CN104807774B - 一种液体样品的近红外光谱分析方法 - Google Patents

一种液体样品的近红外光谱分析方法 Download PDF

Info

Publication number
CN104807774B
CN104807774B CN201410043714.0A CN201410043714A CN104807774B CN 104807774 B CN104807774 B CN 104807774B CN 201410043714 A CN201410043714 A CN 201410043714A CN 104807774 B CN104807774 B CN 104807774B
Authority
CN
China
Prior art keywords
organic matter
fluid sample
near infrared
microporous barrier
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410043714.0A
Other languages
English (en)
Other versions
CN104807774A (zh
Inventor
桂萍
李萌萌
田川
何琴
魏锦程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy Of Urban Planning & Design
Original Assignee
China Academy Of Urban Planning & Design
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy Of Urban Planning & Design filed Critical China Academy Of Urban Planning & Design
Priority to CN201410043714.0A priority Critical patent/CN104807774B/zh
Publication of CN104807774A publication Critical patent/CN104807774A/zh
Application granted granted Critical
Publication of CN104807774B publication Critical patent/CN104807774B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供了一种液体样品的近红外光谱分析方法,该方法包括:(1)将不同类型有机物标准品进行近红外光谱分析,得到近红外光谱图并对有机物标准品进行聚类;(2)将液体样品负载在微孔膜上,并在液体样品含有水时,脱除微孔膜上的水,将得到的微孔膜置于红外光谱仪中进行近红外光谱分析,得到近红外光谱图,微孔膜包括基体以及接枝在基体上的接枝基团,基体为聚乙烯、聚丙烯或乙烯‑丙烯共聚物,接枝基团选自式I所示的基团和式II所示的基团;(3)判别该液体样品是否含有有机物,并确定该有机物的种类。该方法能有效扣除样品中的水产生的干扰信息,提高含水液体样品的近红外光谱分析的有效性和准确性,适于对水中的有机物进行快速筛查。

Description

一种液体样品的近红外光谱分析方法
技术领域
本发明涉及一种液体样品的近红外光谱分析方法。
背景技术
近些年来,随着工业化和城镇化进程的快速推进,我国突发性水污染事件频发。为保障水源突发污染期间城市饮用水水质安全,对供水***全流程实施水质监测、对突发性污染物进行快速识别,是城市给水厂成功应对突发性水污染的关键,是城市供水实行精细化管理和提高供水应急能力的基础,是建立健全饮用水安全保障体系的关键环节。目前供水***常用的水质检测***主要包括在线仪表检测和实验室检测。然而,由于在线检测条件的局限,在线监测项目一般都过于简单,仅局限于一些物化指标,难以为实际水质监测提供足够的支持;实验室检测能够实现较为齐全和精确的水质指标的监测,但是存在样品处理复杂、分析时间长的问题,也难以满足突发污染时快速识别污染物的要求。因此,迫切需要研发应急快速水质监测技术。
近红外光谱技术(FT-NIR)是近年迅速发展起来的一种高新分析技术,具有简便、快速、低成本、无污染、对样品无破坏以及可实现多组分同时测定等优点。近红外光是一种波长在780-2526nm(或波数在12820-4000cm-1)范围内的电磁波,近红外光谱是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,主要反映C—H、O—H、N—H和S—H等化学键的信息。通过近红外光谱分析法能够快速测定绝大多数种类的化合物及其混合物,并且能实现对几乎所有物态的有机样品的测定。
但是,在含水体系的近红外光谱定性和定量分析中,水的近红外吸收远远大于其它待测物质的吸收,由水产生的干扰信息会显著降低近红外光谱分析的精度,从而无法通过近红外光谱对官能团进行解析。
因此,在含水有机物样品的近红外光谱分析中,如何扣除由水造成的干扰信息成为近红外光谱分析技术需要突破的难点和重点。
另外,对于近红外光谱分析而言,适当的制样方法是近红外光谱分析获得正确信息的关键。目前,在对液体样品进行近红外光谱分析时,通常是将待测液体样品装在样品池中进行液相近红外光谱分析,但是样品池的厚度和样品中的气泡也会对分析结果产生影响。
发明内容
本发明的目的在于提供一种液体样品的近红外光谱分析方法,该方法不仅为液体样品提供了一种新的制样方法和近红外光谱分析方法;而且在对含水样品进行分析时,能够有效地扣除由水造成的干扰信息,克服现有的近红外光谱分析很难扣除由水造成的干扰信息,进而很难对含水样品进行分析的不足,从而能够通过近红外光谱分析方法快速筛查水中的污染物。
本发明提供了一种液体样品的近红外光谱分析方法,该方法包括以下步骤:
(1)将不同类型有机物标准品进行近红外光谱分析,得到近红外光谱图并对有机物标准品进行聚类;
(2)将液体样品负载在微孔膜上,并在所述液体样品含有水时,脱除微孔膜上的水;将得到的微孔膜置于红外光谱仪中进行近红外光谱分析,得到近红外光谱图,
所述微孔膜包括基体以及接枝在所述基体上的至少一种接枝基团,所述基体为聚乙烯、聚丙烯或乙烯-丙烯共聚物,所述接枝基团选自式I所示的基团和式II所示的基团,
式I中,R1为C8-C20的直链或支链烷基;
式II中,R2和R3各自为氢、或者C1-C20的直链或支链烷基;
(3)判别该液体样品是否含有机物,并在含有机物时确定该有机物的种类。
本发明的方法为液体样品提供了一种新的红外光谱制样和分析方法。
本发明的方法,在液体样品含有水时,能够有效地扣除样品中的水产生的干扰信息,从而能够提高含水和有机物的液体样品的近红外光谱分析的有效性和准确性,适用于对各种含水液体样品进行分析,特别适用于对水中的有机物进行快速筛查。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是测试例1得到的近红外光谱图。
图2是测试例1得到的一阶导数光谱图。
图3是测试对比例1得到的近红外光谱图。
图4是测试对比例1得到的一阶导数光谱图。
图5是测试对比例2得到的近红外光谱图。
图6是测试对比例2得到的一阶导数光谱图。
图7是测试例2得到的近红外光谱图。
图8是测试例2得到的一阶导数光谱图。
图9是实施例1得到的标准品聚类结果,为得分为前两位的主成分的荷载图。
图10是实施例1得到的样品的近红外光谱图。
图11是图10所示的近红外光谱图的一阶导数光谱图。
图12是实施例1得到的测试结果,为得分为前两位的主成分的荷载图。
具体实施方式
本发明提供了一种液体样品的近红外光谱分析方法,该方法包括以下步骤:
(1)将不同类型有机物标准品进行近红外光谱分析,得到近红外光谱图并对有机物标准品进行聚类;
(2)将液体样品负载在微孔膜上,并在所述液体样品含有水时,脱除微孔膜上的水;将得到的微孔膜置于红外光谱仪中进行近红外光谱分析,得到近红外光谱图;
(3)判别该液体样品是否含有机物,并在含有机物时确定该有机物的种类。
根据本发明的方法,步骤(2)中,所述微孔膜包括基体以及接枝在所述基体上的至少一种接枝基团,所述基体为聚乙烯、聚丙烯或乙烯-丙烯共聚物,所述接枝基团选自式I所示的基团和式II所示的基团,
式I中,R1为C8-C20的直链或支链烷基,例如:可以为十二烷基及其异构体、十四烷基及其异构体、十六烷基及其异构体、十八烷基及其异构体或二十烷基及其异构体;
式II中,R2和R3各自为氢、或者C1-C20的直链或支链烷基。所述C1-C20的直链或支链烷基的具体实例可以包括但不限于:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基、叔戊基、新戊基、己基及其异构体、庚基及其异构体、辛基及其异构体、癸基及其异构体、十二烷基及其异构体、十四烷基及其异构体、十六烷基及其异构体、十八烷基及其异构体或二十烷基及其异构体。
优选地,式II中,R2和R3各自为氢、或者C8-C20的直链或支链烷基;更优选地,R2为氢,R3为C8-C20的直链或支链烷基;进一步优选地,R2为氢,R3为C8-C12的直链或支链烷基。
所述微孔膜可以通过常规方法采用前文所述的材料通过常用的各种成膜方法制备得到,也可以商购得到。
具体地,可以采用本领域常用的各种方法将所述接枝基团连接到基体上。例如可以通过用射线照射所述基体,在所述基体上形成自由基作为活性中心,并使丙烯酸与所述基体上的活性中心接触,以通过自由基反应将丙烯酸接枝到所述基体上,然后将接枝后的基体与R1OH和/或接触,以进行酯化反应和/或酰胺化反应,从而得到式I和/或式II所示的接枝基团。
本发明对用于照射所述基体以产生活性中心的射线的种类没有特别限定,可以为本领域常用的各种能够使聚乙烯、聚丙烯或乙烯-丙烯共聚物的聚合物链产生自由基的射线,例如:α射线、β射线、γ射线、x射线或电子束,优选为γ射线。用射线照射所述基体的时间可以根据预期的基体上的接枝基团的含量进行适当的选择,以能够确保最终得到的基体上的接枝基团的含量能够满足要求为准。一般地,照射的时间可以为1分钟至1小时,优选为5分钟至30分钟。
可以在常规条件下将丙烯酸与具有活性中心的基体接触,从而将丙烯酸接枝到所述基体上。一般地,可以在40-80℃将丙烯酸与所述具有活性的基体接触,使丙烯酸分子结构中的C=C与所述基体上的活性中心进行反应,从而将丙烯酸接枝到所述基体上。
本发明对于所述酯化反应和酰胺化反应的条件没有特别限定,可以在本领域常用的条件下进行,只要能够确保最终得到的微孔膜中式I和式II所示的接枝基团的含量能够满足实际要求即可。优选地,所述酯化反应和所述酰胺化反应在至少一种脱水剂的存在下进行。更优选地,所述酯化反应和所述酰胺化反应在N,N’-二环己基碳二亚胺的存在下进行,这样能够进一步提高酯化反应和酰胺化反应的反应程度。
所述微孔膜中的接枝基团的含量可以根据具体要求进行适当的选择。一般地,以所述微孔膜的总量为基准,所述基体的含量可以为65-99重量%,所述接枝基团的含量可以为1-35重量%。优选地,以所述微孔膜的总量为基准,所述基体的含量可以为70-90重量%,如75-85重量%,所述接枝基团的含量可以为10-30重量%,如15-25重量%。
本发明对于所述微孔膜中的孔的平均孔径和孔隙率没有特别限定,可以为常见的具有过滤功能的微孔膜所具有的孔径和孔隙率。
可以采用本领域常用的各种方法将所述液体样品负载在所述微孔膜上。例如:可以将所述液体样品与所述微孔膜接触,使样品中的有机物被吸附到微孔膜上。具体地,可以使液体样品流过所述微孔膜,在所述液体样品流经所述微孔膜的过程中,所述液体样品中的有机物被吸附到微孔膜上;也可以将液体样品滴加到所述微孔膜,使所述液体样品中的有机物被吸附到微孔膜上。
本发明对于与所述微孔膜接触的液体样品的量没有特别限定,以使最终得到的微孔膜上的有机物的量能够满足具体测试仪器的要求为准。
本发明对于所述液体样品中可能含有的有机物的种类没有特别限定,可以为常见的各种有机物。优选地,所述液体样品含有选自酮系化合物(如C3-C20的酮)、苯系化合物、烷烃(如C1-C20的直链或支链烷烃)、卤代烃(如C1-C20的卤代烃,所述卤代烃中的卤素原子可以为氯原子、溴原子、氟原子或碘原子)和醛系化合物(如C1-C20的醛)中的一种或多种有机物。
在所述液体样品还含有水时,根据本发明的方法还包括脱除负载有所述液体样品的微孔膜上的水。脱除负载有所述液体样品的微孔膜上的水的条件可以根据水的含量以及所述有机物的种类进行适当的选择。一般地,可以在25-40℃的温度下,脱除负载有所述液体样品的微孔膜上的水。从进一步缩短脱水的时间的角度出发,优选用至少一种非活性气体对负载有所述液体样品的微孔膜进行吹扫。所述非活性气体是指不与水、所述有机物以及微孔膜发生化学相互作用的气体,可以为本领域常用的各种非活性气体,例如:所述非活性气体可以选自氮气和零族元素气体(如氩气)。
根据本发明的方法特别适用于对含有机物的污水中的有机物进行快速筛查的场合。具体地,所述液体样品可以为来自于化工行业的污水、来自于石油行业的污水或来自于医院的污水。
步骤(1)中,对有机物标准品进行近红外光谱分析时,可以采用常规的制样方法,也就是将标准品配制成溶液并装在样品池中进行分析;也可以采用前文所述的方法,将有机物标准品负载在微孔膜上,将该微孔膜置于红外光谱仪中进行近红外光谱分析。
根据本发明的方法,所述聚类是将未知数据按相似程度分到不同类的过程,可以通过常用的各种聚类算法实现。
在本发明的一种优选的实施方式中,步骤(1)中,采用主成分分析-马氏距离法对有机物标准品进行聚类。
采用主成分分析-马氏距离法对有机物标准品进行聚类的方法可以为常规方法。具体地,将标准品的近红外光谱图转化为一阶导数图,将由一阶导数图中不同波数下的峰对应的吸光度Asm形成的矩阵进行主成分分析,确定各标准品的主成分的得分,由所述主成分的得分分别计算各标准品距该标准品所属的类的中心的马氏距离,根据所述马氏距离对标准品进行聚类,所述中心为该类型所有标准品的主成分得分的平均值。
优选地,提取得分为前两位的两个主成分并由这两个主成分的得分分别计算每个标准品距各类的中心的马氏距离从而对有机物标准品进行聚类。
更优选地,提取得分为前两位的主成分,作出这个两个成分的荷载图,并根据马氏距离将荷载图分区。这样在判别样品是否含有有机物并确定有机物的种类时,可以通过观察样品落入哪一个分区,直观地判别样品是否含有机物并确定有机物的种类。从进一步提高分析结果的准确性的角度出发,进一步优选地以马氏距离≤3.5对所述荷载图进行分区。
步骤(3)中,可以根据马氏距离法判别该样品是否含有落入步骤(1)确定的聚类的有机物,并在含有步骤(1)确定的聚类的有机物时,确定该有机物的类型。在步骤(1)将得分为前两位的两个主成分的荷载图进行分区时,采用主成分分析-马氏距离法判别该液体样品是否含有落入所述分区的有机物,并确定该有机物的种类。
具体地,可以将步骤(2)得到的液体样品的近红外光谱图转化为一阶导数图,根据样品的一阶导数图中的不同波数下的峰对应的吸光度Am进行主成分分析确定主成分的得分,计算主成分至步骤(1)得到的各类的中心的马氏距离,根据计算得到的马氏距离判别该样品是否含有落入步骤(1)确定的聚类(或分区)的有机物,并在含有机物时确定该有机物的类型。
通过主成分分析-马氏距离判别法来对不同类型有机物标准品进行聚类并判别液体样品是否含有属于步骤(1)确定的聚类的有机物并确定该有机物的类型可以在常用的各种软件上进行,例如SPSS(Statistical Product and Service Solution,统计产品与服务解决方案)软件包和matlab(Matrix Laboratory,矩阵实验室)软件包。
根据本发明的方法,步骤(1)中,可以根据待分析的样品中可能存在的有机物的类型来确定有机物标准品的种类并选择具体的有机物标准品。
例如,在待分析的样品可能含有选自酮系化合物(如C3-C20的酮)、苯系化合物、烷烃(如C1-C20的直链或支链烷烃)、卤代烃(如C1-C20的卤代烃,所述卤代烃中的卤素原子可以为氯原子、溴原子、氟原子或碘原子)和醛系化合物(如C1-C20的醛)中的一种或多种有机物时,所述有机物标准品的类型使得步骤(1)得到的聚类(或分区)至少含有以下类:作为第I类(或第I区)的卤代烃,作为第II类(或第II区)的带羰基的有机物,作为第III类(或第III区)的带苯环的有机物。具体地,所述有机物标准品可以为三氯甲烷、二氯乙烯、甲苯、邻二甲苯、苯胺、苯乙烯、苯酚、萘、丙酮、苯甲酸、甲醛和丙烯酰胺。
根据本发明的方法,所述红外光谱仪可以为本领域常用的各种类型的能够进行近红外光谱分析的红外光谱仪,没有任何限定。
根据本发明的方法特别适用于对污水中的有机物进行快速筛查的场合。具体地,所述液体样品可以为来自于化工行业的污水、来自于石油行业的污水或来自于医院的污水。
以下结合测试例和实施例详细说明本发明。
以下测试例、测试对比例、实施例和对比例中,使用的红外光谱仪为商购自ThermoScientific TruProcess的型号为Antaris II并配备由近红外光纤附件的傅立叶变换-红外光谱仪,其分辨率为8cm-1,扫描范围为4000-10000cm-1,扫描次数为64次,采用吸收模式。
以下实施例中,采用SPSS20.0软件包和matlab 7.0软件包进行主成分分析和马氏距离计算。
测试例1-2用于说明本发明的方法中的近红外光谱法。
测试例1
(1)将0.2毫克浓度为49.6重量%的丙酮水溶液滴加到微孔膜上(商购自天津博纳杰尔科技有限公司,基体为聚乙烯,接枝基团为接枝基团的含量为16重量%,基体的含量为84重量%);然后将微孔膜在室温(为25℃)用氮气吹扫30分钟,从而得到用于近红外光谱分析的样品。
(2)将步骤(1)制备的样品置于红外光谱仪中进行近红外光谱分析。得到的近红外光谱图如图1所示。
(3)将步骤(2)得到的谱图转化为一阶导数光谱图,如图2所示。
测试对比例1
(1)将装有浓度为99.2重量%的丙酮的样品池(样品池规格为0.2cm×1cm×3cm)置于红外光谱仪中,进行近红外光谱分析,得到的近红外光谱图如图3所示。
(2)将步骤(1)得到的谱图转化为一阶导数光谱图,如图4所示。
测试对比例2
(1)将装有浓度为49.6重量%的丙酮的样品池(规格同对比例1)置于红外光谱仪中,进行近红外光谱分析,得到的近红外光谱图如图5所示。
(2)将步骤(1)得到的谱图转化为一阶导数光谱图,如图6所示。
将图1与图3和图5进行比较、将图2与图4和图6进行比较可以看出,根据本发明的方法能够有效地消除样品中的干扰信息,可以清楚地观察到丙酮位于5660cm-1的特征吸收峰。
测试例2
(1)将0.2毫克浓度为5mg/L的甲苯的水溶液滴加到微孔膜上(商购自天津博纳杰尔科技有限公司,基体为聚丙烯,接枝基团为接枝基团的含量为25重量%,基体的含量为75重量%);然后将微孔膜在室温(为25℃)用氮气吹扫30分钟,从而得到用于近红外光谱分析的样品。
(2)将步骤(1)制备的样品置于红外光谱仪中进行近红外光谱分析。得到的谱图如图7所示。
(3)将步骤(2)得到的谱图转化为一阶导数光谱图,如图8所示。
从图7和图8可以清楚地观察到甲苯位于5760cm-1的特征吸收峰。
测试例1-2的结果表明,本发明方法通过将含水液体样品负载在微孔膜上,并脱除微孔膜上的水,能够有效地扣除样品中的水产生的干扰信息,从而能够提高含水液体样品的近红外光谱分析的有效性和准确性,适用于对各种含水的有机物进行分析。
实施例1
本实施例用于说明本发明的方法。
(1)将标准品分别装在红外光谱仪用样品池中,进行近红外光谱分析,得到近红外光谱图,将得到的近红外光谱图转化为一阶导数光谱图。标准品包括:三氯甲烷、1,2-二氯乙烯、丙酮、甲醛、丙烯酰胺、甲苯、邻二甲苯、苯胺、苯酚和苯乙烯。
用SPSS20.0软件包将由一阶导数光谱图的108个波数上的吸光度形成的矩阵进行主成分分析,确定各标准品的主成分的得分。提取得分为前两位的两个主成分并由这两个主成分的得分,用matlab 7.0软件包分别计算每个标准品距各类的中心的马氏距离,从而对有机物标准品进行聚类,以马氏距离≤3.5来确定各类的边界(即,对得分为前两位的两个成分的荷载图进行分区)。得到的得分为前两位的主成分的荷载图以及分区结果如图9所示。
从图9可以看出,得分为前两位的两个主成分的荷载图被分成三个区。其中,第I区为卤代烷烃;第II区为带羰基的有机物;第III区为带苯环的有机物。
(2)将浓度为1mg/L的D24(也称为滴24,即)水溶液滴加到微孔膜(与测试例1相同)上;然后将微孔膜在室温(为25℃)用氮气吹扫30分钟,从而得到用于近红外光谱分析的样品。
将制备的样品置于红外光谱仪中进行近红外光谱分析,得到的谱图如图10所示。将近红外光谱图转化为一阶导数光谱图,如图11所示。
(3)将步骤(2)得到的一阶导数光谱图的108个波数上的吸光度用SPSS软件包进行主成分分析并用matlab 7.0软件包计算马氏距离,结果如图12所示。由此可以判定该样品含有落入第III区的有机物。

Claims (11)

1.一种液体样品的近红外光谱分析方法,该方法包括以下步骤:
(1)将不同类型有机物标准品进行近红外光谱分析,得到近红外光谱图并对有机物标准品进行聚类;
(2)将液体样品负载在微孔膜上,并在所述液体样品含有水时,脱除微孔膜上的水;将得到的微孔膜置于红外光谱仪中进行近红外光谱分析,得到近红外光谱图,
所述微孔膜包括基体以及接枝在所述基体上的至少一种接枝基团,所述基体为聚乙烯、聚丙烯或乙烯-丙烯共聚物,所述接枝基团选自式I所示的基团和式II所示的基团,
式I中,R1为C8-C20的直链或支链烷基;
式II中,R2和R3各自为氢、或者C1-C20的直链或支链烷基;
(3)判别该液体样品是否含有机物,并在含有机物时确定该有机物的种类。
2.根据权利要求1所述的方法,其中,在所述液体样品含有水时,在25-40℃脱除负载有所述液体样品的微孔膜上的水。
3.根据权利要求1所述的方法,其中,式II中,R2为氢,R3为C8-C20的直链或支链烷基。
4.根据权利要求1-3中任意一项所述的方法,其中,以所述微孔膜的总量为基准,所述基体的含量为65-99重量%,所述接枝基团的含量为1-35重量%。
5.根据权利要求1所述的方法,其中,采用主成分分析-马氏距离法对有机物标准品进行聚类。
6.根据权利要求5所述的方法,其中,提取得分为前两位的主成分,作出这两个成分的荷载图,以马氏距离≤3.5来对所述荷载图进行分区。
7.根据权利要求6所述的方法,其中,采用主成分分析-马氏距离法判别该液体样品是否含有落入所述分区的有机物,并确定该有机物的种类。
8.根据权利要求6或7所述的方法,其中,所述有机物标准品的类型使得所述分区包括:作为第I区的卤代烷烃,作为第II区的带羰基的有机物,作为第III区的带苯环的有机物。
9.根据权利要求8所述的方法,其中,所述有机物标准品为三氯甲烷、二氯乙烯、甲苯、邻二甲苯、苯胺、苯乙烯、苯酚、萘、丙酮、苯甲酸、甲醛和丙烯酰胺。
10.根据权利要求5-7中任意一项所述的方法,其中,将所述近红外光谱图转化成一阶导数图后进行主成分分析。
11.根据权利要求1-3和5-7中任意一项所述的方法,其中,所述液体样品含有选自酮系化合物、苯系化合物、烷烃、卤代烃和醛系化合物中的一种或多种有机物。
CN201410043714.0A 2014-01-29 2014-01-29 一种液体样品的近红外光谱分析方法 Active CN104807774B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410043714.0A CN104807774B (zh) 2014-01-29 2014-01-29 一种液体样品的近红外光谱分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410043714.0A CN104807774B (zh) 2014-01-29 2014-01-29 一种液体样品的近红外光谱分析方法

Publications (2)

Publication Number Publication Date
CN104807774A CN104807774A (zh) 2015-07-29
CN104807774B true CN104807774B (zh) 2017-05-03

Family

ID=53692793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410043714.0A Active CN104807774B (zh) 2014-01-29 2014-01-29 一种液体样品的近红外光谱分析方法

Country Status (1)

Country Link
CN (1) CN104807774B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092521B (zh) * 2015-08-13 2017-11-14 东北大学 基于增量主成份分析的牛奶凝结过程实时监测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171412A (zh) * 1996-06-19 1998-01-28 希尔斯股份公司 在聚合物基体表面上进行亲水涂层
CN102512999A (zh) * 2006-04-11 2012-06-27 麻省理工学院 用聚丙烯腈接枝共聚物形成的抗污垢膜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080013A (ja) * 2009-10-09 2011-04-21 Mitsui Chemicals Inc ポリオレフィン微粒子ならびに変性ポリオレフィン微粒子、これらを含む樹脂組成物、およびその用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1171412A (zh) * 1996-06-19 1998-01-28 希尔斯股份公司 在聚合物基体表面上进行亲水涂层
CN102512999A (zh) * 2006-04-11 2012-06-27 麻省理工学院 用聚丙烯腈接枝共聚物形成的抗污垢膜

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chemical and electrical characterization of virgin and protein-fouled polycarbonate track-etched membranes by FTIR and streaming-potential measurements;K.J.Kim et al;《Journal of membrane science》;19971231;第134卷;全文 *
Flux enhancement for polypropylene microporous membrane in a SMBR by the immobilization of poly(N-vinyl-2-pyrrolidone) on the membrane surface;Hai-yin Yu et al;《Journal of memebrane science》;20060101;第279卷;全文 *
电子束共辐照接枝改性聚醚砜微孔膜;韩兆磊等;《2010全国荷电粒子源、离子束学术会议》;20101231;全文 *
超高分子量聚乙烯微孔膜的亲水改性研究;郭红霞等;《膜科学与技术》;20060228;第26卷(第1期);全文 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092521B (zh) * 2015-08-13 2017-11-14 东北大学 基于增量主成份分析的牛奶凝结过程实时监测方法

Also Published As

Publication number Publication date
CN104807774A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
Klotz et al. Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: In situ determination of ring-retaining product yields
Kautzman et al. Chemical composition of gas-and aerosol-phase products from the photooxidation of naphthalene
Sillanpää et al. Characterization of NOM
Lipari et al. 2, 4-Dinitrophenylhydrazine-coated Florisil sampling cartridges for the determination of formaldehyde in air
CN106905538A (zh) 一种含锌金属有机框架材料及其制备方法和应用
Paszkiewicz et al. Advances in suspect screening and non-target analysis of polar emerging contaminants in the environmental monitoring
Lu et al. Molecularly imprinted polymers for dispersive solid‐phase extraction of phenolic compounds in aqueous samples coupled with capillary electrophoresis
CN105699345A (zh) 一种三维荧光光谱结合parafac算法测定污染物的方法
CN102288691A (zh) 塑料、橡胶、纺织品材料中短链氯化石蜡的测定方法
Fontàs et al. Novel and selective procedure for Cr (VI) determination by X-ray fluorescence analysis after membrane concentration
CN104297406A (zh) 一种广谱鉴定β-受体激动剂类药物的方法
CN108872415A (zh) 一种尿液中单羟基多环芳烃的分析检测方法
Grand et al. Determination of dissolved zinc in seawater using micro-Sequential Injection lab-on-valve with fluorescence detection
Kim et al. Potential role of stabilized Criegee radicals in sulfuric acid production in a high biogenic VOC environment
CN110204564A (zh) 一种检测氰根离子的荧光探针及其制备方法和应用
RU2008110956A (ru) Система мечения
Berndt Peroxy radical processes and product formation in the OH radical-initiated oxidation of α-pinene for near-atmospheric conditions
CN104807774B (zh) 一种液体样品的近红外光谱分析方法
Baker et al. Determination of the distribution of cannabinoids in cannabis resin using high performance liquid chromatography
Cao et al. Simultaneous determination of bisphenol A and bisphenol S in environmental water using ratio derivative ultraviolet spectrometry
CN111103255A (zh) 一种光谱仪
CN104201085A (zh) 垃圾填埋排放恶臭有机物的直接质谱分析方法
CN104807773B (zh) 一种对液体样品中的有机物进行筛查的方法
CN113698307A (zh) 一种同位素化合物及其制备方法和用途
Mengwen et al. The selective and sensitive detection of formaldehyde by ZIF-90-LW via aza-Cope rearrangement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Gui Ping

Inventor after: Li Mengmeng

Inventor after: Tian Chuan

Inventor after: He Qin

Inventor after: Wei Jincheng

Inventor before: Gui Ping

Inventor before: Li Mengmeng

Inventor before: Tian Chuan

Inventor before: He Qin

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant