CN104736839B - 用于通过波的作用产生能量的*** - Google Patents

用于通过波的作用产生能量的*** Download PDF

Info

Publication number
CN104736839B
CN104736839B CN201380041254.1A CN201380041254A CN104736839B CN 104736839 B CN104736839 B CN 104736839B CN 201380041254 A CN201380041254 A CN 201380041254A CN 104736839 B CN104736839 B CN 104736839B
Authority
CN
China
Prior art keywords
hull
wave
effect
energy
generating energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380041254.1A
Other languages
English (en)
Other versions
CN104736839A (zh
Inventor
G·L·比恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gwave LLC
Original Assignee
Gwave LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gwave LLC filed Critical Gwave LLC
Publication of CN104736839A publication Critical patent/CN104736839A/zh
Application granted granted Critical
Publication of CN104736839B publication Critical patent/CN104736839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B1/121Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising two hulls
    • B63B2001/123Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising two hulls interconnected by a plurality of beams, or the like members only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/16Tying-up; Shifting, towing, or pushing equipment; Anchoring using winches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/13Geometry two-dimensional trapezial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/14Geometry two-dimensional elliptical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Helmets And Other Head Coverings (AREA)

Abstract

作为用于通过波的作用产生能量的***的一部分的船体,该船体的形状、尺寸和定向使得该***成本较低并且增加该***提供的能量。本发明提供了用于通过波的作用产生能量的各***的一部分的各船体。

Description

用于通过波的作用产生能量的***
相关申请的交叉引用
本申请要求于2012年6月4提交的美国临时专利申请S/N.61/655,095的优先权,该申请通过引用结合在本文中。
技术领域
本发明涉及一种用于通过波的作用产生能量的***。更具体地,本发明涉及船舶的船体,该船体构成用于通过波的作用产生能量的***的一部分或包含该用于通过波的作用产生能量的***。
背景技术
本领域中存在用于通过波对船舶的船体以及其他浮动平台(本文统称为“船体”)的作用产生能量的***和方法的领域中的众多示例。例如,通过援引纳入于此的第US-2009-0160191-A1号美国专利公开文本描述了用于通过波对船体的作用产生的电力的***。第二可移动质量块通过船体(即第一可移动质量块)装载并且可相对于船体移动,第二可移动质量块作为改变其相对于船体的位置的结果而生成动能。在优选实施例中,机构随后将第二质量块相对于第一质量块移动的动能转换成电力。在这一示例中,船体是用于产生能量的***的组成部分。
在用于通过波的作用产生能量的***的其他示例中,船体仅仅承载或包含该***。此处,作为用于通过波的作用产生能量的***的组成部分、或者仅仅承载或包含这一***的船体将被称为用于通过波的作用产生能量的该***的一部分。
用于通过波的作用产生能量的这些***的许多部分被详细描述。然而,很少(如果有的话)关注于作为这些***的一部分的船体,尽管这些船体的形状、尺寸和定向可显著地影响生产这些***的成本以及这些***提供的能量的量两者。
本发明的目的是生产船体以降低生产用于通过波的作用产生能量的***的成本以及增加这些***产生的能量。
发明内容
本发明提供了作为用于通过波的作用产生能量的***的一部分的船体。这些船体的形状、尺寸和定向使得这些***成本较低并且增加这些***产生的能量。
本发明的这些方面并非意味着排他性的,并且本发明的其他特征、方面和优点对于本领域普通技术人员而言在结合以下描述、所附权利要求书以及附图阅读时将是对显而易见的。
附图说明
通过参考附图一起阅读以下对实施例的详细描述,将更好地理解本发明的这些及其他特征和优点,其中:
图1是波周期的示意图;
图2是示出波长和波频率的表;
图3是船体的横截面;
图3A是船体的横截面;
图4是水线面的示意图;
图5是调谐的椭圆形船体的示意图;
图5A是具有外部压舱物保持装置的船体的示意图;
图6是单个船体的定向的示意图;
图7是另一单个船体的定向的示意图;
图8是通过构架(truss)连接的多个船体的定向的示意图;
图9是连接至固定系泊线和绞盘绳的多个船体的定向的示意图;
图10是连接至固定系泊线和多个绞盘绳的多个船体的定向的示意图;
图11是多个船体的相位阵列的示意图;
图12是单个船体的产生功率对比时间的图;
图13是两个船体的相位阵列的示意图;
图14是两个船体的产生功率对比时间的图;
图15是相位阵列的一个实施例的示意图;
图16是相位阵列的另一实施例的示意图;
图17是相位阵列的另一实施例的示意图;
图18是相位阵列的另一实施例的示意图;
图19是相位阵列的另一实施例的示意图;
图20是相位阵列的另一实施例的示意图;
图21是相位阵列的另一实施例的示意图;以及
图22是相位阵列的另一实施例的示意图。
具体实施方式
本发明提供了构成用于通过波的作用产生能量的***的一部分的船体。***的其他部分可以是美国专利公开文本US-2009-0160191-A1中描述的***的或者用于通过波的作用产生能量的任何其他***的各部分。
本发明的优选实施例被设计成降低制造成本。海浪基于其频率可被划分成两组。一组包含具有以9秒为中心(中间频率)的频率的波,而一组包含具有以12秒为中心(长频率)的频率的波。如图1所示,9秒波的具有从峰值到相邻波谷的距离为207英尺(ft)的半波长,而12秒波具有368英尺的半波长。船体的最优长度在四分之一波长与四分之三波长之间。这里,如图2所示,对于9秒和12秒波这两者所使用的船体的最优长度将比12秒即长波的的波长的四分之一(即184英尺)长、且比9秒波长即中间波的波长的四分之三(即311英尺)短。一优选实施例具有200与280英尺之间的船体长度。
如图3所示,在另一优选实施例中,船体的横截面345是椭圆形,该椭圆形的横截面具有75英尺的垂直346长轴以及53英尺的水平349短轴。椭圆形的曲面壁使其比具有壁的平直部分的结构具有更大强度。进而,这允许使用较薄、较不昂贵的壁。
另外,这一椭圆形形状针对排水量和水线面进行了优化以自调谐到范围从7秒至15秒的多个波的频率。还可使用在随船体颠簸或起伏而增加或降低水线面方面与椭圆形类似的其他横截面几何形状,诸如,如图3A中所示的菱形形状。船体的椭圆形几何形状用于经由水线面的改变来将船体的相位调谐到波长,如图4所示,水线面是由船体和水线的交叉形成的平面。如图5所示,在给定惯性矩的情况下,随着椭圆形的水线面增加或降低,船体变得更加拉紧(stiffer)或更加松弛(softer),从而使其调谐到较高或较低频率的波。在船体颠簸和起伏时,随着水线面增加并且船体变得更加拉紧,船体被调谐到较高频率的波,而随着水线面降低并且船体变得更加松弛572,船体被调谐到较低频率的波。
椭圆形的吃水确定了船体的静态水线面。随着吃水增加,水线上移至椭圆形更高处572,其随后具有较小水线面,这使船体松弛。随着吃水降低并且水线移动至接近于椭圆形的几何水平中心线571,船体的水线面增加,这使船体拉紧。
另外,随着船体的惯性矩增加,船体可被调谐到越来越长的波频率。通过在船体的船头或船尾处外部地添加质量块,船体的惯性矩增加而不会向船体添加附加体积。相比于添加船体体积以容纳用于创建与在船体内添加质量块的情况下类似的惯性矩所需的更多质量块,附加质量块的重定位要便宜得多。
加上或减去位于船体的船头和船尾外部的附加质量块还增加或降低船体的排水量,这进而增加或降低船体的惯性矩,而不会添加船体体积,这进而使船体的相位相应地调谐到更长或更短的波周期。
在另一优选实施例中,如图5A所示,船体501在其船头503处具有外部压舱物保持装置502,外部压舱物保持装置502还可位于其船尾处(未示出)。外部压舱物保持装置可包括用于悬挂模块式压舱物504(诸如混凝土块或金属片)的吊钩502、或其中可放入此类压舱物的保持架,或者本领域技术人员知晓的其他保持装置。模块式压舱物被添加到压舱物保持装置或从压舱物保持装置中减去。添加或减去此类压舱物相应地增加或降低了船体长度、排水量和惯性矩,以使船体的相位调谐成与较高频率或较低频率的波同相地工作,并且增加功率生成。
如图6所示,典型船体210沿着自船头212至船尾213的线211的惯性矩比沿着自左舷215至右舷216的线214的惯性矩更大。这将导致船体转向,使得自船头212至船尾213的线211与波218的方向217垂直,从而造成船体从左舷摇晃到右舷。应当注意,如本文使用的,风向与波的方向平行而与波前垂直。
为了建立会自我定向以使得自船头至船尾的线与波的方向平行的船体,必须增加沿着自左舷至右舷的线的惯性矩以使其大于沿着自船头至船尾的线的惯性矩。这在现有技术中已经通过增加船体沿着从左舷221至右舷222的线220的尺寸得以实现。然而,此类船体的材料成本以及制造和运输此类船体的成本是巨大的。
在一优选实施例中,如图8所示,多个船体(这里为两个,但可使用不止两个)303、304通过简单构架305保持在彼此平行的位置。构架保持船体隔开,以使得在第一船体的右舷侧与第二船体的左舷侧之间第一船体最接近于第二船体。选择船体306之间的距离,在某种程度上是使得沿着自最左边船体的左舷侧至最右边船体的右舷侧的线307的惯性矩超出沿着自船体的船头至船尾的线308的惯性矩。这将导致多船体结构自我定向,从而自船头至船尾的线308与波311的方向310平行。
在另一优选实施例中,如图9所示,多个船体320-329被附连到固定系泊工具,系泊工具可以是末端附连到浮标331和332的系泊线330、或者每一船体的各个独立的固定系泊工具(未示出)。多个船体320-329还被附连到绞盘绳333,其末端附连到浮标331、332中的绞盘334和335。随着波改变方向,通过将绞盘绳从一个绞盘移动到另一绞盘,绞盘334和335将船体活动地定向到波的方向,以使得自船体的船尾338至船头337的线336(即船体行进方向)与波340的方向339平行。细绳系泊工具(不包括活动绞盘绳)也可用于将如上所述的自我定向的船体与构架系泊。在另一实施例中,如图10所示,多个船体520-529被附连到固定系泊工具,系泊工具可以是末端附连到浮标531-532的系泊线530、或者每一船体的一独立的固定系泊工具(未示出)。绞盘540-549可被附连到每一独立的船体520-529,其中绞盘绳560的一端附连到该绞盘并且一端附连到固定系泊工具。每一船体绞盘540-549可通过移动各自的绞盘绳550-568活动地定向每一个别船体520-529,以使得自船体的船尾至船头的线即船体行进的方向与波的方向平行。
在另一优选实施例中,作为用于通过波的作用产生电力的***的一部分的多个船体以如图11所示的相位阵列来安排。相位阵列的目的是为了解决如下所述的一个或多个独立船体产生的电力的间断性本质或粒度问题。
使用一个船体,电力在波作用于船体时产生。然而,在一个波停止作用于船体到下一波开始作用于船体的时间段期间,不产生电力。如图12所示,对于具有的峰值以10秒间隔的波,所产生的电力是粒状的。这一粒状的电力无法直接传送到商业电网,而是必须存储在电池或其他成本高昂的存储设备中,从而增添了产生电力的花费。
该方案是为了定向多个船体,以使得一系列波中的第一个波的峰值在第二个波的峰值未作用于第一船体时作用于第二船体。例如,如图13所示,如果两个船体401、402在相位阵列400中通过系泊线403、404来系泊,则在方向405上行进的具有峰值以10秒隔开的一系列波中的一个波的峰值首先作用于船体401并且5秒之后作用于船体402。在这一相位阵列中,如图14所示,所产生的电力406(其为船体401产生的电力与船体402产生的电力的组合)的粒度开始平滑开来。随着大量船体被适当地排列,所有船体产生的聚集总电力失去其粒性,并且对于成本高昂的存储设备的需要不复存在。
在另一优选实施例中,如图11所示,多个船体410-419附连于系泊线420、421以形成相位阵列424,系泊线420、421的末端形成右阵列角422。相位阵列允许船体410-419移动,以使得不同频率的波或来自不同方向的波(在该实施例中+/-20°)仍然将从船体410-419产生非粒状的电力。例如,如果波的峰值之间的时间增加,则可通过在系泊线420上移动这些船体使其分开来增加从一个船体411的船头到另一船体412的船头的距离423。同样,阵列角402可以减小,实际上增加从一个船体的船头到另一船体的船头的距离。
作为示例,其他相位阵列中的其他系泊线配置在图15-22中示出。在图15中,系泊线601、602的末端形成90°角,该角可以增加或减小以改变系泊线之一上的一个船体的船头与另一此类船体的船头之间的距离。在图16中,系泊线601、602不相交,以使得它们能与风向垂直地移动,以将风向改变考虑在内。在图17中,系泊线601、602不相交,以使得系泊线中的一个或两者能与一般风向平行地移动。
在图18中,系泊线601、602各自与平行于一般风向的线形成不同的角。那些角中的每一个可以增加或减小。在图19中,系泊线601、602具有不同长度。这些系泊线中的每一个的长度可以增加或减小。在图20中,沿着一个系泊线601的这些船体可被间隔开,或者整个系泊线可被移除。
在图21中,存在多个相位阵列。每个相位阵列由两个系泊线601、602组成,其末端以90°角相交。这些相位阵列在与一般风向垂直的方向上可以移动得更靠近在一起或更远离。在图22中,存在多个相位阵列。同样,每个相位阵列由两个系泊线601、602组成,其末端以90°角相交。这些相位阵列在与一般风向平行的方向上可以移动得更靠近在一起或更远离。
尽管本文已描述了本发明的原理,但本领域技术人员应当理解,该描述仅仅作为示例而非作为对本发明的范围的限制而作出。除了本文示出和描述的示例性实施例以外,还构想了落入本发明的范围内的其他实施例。本领域普通技术人员作出的修改和替换应认为落入本发明的范围内。

Claims (14)

1.一种用于在船体上通过波的作用产生能量的方法,包括:
通过调整所述船体的压舱物的量来调整所述船体的颠簸以至少部分基于波的频率来调整所述船体的吃水,所述船体的至少一部分具有横截面以使得所述船体的静态水线面随着所述船体的吃水降低而增加并且所述船体的静态水线面随着所述船体的吃水增加而降低,其中所述通过调整所述船体的压舱物的量来调整所述船体的颠簸包括:
响应于所述波的频率的减小而增加所述船体的吃水并降低所述船体的静态水线面,以及
响应于所述波的频率的增大而降低所述船体的吃水并增加所述船体的静态水线面;以及
通过所述波的作用以及所造成的所述船体的移动来生成电能。
2.如权利要求1所述的方法,其特征在于,所述船体具有在波长度的四分之一与四分之三之间的长度。
3.如权利要求1所述的方法,其特征在于,还包括调整压舱物的量以改变所述船体的惯性矩并且调谐所述船体的相位以与所述波的频率同相地工作。
4.如权利要求1所述的用于通过波的作用产生能量的方法,其特征在于,所述船体具有椭圆形横截面,所述椭圆形横截面具有长轴和短轴,其中所述长轴是垂直的而所述短轴是水平的。
5.如权利要求1所述的用于通过波的作用产生能量的方法,其特征在于,所述船体具有大致菱形形状的横截面。
6.如权利要求1所述的用于通过波的作用产生能量的方法,其特征在于,所述船体的长度被配置成与所述波基本垂直地对准。
7.如权利要求1所述的用于通过波的作用产生能量的方法,其特征在于,所述船体具有在200与280英尺之间的长度。
8.如权利要求1所述的用于通过波的作用产生能量的方法,其特征在于,通过所述波的作用以及所造成的所述船体的移动来生成电能包括:
相对于第一可移动质量块移动所携带的第二可移动质量块以作为改变其相对于所述第一可移动质量块的位置的结果而生成动能,其中所述第一可移动质量块是所述船体;以及
将所述第二质量块相对于所述第一质量块的动能转换成电能。
9.一种用于在船体上通过波的作用产生能量的方法,包括:
基于所述波的频率调谐所述船体的颠簸,其中调谐所述船体的颠簸包括:
响应于所述波的频率的减小而增加所述船体的吃水以降低所述船体的静态水线面,以及
响应于所述波的频率的增大而降低所述船体的吃水以增加所述船体的静态水线面;以及
通过所述波的作用以及所造成的所述船体的移动来生成电能。
10.如权利要求9所述的用于通过波的作用产生能量的方法,其特征在于,所述船体的至少一部分具有横截面以使得所述船体的静态水线面随着所述船体的吃水降低或增加而相应地增加或降低,以调谐所述船体的相位以与所述波的频率同相地工作。
11.如权利要求9所述的用于通过波的作用产生能量的方法,其特征在于,所述船体具有椭圆形横截面,所述椭圆形横截面具有长轴和短轴,其中所述长轴是垂直的而所述短轴是水平的。
12.如权利要求9所述的用于通过波的作用产生能量的方法,其特征在于,增大及降低所述船体的吃水包括相应向船体增加或移除压舱物。
13.如权利要求9所述的用于通过波的作用产生能量的方法,其特征在于,在所述船体的船头或船尾中的至少一个添加或移除压舱物。
14.如权利要求9所述的用于通过波的作用产生能量的方法,其特征在于,所述船体具有大致菱形形状的横截面。
CN201380041254.1A 2012-06-04 2013-06-04 用于通过波的作用产生能量的*** Active CN104736839B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261655095P 2012-06-04 2012-06-04
US61/655,095 2012-06-04
PCT/US2013/044020 WO2013184635A2 (en) 2012-06-04 2013-06-04 System for producing energy through the action of waves

Publications (2)

Publication Number Publication Date
CN104736839A CN104736839A (zh) 2015-06-24
CN104736839B true CN104736839B (zh) 2018-07-20

Family

ID=49668702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380041254.1A Active CN104736839B (zh) 2012-06-04 2013-06-04 用于通过波的作用产生能量的***

Country Status (14)

Country Link
US (1) US9944353B2 (zh)
EP (1) EP2855920B1 (zh)
JP (1) JP6454271B2 (zh)
KR (1) KR102155385B1 (zh)
CN (1) CN104736839B (zh)
AU (2) AU2013271795B2 (zh)
BR (1) BR112014030264B1 (zh)
CA (1) CA2874839A1 (zh)
CL (1) CL2014003305A1 (zh)
IN (1) IN2014DN10358A (zh)
MX (1) MX359786B (zh)
PE (1) PE20150225A1 (zh)
WO (1) WO2013184635A2 (zh)
ZA (1) ZA201408688B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9976535B2 (en) 2005-11-07 2018-05-22 Gwave Llc System for producing energy through the action of waves
US8915078B2 (en) * 2005-11-07 2014-12-23 Gwave Llc System for producing energy through the action of waves
US9944353B2 (en) 2012-06-04 2018-04-17 Gwave Llc System for producing energy through the action of waves

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US861997A (en) 1907-04-05 1907-07-30 John Lueck Wave-motor.
US1448029A (en) 1922-04-17 1923-03-13 Edward P Larry Water-movement-power vessel
FR27547E (fr) 1923-03-14 1924-07-28 Dispositif auto-compresseur pour la captation de l'énergie produite par le flot marin
US1545504A (en) 1923-08-20 1925-07-14 Daniel G Lilley Wave motor
US2170481A (en) 1936-08-12 1939-08-22 American Steel & Wire Co Submarine barrier
US3021864A (en) 1958-05-02 1962-02-20 Gulf Interstate Oil Company Pipeline
CH368985A (fr) 1960-05-11 1963-04-30 Francis Wittgenstein Gerard Procédé d'immersion d'un pipe-line subaquatique et pipe-line immergé par le procédé
US3204110A (en) 1961-07-07 1965-08-31 Masuda Yoshio Ocean wave electric generator
US3717103A (en) 1970-12-11 1973-02-20 North American Rockwell Low drag magnetic suspension system
DE2151150B2 (de) 1971-10-14 1972-10-05 Siemens Ag Elektromagnetische schwebeanordnung
US3870893A (en) * 1973-10-15 1975-03-11 Henry A Mattera Wave operated power plant
GR59794B (en) 1975-03-27 1978-02-28 Doris Dev Richesse Sous Marine Laying pipes under-water
SU587570A1 (ru) 1975-05-28 1978-01-05 Derevyanko Boris Ya Электрический генератор колебательного движени
IT1048460B (it) 1975-08-19 1980-11-20 Francisco A Conduttore sottomarino migliorato per la trasmissione di energia elettrica ad alta tensione in mare profondo
US4009396A (en) 1975-11-19 1977-02-22 Mattera Henry A Wave operated power plant
US4183697A (en) 1976-01-27 1980-01-15 Compagnie Generale Pour Les Developpements Operationnels Des Richesses Sous-Marines "C.G. Doris" Laying of underwater pipelines
US4048686A (en) 1976-07-09 1977-09-20 Kloften & Kloften A/S Buoyancy device and method
US4274757A (en) 1976-10-14 1981-06-23 Francisco Arnold Richard D Immersion/suspension method for the submarine deployment of high voltage transmission cable
FR2375463A1 (fr) 1976-12-22 1978-07-21 Scarpi Bruno Procede de recuperation de l'energie de la houle et dispositif de mise en oeuvre
US4123667A (en) 1977-03-28 1978-10-31 Decker Bert J Wave energy generator-breakwater-barge-dock
FR2391900A1 (fr) 1977-05-26 1978-12-22 Inst Francais Du Petrole Methode pour immerger un dispositif de flottabilite negative
GB1562174A (en) 1978-03-07 1980-03-05 Bichard J R Devices for deriving opwer from the sea
ZA787192B (en) * 1978-12-21 1980-04-30 J Watson Wave powered generator
US4260901A (en) 1979-02-26 1981-04-07 Woodbridge David D Wave operated electrical generation system
IT1163671B (it) 1979-04-05 1987-04-08 Pirelli Metodo e impianto per recuperare un tratto di un corpo lungiforme, tubazione, cavo elettrico sottomarino o elemento simile
JPS5634970A (en) * 1979-08-27 1981-04-07 Shizukiyo Kawasaki Ocean energy generating device
US4266143A (en) 1979-09-19 1981-05-05 Ng Ting F Apparatus for producing electrical energy from ocean waves
US4423334A (en) 1979-09-28 1983-12-27 Jacobi Edgar F Wave motion electric generator
US4364715A (en) 1980-02-11 1982-12-21 Bolding Richard D Wave actuated gas compression apparatus
FR2480361A1 (fr) 1980-04-10 1981-10-16 Compain Meteraud Paul Machine cinetique a mouvement entretenu
US4352023A (en) 1981-01-07 1982-09-28 Sachs Herbert K Mechanism for generating power from wave motion on a body of water
FR2500887A1 (fr) 1981-02-27 1982-09-03 Dubois Yves Dispositif permettant d'utiliser l'energie de la houle et des vagues
FR2504986A1 (fr) 1981-04-29 1982-11-05 Acremont Jules D Dispositif pour capter l'energie de la houle, et procede pour l'utilisation de ce dispositif
US4418286A (en) 1981-12-07 1983-11-29 Lisbon Scott Wave and tidal energy driven electric generator
FR2523654A1 (fr) 1982-03-16 1983-09-23 Najman Max Dispositif de production d'energie electrique a partir de la houle
DE3224894A1 (de) 1982-07-03 1984-01-05 Heinz-Günther 5810 Witten Rittscher Vorrichtung zur energieumwandlung
US4438343A (en) 1982-11-12 1984-03-20 Marken John P Wave power generator
US4497173A (en) 1984-04-04 1985-02-05 James Gillilan Power transducer system
FR2569744B1 (fr) 1984-09-05 1986-09-19 Spie Batignolles Procede et installation pour installer une canalisation en milieu subaquatique et canalisation ainsi realisee
SU1363393A1 (ru) 1985-12-13 1987-12-30 Ставропольский политехнический институт Устройство дл преобразовани энергии морских волн в электрическую энергию
US4719158A (en) 1987-03-27 1988-01-12 Temple University-Of The Commonwealth System Of Higher Education Process and apparatus for converting rocking motion into electrical energy
JPH0819894B2 (ja) * 1987-04-14 1996-03-04 チッソ株式会社 波浪エネルギ−変換装置
US4781023A (en) 1987-11-30 1988-11-01 Sea Energy Corporation Wave driven power generation system
WO1991000962A1 (en) 1989-07-06 1991-01-24 Baidar Garifovich Valiev Method and wave-energy installation for transformation of wave energy
US5256093A (en) 1992-03-20 1993-10-26 Balstad Leroy Marking buoy with shock cord
US5347186A (en) 1992-05-26 1994-09-13 Mcq Associates, Inc. Linear motion electric power generator
CN1086878A (zh) 1992-11-13 1994-05-18 祁国英 一种利用波浪发电的方法和装置
US5359229A (en) * 1993-08-06 1994-10-25 Youngblood George M Apparatus for converting wave motion into electrical energy
CN1063828C (zh) 1995-01-26 2001-03-28 鞠振业 变重心浮箱式波浪能转换器
US5552657A (en) 1995-02-14 1996-09-03 Ocean Power Technologies, Inc. Generation of electrical energy by weighted, resilient piezoelectric elements
US5710464A (en) 1996-01-17 1998-01-20 Kao; I. Nan Power drive system for converting natural potential energy into a driving power to drive a power generator
US5727496A (en) * 1996-05-03 1998-03-17 Global Oceanic Designs Ltd. Transport vehicle hull
NO315265B1 (no) 1996-06-11 2003-08-11 Norske Stats Oljeselskap Fremgangsmåte og system for forankring og posisjonering av et flytende fartöy, og et fartöy som omfatter et slikt system
US5955790A (en) 1998-03-13 1999-09-21 North; Vaughn W. Apparatus for converting tide/wave motion to electricity
US6003458A (en) * 1999-02-17 1999-12-21 Valliere; Michael R. Expandable pontoon boat
WO2000071891A1 (en) 1999-05-26 2000-11-30 U.S. Myriad Technologies Floating wave energy converter
US6647716B2 (en) 2000-06-08 2003-11-18 Secil Boyd Ocean wave power generator (a “modular power-producing network”)
GB0022641D0 (en) 2000-09-15 2000-11-01 French Michael J Paddle form sea wave energy converter moving in pitch and surge
ES2200618B1 (es) 2001-01-29 2005-05-16 Francisco J. Jauregui Carro Generador pendular.
JP4184803B2 (ja) * 2001-03-26 2008-11-19 博 神吉 ジャイロ式波力発電装置およびそれを使用した消波装置
JP2002339857A (ja) 2001-05-16 2002-11-27 Masaharu Miyake 振り子式発電装置
US6435126B1 (en) * 2001-07-10 2002-08-20 Morton Frederick Burke River craft with outboard seat
US20030116971A1 (en) 2001-12-21 2003-06-26 Pichit Likitcheva Method and apparatus for an automatic revolution of a floating device
US7288860B2 (en) 2002-02-19 2007-10-30 Teledyne Licensing, Inc. Magnetic transducer with ferrofluid end bearings
US6953002B2 (en) * 2002-03-26 2005-10-11 Jessen Robert H Boat wake system
DE10241854A1 (de) 2002-09-09 2003-04-03 Manfred Lottermoser Verfahren und Vorrichtungen zur Gewinnung von elektrischer Energie aus Wasserwellen
US7140180B2 (en) 2003-01-22 2006-11-28 Ocean Power Technologies, Inc. Wave energy converter (WEC) device and system
GB0306093D0 (en) 2003-03-18 2003-04-23 Soil Machine Dynamics Ltd Submerged power generating apparatus
US7105939B2 (en) 2003-05-08 2006-09-12 Motion Charge, Inc. Electrical generator having an oscillator containing a freely moving internal element to improve generator effectiveness
US6831373B1 (en) 2003-10-10 2004-12-14 Steven D. Beaston Hydropower generation apparatus and method
JP5295502B2 (ja) 2004-01-14 2013-09-18 オーシャン パワー テクノロジーズ,インク. 波力エネルギー変換器用の能動性インピーダンス整合システムおよび方法
FR2876751B1 (fr) 2004-10-15 2007-01-19 Centre Nat Rech Scient Cnrse Appareil pour convertir l'energie des vagues en energie electrique
CN2755302Y (zh) 2004-11-09 2006-02-01 刘洪超 海浪发电设备
US7323790B2 (en) 2005-03-15 2008-01-29 Ocean Power Technologies, Inc. Wave energy converters (WECs) with linear electric generators (LEGs)
GB0505906D0 (en) 2005-03-23 2005-04-27 Aquamarine Power Ltd Apparatus and control system for generating power from wave energy
US7607862B2 (en) 2005-08-29 2009-10-27 Thorsbakken Arden L Shoaling water energy conversion device
US7755224B2 (en) 2005-11-07 2010-07-13 Glenn Beane System for producing electricity through the action of waves on floating platforms
US8701403B2 (en) * 2005-11-07 2014-04-22 Gwave Llc System for producing energy through the action of waves
US8519557B2 (en) 2005-11-07 2013-08-27 Gwave Llc System for producing energy through the action of waves
US8915078B2 (en) 2005-11-07 2014-12-23 Gwave Llc System for producing energy through the action of waves
US20070116565A1 (en) 2005-11-07 2007-05-24 Glenn Beane System for producing electricity through the action of waves on floating platforms
US7239038B1 (en) 2005-12-16 2007-07-03 Harris Corporation Apparatus for electrical signal generation based upon movement and associated methods
US7322189B2 (en) 2005-12-19 2008-01-29 General Electric Company Wide bandwidth farms for capturing wave energy
US7339285B2 (en) 2006-01-12 2008-03-04 Negron Crespo Jorge Hydroelectric wave-energy conversion system
US7420287B2 (en) 2006-03-28 2008-09-02 Aleksandr Smushkovich Intermittent force powered electromagnetic converters especially for sea waves
US7872363B2 (en) 2006-04-13 2011-01-18 Morse Arthur P Wave energy harvesting and hydrogen-oxygen generation systems and methods
NO325929B1 (no) 2006-05-31 2008-08-18 Fobox As Anordning for opptak av bolgeenergi
WO2007142338A1 (ja) * 2006-06-08 2007-12-13 Yutaka Terao 洋上発電システム
DE102006029546A1 (de) 2006-06-26 2007-12-27 Hübner, Burkhard, Dipl.-Ing. (FH) Vorrichtung zur Umwandlung von kinetischer in elektrische Energie
WO2008005336A2 (en) * 2006-06-29 2008-01-10 Fastship, Inc. Monohull fast ship or semi-planing monohull with a drag reduction method
KR101548676B1 (ko) 2006-07-11 2015-09-01 오스트렐리언 서스테인너블 에너지 코포레이션 피티와이 엘티디 해양 파 에너지 변환장치
DE102006044563B4 (de) 2006-09-21 2019-02-07 Continental Automotive Gmbh Radelektronikanordnung mit Energiegenerator
AU2006349157B2 (en) 2006-10-03 2011-09-29 Oceantec Energias Marinas, S.L. Installation and method for harnessing wave energy using gyroscope
FR2911940A1 (fr) 2007-01-26 2008-08-01 Los Rios Pierre De Accumulateur d'energie cinetique
WO2008122867A2 (en) 2007-04-05 2008-10-16 Nav Tek S.R.L. System for exploiting the energy derived from wave motion
GB0710822D0 (en) 2007-06-05 2007-07-18 Overberg Ltd Mooring system for tidal stream and ocean current turbines
EP2162618B1 (en) 2007-06-29 2012-09-26 Aquantis, Inc. Underwater current turbine
US8334605B2 (en) 2007-07-20 2012-12-18 Vito Antonio Catinella Floating mechanical structure to produce directly electricity by means of the swinging of a magnetic pendulum caused by sea wave motion
CN201186160Y (zh) 2008-02-24 2009-01-28 叶尔克西·卡德尔别克 电动绕线的溜溜球
JP2009216076A (ja) 2008-03-12 2009-09-24 Takashi Yamaguchi 回転振り子を用いた波力発電装置
CN201196138Y (zh) 2008-05-16 2009-02-18 周冰 一种摆动式发电装置
WO2009140739A1 (en) * 2008-05-22 2009-11-26 Kim Chamberlin Improvements for a marine vessel
US20090313988A1 (en) * 2008-06-19 2009-12-24 Jean Yves Cassagnol Method of extracting energy from ocean waves
US7821183B2 (en) 2008-06-19 2010-10-26 Omnitek Partners Llc Electrical generators for low-frequency and time-varying rocking and rotary motion
WO2010008368A1 (en) * 2008-07-16 2010-01-21 Anadarko Petroleum Corporation Water current power generation system
US8344535B2 (en) 2008-08-22 2013-01-01 Natural Power Concepts, Inc. Platform for generating electricity from flowing fluid using generally prolate turbine
FI122615B (fi) 2008-09-26 2012-04-30 Wello Oy Aaltovoimala
JP5224520B2 (ja) * 2008-10-20 2013-07-03 独立行政法人海上技術安全研究所 船舶の波浪中抵抗増加低減装置
WO2010051630A1 (en) 2008-11-06 2010-05-14 Morgan, Eric, Andres Buoyancy energy storage and energy generation system
US8026620B2 (en) 2008-11-14 2011-09-27 Hobdy Miles Wave energy converter
CN201381930Y (zh) 2008-11-17 2010-01-13 全基烈 海浪发电装置
KR20110125212A (ko) * 2009-01-05 2011-11-18 델센 어소시에이츠, 엘.엘.씨. 해수 파도 에너지를 전기로 변환하는 방법 및 장치
US8193651B2 (en) * 2009-06-22 2012-06-05 Lightfoot Fred M Method and apparatus for ocean energy conversion, storage and transportation to shore-based distribution centers
US8198745B2 (en) 2009-08-20 2012-06-12 Huntington Ingalls Incorporated Tuned rolling wave energy extractor
GB2473659B (en) 2009-09-19 2012-04-11 Bruce Gregory Dynamically tuned wave energy conversion system
PT2348215E (pt) 2009-12-29 2013-08-29 Kyowa Co Ltd Método para aplanar irregularidades do fundo do mar
NZ601941A (en) * 2010-01-21 2014-02-28 Gordillo Inigo Echenique Oscillating wave-powered electricity generation system
JP5495117B2 (ja) * 2010-04-13 2014-05-21 株式会社三井造船昭島研究所 波力発電装置、波力発電方法
IES20100344A2 (en) 2010-05-26 2011-06-08 Sea Power Ltd Wave energy conversion device
JP5690116B2 (ja) * 2010-11-04 2015-03-25 川崎重工業株式会社 水流発電設備
CN202289436U (zh) 2011-10-31 2012-07-04 陈绍文 电动悠悠球
US9944353B2 (en) 2012-06-04 2018-04-17 Gwave Llc System for producing energy through the action of waves
US8920203B2 (en) 2012-12-12 2014-12-30 Nivo Innovations, Llc Marker buoy

Also Published As

Publication number Publication date
MX2014014849A (es) 2015-03-05
IN2014DN10358A (zh) 2015-08-07
KR20150023572A (ko) 2015-03-05
WO2013184635A3 (en) 2014-03-06
MX359786B (es) 2018-10-08
CN104736839A (zh) 2015-06-24
BR112014030264B1 (pt) 2021-10-13
AU2013271795A1 (en) 2014-12-18
BR112014030264A2 (zh) 2018-08-21
CL2014003305A1 (es) 2015-01-23
KR102155385B1 (ko) 2020-09-11
EP2855920A4 (en) 2016-10-26
JP6454271B2 (ja) 2019-01-16
AU2017200482A1 (en) 2017-02-16
EP2855920B1 (en) 2018-09-26
AU2013271795B2 (en) 2016-10-27
US20130319309A1 (en) 2013-12-05
JP2015520071A (ja) 2015-07-16
EP2855920A2 (en) 2015-04-08
PE20150225A1 (es) 2015-02-22
CA2874839A1 (en) 2013-12-12
ZA201408688B (en) 2016-07-27
WO2013184635A2 (en) 2013-12-12
US9944353B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
US20130098281A1 (en) Rolling reduction apparatus of floating structure
CN104736839B (zh) 用于通过波的作用产生能量的***
CN104024631B (zh) 波浪能发生器
CN103201506B (zh) 通过波浪作用产生能量的***
CN107002638B (zh) 用于利用风能的浮动平台
KR20140104006A (ko) 부체식 풍력 발전 장치
CN102938251A (zh) 获得缺陷态的两种二维声子晶体结构
KR20180047431A (ko) 선수에 구비된 윈드 디플렉터 및 이를 가지는 선박
KR101259089B1 (ko) 해상 시설물 설치용 선박
JP2010247646A (ja) 浮体式洋上風力発電における浮体式構造物とその係留方法
WO2016044325A1 (en) Optimized heave plate for wave energy converter
US20190002058A1 (en) Drilling tender unit
JP2020026181A (ja) 係留システム
CN204452848U (zh) 一种基于半潜驳船的纵横向下水两用结构
JP4490123B2 (ja) 浮体構造物
JP6634738B2 (ja) 発電装置
KR20150133358A (ko) 횡동요 저감장치
US11994096B2 (en) Combined marine hydrokinetic energy harvesting from currents and waves
Beukelman et al. Variation of parameters determining seakeeping
CN103253350A (zh) 动力增升穿浪三体船
Yoshida et al. On the Resonance-Motion-Free SWATH (RMFS) as an Oceangoing Large Fast Platform
Boulougouris et al. Seakeeping analysis of a modern AHTS vessel for operation in Brazilian offshore waters
US20120312216A1 (en) Vessel configured for pitch reduction
KR20150019540A (ko) 데크 면적이 확장된 부유식 원유생산 저장 하역설비
CN103204228A (zh) 一种海洋航行船舶的减摇方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant