control of variable-phase switched-capacitor converters
Schumacher et al. Closed loop control of a six phase interleaved bidirectional dc-dc boost converter for an EV/HEV application
Valipour et al. Extended range bridgeless pfc converter with high-voltage dc bus and small inductor
JP2007124732A (ja) 電力変換装置
Wang et al. A novel concept to reduce the DC-link capacitor in PFC front-end power conversion systems
US9887643B2 (en) Bidirectional electrical signal converter
US20160118904A1 (en) Power conversion apparatus
Wang et al. Study of a new technique to reduce the dc-link capacitor in a power electronic system by using a series voltage compensator
KR101601549B1 (ko) 배터리 충전 제어 방법 및 장치
Bintz et al. Parallel rectifier for regenerative hydrogen production utilizing a combination of thyristor and PWM-based topologies
CN103618454A (zh) 一种多相同步开关稳压器
JP5348427B2 (ja) 電圧変換装置および電圧制御回路
Zhao et al. The design of cascaded DC-DC converters with single-switch PWM and PFM for standalone PV power applications
CN104823373B (zh) 用于使至少两个转换器同步的设备
JP2014128126A (ja) 電力変換装置

Legal Events

Date Code Title Description
PB01 Publication
C53 Correction of patent of invention or patent application
CI01 Publication of corrected invention patent application

Correction item: Applicant

Correct: Technology advances company

False: Peugeot Citroen Automobiles

Number: 31

Volume: 31

CI02 Correction of invention patent application

Correction item: Applicant

Correct: Technology advances company

False: Peugeot Citroen Automobiles

Number: 31

Page: The title page

Volume: 31

ERR Gazette correction

Free format text: CORRECT: APPLICANT; FROM: PEUGEOT CITROEN AUTOMOBILES TO: TECHNOBOOST COMPANY

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant