CN104694491A - 玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用 - Google Patents

玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用 Download PDF

Info

Publication number
CN104694491A
CN104694491A CN201510025206.4A CN201510025206A CN104694491A CN 104694491 A CN104694491 A CN 104694491A CN 201510025206 A CN201510025206 A CN 201510025206A CN 104694491 A CN104694491 A CN 104694491A
Authority
CN
China
Prior art keywords
rranr
gene
plant
expression vector
rose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510025206.4A
Other languages
English (en)
Other versions
CN104694491B (zh
Inventor
宁国贵
罗平
包满珠
申玉晓
黄莎莎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201510025206.4A priority Critical patent/CN104694491B/zh
Publication of CN104694491A publication Critical patent/CN104694491A/zh
Application granted granted Critical
Publication of CN104694491B publication Critical patent/CN104694491B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8249Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving ethylene biosynthesis, senescence or fruit development, e.g. modified tomato ripening, cut flower shelf-life
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01077Anthocyanidin reductase (1.3.1.77)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用,玫瑰的花青素还原酶RrANR基因,其核苷酸序列为SEQ ID No.1所示,其长度为1020bp。该基因与植物原花青素合成有关。RrANR基因编码的花青素还原酶RrANR,其氨基酸序列为由SEQ ID No.2所示的氨基酸序列组成的蛋白质。本发明将玫瑰中克隆分离得到花青素还原酶基因(RrANR)导入烟草植株中,可以显著提高转基因植株中原花青素的含量,从而可以提取、分离纯化出更多的原花青素,创造出更大的经济效益有利于提高产品的附加值;并且将RrANR转化植株可以增强植物的抗逆性,为下一步培育具有高含量原花青素高抗氧化性的转基因玫瑰新品种奠定基础。

Description

玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用
技术领域
本发明涉及植物基因工程技术领域,具体地指一种玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用,该基因与植物原花青素合成有关。
背景技术
原花青素(Procyanidins,PAs)是植物界中广泛存在的一大类多酚类化化合物的总称(吕丽爽等,2007)。大量研究发现原花青素是迄今为止所发现的最强有效的自由基清除剂之一,其清除氧自由基的能力比常用的天然抗氧化剂,比如类胡萝卜素、维生素C和维生素E等都要强很多,它可以保护植物不受UV的伤害以及真菌的侵染,原花青素含量的增加可以提高植物的抗氧化能力(Winkel-Shirley,2002;Dixon,2005;Yuan,2013)。国内报道从黑莓、葡萄、荔枝、茶和落叶松等提取原花青素都具有不同程度抗氧化作用(徐怀德等,2008;周玮婧等,2012;王威等,2011;姜贵全,2013;蒋其钟,2010)。自由基和氧化应激是导致众多心血管疾病的重要原因,原花青素可通过强大的抗氧化活性,保护心血管***。动物实验和临床研究表明,原花青素可通过降低胆固醇水平,减少血管壁上的胆固醇沉积,提高血管弹性来降低血压(Packeret,1998)。原花青素的抗肿瘤功效国外己有许多研究报道,证实原花青素对多种癌细胞有不同程度的抑制作用,对皮肤癌、口腔癌、肝癌、肺癌、胰腺癌、胃癌、结肠癌等均有一定的预防或治疗作用(杜晓芬等,2005)。原花青素的抗癌机制,主要由于原花青素具有强大的抗氧化和清除自由基的能力,而致癌的诱发阶段与促进阶段均与活性氧自由基相关,原花青素可以抑制诱导癌 细胞生长并诱导细胞调亡。
玫瑰(Rosa rugosa Thunb.)是蔷薇科蔷薇属落叶丛生灌木,花型秀美,芳香四溢,色彩绚丽,在中国传统名花中评价极高,素有“花中皇后”之称。玫瑰具有重要的经济价值,其花瓣果实均含有原花青素,可以提取、分离纯化出原花青素,进行工艺优化,使之更加科学化、高效化和产业化,创造出更大的经济效益有利于提高产品的附加值,开发出符合人们需要的功能食品、保健食品、营养滋补品和药品等系列产品,使特种资源变成经济优势,其前景将更加广阔。
发明内容
本发明所要解决的技术问题就是提供一种玫瑰的花青素还原酶(Anthocyanidin Reductase)RrANR基因及其编码蛋白和应用。该基因与植物原花青素合成有关。将该基因的完整翻译区与花椰菜花叶病毒启动子结合后直接转入一般植物体,转基因植株的花色发生变化,原花青素含量显著增加,转基因植株的抗氧化能力明显增强。
为解决上述技术问题,本发明提供的一种玫瑰的花青素还原酶RrANR基因,其核苷酸序列为SEQ ID No.1所示,其长度为1020bp。
进一步地,获得所述RrANR基因核苷酸序列引物对为:
P1正向引物:5’-ATGGCCACCCCCCAACCC-3’;
P2反向引物:5’-CTAGCTCTGCAGCTCCCC-3’。
本发明还提供了一种RrANR基因编码的花青素还原酶RrANR,其氨基酸序列为由SEQ ID No.2所示的氨基酸序列组成的蛋白质,其长度为339bp。
本发明还提供一种重组表达载体,它含有权利要求1所述的原核表达载体。
进一步地,所述的原核表达载体为遗传转化载体pCAMBIA2300s。
本发明还提供了一种含有重组表达载体的大肠杆菌DH5α表达 菌株。
本发明还提供了一种含有重组表达载体的宿主细胞,其特征在于:所述宿主细胞为农杆菌EHA105。
本发明还提供了下述各项之一在提高植物原花青素合成和增强抗逆性上的应用,包括:
1)权利要求3或4所述的重组表达载体,
2)含有权利要求3或4所述重组表达载体的大肠杆菌DH10Bac表达菌株;
3)含有权利要求3或4所述重组表达载体的宿主细胞,其特征在于:所述宿主细胞为农杆菌EHA105。
进一步地,所述的植物为烟草。
本发明还提供了一种培育转基因植物的方法,包括以下步骤:
1)目的基因的克隆;
2)植物表达载体构建;
3)受体的遗传转化;
4)阳性转基因植株的鉴定;
5)转基因植物表型及生理分析。
进一步地,所述阳性转基因植株的鉴定的引物对为:
P3正向引物:5’-TGAAGGGAGCTTCGATGCTGCTA-3’;
P4反向引物:5’-TTTCGTCCGCAATCAAGCCTGTG-3’。
本发明可利用任何一种可以引导外源基因在植物中表达的载体,通过直接DNA转化、电导、农杆菌介导等常规生物技术方法将本发明提供的RrANR的编码基因导入植物细胞或组织,并将转化的植物组织培育成植株。使用本发明的基因片段构建到植物表达载体中时,在其转录起始核苷酸前面可加上任意一种增强启动子或诱导型启动子。为了便于对转基因植物细胞或者植株进行鉴定及筛选,可对所使用的载体进行加工,如加入具有抗性的抗生素标记物(例如卡那霉素 或潮霉素等)。被转化的宿主是包括烟草在内的多种植物,培育不同花色的植物种类。
本发明的有益效果在于:
本发明将玫瑰中克隆分离得到花青素还原酶基因(RrANR)导入烟草植株中,可以显著提高转基因植株中原花青素的含量,从而可以提取、分离纯化出更多的原花青素,创造出更大的经济效益有利于提高产品的附加值;并且将RrANR转化植株可以增强植物的抗逆性,为下一步培育具有高含量原花青素高抗氧化性的转基因玫瑰新品种奠定基础。
附图说明
图1为是本发明的超量植物表达载体pCAMBIA2300s结构示意图;
图2为本发明的超量植物表达载体pCAMBIA2300s---RrANR构建示意图;
图3为对照早花烟草与转化RrANR基因的早花烟草的花色比较图;
图中:图3A为对照早花烟草花色;图3B为本发明转RrANR早花烟草的花色;
图4为RrANR基因在转基因植株中的表达量情况图;
图中:Col为早花烟草(作为转基因早花烟草的对照),#5,#9和#12为3个转基因株系;
图5为对照早花烟草与转化RrANR基因的早花烟草花瓣花青素含量图;
图中:Control为早花烟草(作为转基因早花烟草的对照),#5,#9和#12为3个转基因株系,*,**和***分别表明P<0.05,P<0.01和P<0.001的差异水平;
图6为对照早花烟草与转化RrANR基因的早花烟草花瓣原花青 素含量图;
图中:Control为早花烟草(作为转基因早花烟草的对照),#5,#9和#12为3个转基因株系。*,**和***分别表明P<0.05,P<0.01和P<0.001的差异水平;
图7为脱水前后未转化植株和三个转基因株系表型;
图中:图7A为脱水前后氮蓝四唑(NBT)对超氧阴离子的染色;
图7B为脱水处理后电导率的测定;*,**和***分别表明P<0.05,P<0.01和P<0.001的差异水平;Control为早花烟草(作为转基因早花烟草的对照),#5,#9和#12为3个转基因株系。
图8为过氧化氢处理未转化植株和三个转基因株系表型;
图中:图8A为过氧化氢处理后二氨基联苯胺(DAB)对过氧化氢染色;图8B为过氧化氢处理后丙二醛含量的测定。*,**和***分别表明P<0.05,P<0.01和P<0.001的差异水平;Control为早花烟草(作为转基因早花烟草的对照),#5,#9和#12为3个转基因株系。
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
实施例1分离克隆RrANR基因
本发明的前期对丰花玫瑰(又称“平阴一号”,http://tc.cctv.com/20100412/103621.shtml,丰花玫瑰的选育文献已经公开发表,见:吕传润(平阴玫瑰研究所),玫瑰新品种-丰花玫瑰及栽培技术,山东林业科技,2007,5:77;华中农业大学园艺林学学院园艺植物生物学花卉实践教学基地从山东省平阴县平阴玫瑰研究所引种)不同时期的花朵进行了转录组测序(转录组测序由深圳华大基因科技有限公司完成),在转录组测序结果设计特异引物:
P1正向引物:5’-ATGGCCACCCCCCAACCC-3’,
P2反向引物:5’-CTAGCTCTGCAGCTCCCC-3’;
将测序序列的1-1020bp从玫瑰品种‘丰花’(即丰花玫瑰)花瓣RNA反转录得到的cDNA中扩增出来,扩增得到的片段如SEQ ID No.1所示:
其具体步骤如下:具体步骤为:
1、采用常用的CTAB法(参照:《植物基因工程》,王关林,方宏筠主编)从玫瑰品种‘丰花’中提取花瓣总RNA,具体步骤如下:
1)向离心管中加入CTAB(十六烷基三甲基溴化铵)提取缓冲液(2%(W/V)CTAB,NaCl 1.4mol/L,EDTA(乙二胺四乙酸)20mmol/L,Tris·Cl 100mmol/L,2%(W/V)pvp)和10%的β-巯基乙醇,在水浴锅中预热;
2)将玫瑰花瓣用液氮冷却研磨,加入提取液中,混匀,65℃水浴10分钟;
3)加入等体积的氯仿:异戊醇(体积比24:1)混合液,颠倒混匀,静置10min,4℃下12000g离心10min;
4)取上清,重复步骤3);
5)取上清,加入终浓度为2mol/L的LiCl,冰浴10-12小时,12000g,4℃离心15分钟,弃上清,用75%乙醇清洗沉淀两次,溶于适量的DEPC(焦碳酸二乙酯)处理水中待用;
6)以从玫瑰品种‘丰花’中提取花瓣总RNA为模板,利用反转录酶(购自宝生物工程大连有限公司)将其反转录合成cDNA第一条链,反应条件为:65℃5min,42℃50min,70℃10min;
7)根据转录测序中的序列设计的特异引物:
P1正向引物:5’-ATGGCCACCCCCCAACCC-3’,
P2反向引物:5’-CTAGCTCTGCAGCTCCCC-3’;
将RrANR从玫瑰品种‘丰花’花瓣RNA反转录得到的cDNA中扩增出来;
反应条件: 
94℃预变性4min;94℃30sec,60℃30sec,72℃1min,37个循环;72℃延伸10min。将扩增获得的PCR产物连入18-T载体(购自宝生物工程大连有限公司),筛选阳性克隆并测序,获得所需的全长基因。该克隆被命名为18-RrANR质粒。
实施例2RrANR基因超量表达载体的构建,转化
为了能更好地阐明该基因的功能,将其在烟草中超量表达,从转基因植株的表型来验证。具体步骤是:
首先将实施例1中得到的阳性克隆18-RrANR质粒用BamH Ⅰ和SalⅠ双酶切,回收目的片段;同时,用同样的方法酶切携带双烟草花叶病毒启动子35S的遗传转化载体pCAMBIA2300s(该遗传转化载体来自湖北省武汉市华中农业大学作物遗传改良国家重点实验室构建和赠送)。酶切完毕,用包含RrANR基因的酶切片段和酶切的pCAMBIA2300s(图1)载体做连接反应,转化大肠杆菌DH5α(大肠杆菌菌株购自宝生物工程大连有限公司)。通过酶切筛选阳性克隆,获得转化载体,将其命名为pCAMBIA2300s-RrANR。
通过农杆菌介导的烟草遗传转化方法将其导入到早花烟草中,经过侵染、共培养、筛选同时具有卡那霉素抗性和潮霉素抗性的转化苗,再通过生根、练苗移栽等常规步骤,得到转基因植株。
遗传转化的主要步骤和应用试剂如下所述:
(1)试剂和溶液缩写
本发明中培养基所用到的植物激素的缩写表示如下:6-BA(6-BenzylaminoPurine,6-苄氨基嘌呤);NAA(Naphthalene acetic acid,萘乙酸);Kan(Kanamycin,卡那霉素);Cef(Cefotaxime,头孢霉素);Hyg(Hygromycin,潮霉素)
(2)用于早花烟草遗传转化的培养基配方
表1列出了本发明的各种培养基的成分及其用量。
表1早花烟草转化培养基设计
注:1/2MS,MS培养基的配制参见:Murashige T.and F.Skoog.Physiol.Plant,1962,15:473-497报道的方法。
表1中的Kan(Kanamycin,卡那霉素)、Cef(Cefotaxime,头孢霉素),Hyg(Hygromycin,潮霉素),采用0.45μm滤膜过滤方法灭菌,在上述除Kan、Hyg、Cef成分以外的培养基经常规121℃高压蒸汽灭菌20min后,待培养基冷却至50-60℃时,在超净工作台上加入。
(1)农杆菌介导的遗传转化步骤
1)农杆菌的培养 
首先,在带有对应抗性选择的固体LB培养基(10g/L蛋白胨+5g/L酵母提取物+10g/L氯化钠+Kan100mg/L+琼脂1.5g/L)上预培养农杆菌EHA10548小时,培养温度28℃;挑取预培养农杆菌单菌落,接种于对应抗性选择的液体LB培养基(10g/L蛋白胨+5g/L 酵母提取物+10g/L氯化钠+Kan100mg/L)中,于28℃200rpm摇床培养过夜,至菌液浓度OD600值大约为0.6。
2)叶盘转化法 
a.剪取早花烟草无菌苗上部完全展开的幼嫩叶片,将叶片剪成0.8cmˉ0.8cm大小小块,放入无菌烧杯中;
b.将准备好的菌液倒入烧杯,轻轻摇晃烧杯。叶片在菌液中浸泡10min;
c.将步骤b中的叶片取出,转移至灭好菌的滤纸上吸干;然后放置在如上所述的共培养培养基上暗培养三天,培养温度为28℃;
d.三天后,将叶片转入如表1所述的出芽选择培养基上,光照和暗培养交替(光照强度1000-1500lx,光照时间:16h/d,黑暗时间:8h/d)下培养,进行Kan和Hyg抗性芽的筛选分化,培养温度为28℃;
e.抗性芽形成后,将其切下,转入如上所述的壮苗选择培养基上,在光照和暗培养交替(光照强度1000-1500lx,光照时间:16h/d,黑暗时间:8h/d)下培养,进行Kan和Hyg抗性苗的筛选,培养温度为28℃;
f.将筛选得到的抗性苗转入如上所述的生根选择培养基上使其生根,在光照和暗培养交替(光照强度1000-1500lx,光照时间:16h/d,黑暗时间:8h/d)下培养,培养温度为28℃。
2)移栽
洗掉转基因早花烟草植株根上的残留培养基,将具有良好根系的幼苗转入温室,同时在最初的一个周内保持水分湿润。
结果共获得20个株系的PCR检测结果为阳性的转入质粒pCAMBIA2300s-RrANR的T0代转基因烟草。
实施例3:RrANR基因转基因T0代在田间的表型观测与RT-PCR检测
转基因早花烟草植株下地移栽后,直至开花期,将转基因早花烟草的花型与未转化早花烟草的花型进行比较,发现转RrANR基因的 烟草的花色发生改变:没有转化的早花烟草花色为花色(图3A);转RrANR基因的早花烟草花色变为白色(图3B)。
为了验证转基因早花烟草花色的改变是否与转入的RrANR基因有关,其采用了常用的RT-PCR方法对部分转基因早花烟草植株中RrANR基因表达进行了检测(结果见图3)。具体步骤如下:
采用TRIZOL试剂(购自宝生物工程大连有限公司)从转基因烟草1-6号株系中提取花的总RNA(提取方法根据上述TRIZOL试剂说明书操作),利用反转录酶(购自宝生物工程大连有限公司)将其反转录合成cDNA第一条链, 
反应条件为65℃5min,42℃50min,70℃10min。
先用报道的看家基因EF1α对反转录得到的cDNA进行检测和浓度调整,根据看家基因EF1α的序列设计一对引物:
P5正向引物:5’-TGGTTGTGACTTTTGGTCCCA-3’,
P6反向引物:5’-ACAAACCCACGCTTGAGATCC)-3’;进行PCR检测,反应条件为:94℃预变性4min;94℃30sec,60℃30sec,72℃30sec,28个循环;72℃延伸10min。试验结果如图3所示,看家基因EIF在早花烟草和转基因早花烟草中均能扩出,并且亮度一致。
然后,根据RrFLS1基因的序列,在靠近3’端设计一对引物:
P3正向引物:5’-TGAAGGGAGCTTCGATGCTGCTA-3’,
P4反向引物:5’–TTTCGTCCGCAATCAAGCCTGTG-3’;
进行RT-PCR检测,反应条件为:94℃预变性4min;94℃30sec,60℃30sec,72℃1min,35个循环;72℃延伸10min。试验结果表明,3株转基因烟草内均检测到有RrANR基因的表达,结果如图3所示。图3中显示:1:为没有转化的早花烟草的PCR扩增结果,2-4:为转入质粒pCAMBIA2300s-RrANR的转基因早花烟草的PCR扩增结果。
实施例4转RrANR早花烟草原花青素的提取与测定
准确称取0.4g叶片和花瓣,加入3mL提取液(丙酮︰水︰冰醋酸=70︰29.5︰0.5,体积比)于水浴条件下35℃超声1h,期间每隔20min用旋转振荡器振荡2min。12000rpm离心10min,取上清至新的离心管中,再分别用氯仿和正己烷抽提2次,然后用孔径0.45μm的尼龙微孔滤器过滤,保存于–40℃冰箱中。使用NanoDrop2000C光谱***进行定量分析,50μL中加入200μL对二甲氨基肉桂醛(DMACA;Sigma-Aldrich,MO,USA)(0.1%DMACA,90%reagent-grade ethanol,10%HCl),在640nm下每隔1min测定一次,连续测定10min,取读数最大值,采用3次重复,取平均值。原花青素含量采用标准品(+)—儿茶素(Sigma-Aldrich,MO,USA)定量。
实施例5转RrANR早花烟草花青素的提取与测定
准确称取0.5g叶片和花瓣,加入2.5mL提取液(甲醇︰盐酸︰水=70︰0.1︰29.9,体积比)于黑暗条件下4℃浸提24h,期间每隔6h用旋转振荡器振荡1min。12000rpm离心10min,取上清至新的离心管中,再用孔径0.22μm的尼龙微孔滤器过滤后,保存于-40℃冰箱中,用于花青苷与其他类黄酮的HPLC-DAD分析。使用岛津液相***进行定性,包括:LC-20AT型二元梯度泵,SIL-20AC自动进样器,CTO-20AC色谱柱控温箱,SPD-20AC检测器,LC-Solution工作站;色谱柱为日本Tosoh株式会社生产的TSK gel ODS-80Ts QA反相硅胶柱(4.6mm×250mm,粒径5μm,日本Tosoh株式会社)。
分析条件:流速0.8mL·min-1,柱温35℃,进样体积10μL,200~800nm范围内全波长扫描吸收光谱。流动相组成为:A相,10%甲酸-超纯水(体积比);B相,乙腈。分析时间35min。梯度洗脱程序为:0min,90%A,10%B;20min,70%A,30%B;25min,90%A,10%B。
运用HPLC-DAD方法,分别用520nm检测花瓣中花青苷。采用标准品半定量法分别计算干花中含有的相对于标准品的花青苷和花 黄素的含量(μg·g-1FW)(Wang et al.,2001)。其中花青苷标准品使用上海同田生物技术有限公司生产的矢车菊素–3–葡萄糖苷(cyanidin-3-O-glucoside,Cy3G)。
实施例6转RrANR早花烟草抗氧化能力测定
为了能更好地阐明该基因的功能,申请人选用,#5,#9和#12用半定量RT-PCR鉴定为三个超表达系,选用这三个系及对照(Control)进行脱水及H2O2处理。具体步骤是:首先将每个系取45天大的转基因苗的同一部位叶片置于培养皿上自然脱水90分钟,对脱水前后未转化植株及三个转基因株系活性氧积累进行组织化学染色分析,分别采用二氨基联苯胺(DAB)和氮蓝四唑(NBT)对H2O2及O2积累情况进行分析(根据染色的深浅及程度);并测定最后一个时间点(脱水90分钟)的电导率以及丙二醛(MDA)含量;同时,将生长约45d的烟草苗打成圆孔后浸入2%H2O2溶液中,处理2d,对H2O处理前后未转化植株及三个转基因株系活性氧积累进行组织化学染色分析,采用二氨基联苯胺(DAB)对H2O2积累情况进行分析(根据染色的深浅及程度);并测定丙二醛(MDA)含量和叶绿素含量。
(1)DAB和NBT组织化学染色分析步骤
对O2 -的检测,叶片浸在1mg ml-1NBT溶液中(PH7.8磷酸缓冲液)1-2h叶片有明显表型(叶片蓝色)。H2O2的检测,叶片浸在1mg ml-1pH7.8磷酸缓冲液的DAB工作液中(pH7.8),光下染色8个小时,等有明显表型进行脱色(褐色),再用无水乙醇将叶片绿色完全脱除后,最后用清水洗;
(2)丙二醛(MDA)含量测定步骤 
取0.2g叶片加入2ml 5%TCA(三氯乙酸)震荡混匀,12000rpm离心5min取上清加入0.67%TBA(β-硫代巴比妥酸)2ml 100度煮沸30min冷却后离心取上清,分别在450nm 532nm 600nm测定吸 光度,计算公式为MDA含量(umol/l)=6.45*(A532-A600)-0.56*A450;
(3)相对电导率的测定步骤
叶片被采集放入装有25ml去离子水50ml离心管中,将其置于旋转摇床在室温摇2个小时最初的电导率(C1)用电导仪(STARTER-3C,Shanghai,China)进行测定。样品在100℃沸水煮10min导致细胞内离子最大的渗漏,当其冷却至室温测其电导率为C2,相对电导率(C%)的计算公式为100*C1/C2。
其它未详细说明的部分均为现有技术。尽管上述实施例对本发明做出了详尽的描述,但它仅仅是本发明一部分实施例,而不是全部实施例,人们还可以根据本实施例在不经创造性前提下获得其他实施例,这些实施例都属于本发明保护范围。

Claims (11)

1.一种玫瑰的花青素还原酶RrANR基因,其核苷酸序列为SEQ ID No.1所示,其长度为1020bp。
2.根据权利要求1所述的RrANR基因,其特征在于:获得所述RrANR基因核苷酸序列引物对为:
P1正向引物:5’–ATGGCCACCCCCCAACCC-3’;
P2反向引物:5’-CTAGCTCTGCAGCTCCCC-3’。
3.一种权利要求1所述的RrANR基因编码的花青素还原酶RrANR,其氨基酸序列为由SEQ ID No.2所示的氨基酸序列组成的蛋白质。
4.一种重组表达载体,其特征在于:它含有权利要求1所述的原核表达载体。
5.根据权利要求4所述的重组表达载体,其特征在于:所述的原核表达载体为遗传转化载体pCAMBIA2300s。
6.含有权利要求4或5所述重组表达载体的大肠杆菌DH5α表达菌株。
7.含有权利要求4或5所述重组表达载体的宿主细胞,其特征在于:所述宿主细胞为农杆菌EHA105。
8.下述各项之一在提高植物原花青素合成和增强抗逆性上的应用,其特征在于:
1)权利要求4或5所述的重组表达载体;
2)含有权利要求4或5所述重组表达载体的大肠杆菌DH10Bac表达菌株;
3)含有权利要求4或5所述重组表达载体的宿主细胞,其特征在于:所述宿主细胞为农杆菌EHA105。
9.根据权利要求8所述的应用,其特征在于:所述的植物为烟草。
10.一种培育具有干旱性和盐害性的转基因植物的方法,其特征在于:包括以下步骤:
1)目的基因的克隆;
2)植物表达载体构建;
3)受体的遗传转化;
4)阳性转基因植株的鉴定;
5)转基因植物表型及生理分析。
11.根据权利要求培育转基因植物的方法,其特征在于:所述阳性转基因植株的鉴定的引物对为:
P3正向引物:5’-TGAAGGGAGCTTCGATGCTGCTA-3’;
P4反向引物:5’–TTTCGTCCGCAATCAAGCCTGTG-3’。
CN201510025206.4A 2015-01-19 2015-01-19 玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用 Expired - Fee Related CN104694491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510025206.4A CN104694491B (zh) 2015-01-19 2015-01-19 玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510025206.4A CN104694491B (zh) 2015-01-19 2015-01-19 玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用

Publications (2)

Publication Number Publication Date
CN104694491A true CN104694491A (zh) 2015-06-10
CN104694491B CN104694491B (zh) 2018-07-17

Family

ID=53342047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510025206.4A Expired - Fee Related CN104694491B (zh) 2015-01-19 2015-01-19 玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用

Country Status (1)

Country Link
CN (1) CN104694491B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267551A (zh) * 2017-07-27 2017-10-20 扬州大学 玫瑰RrNUDX1 基因在增强植物花香中的应用
CN107312783A (zh) * 2017-05-17 2017-11-03 运城学院 树莓花青素还原酶基因的全序列及其制作方法
CN108004150A (zh) * 2017-12-23 2018-05-08 安徽工程大学 一种黑附球菌ls10h及其应用
CN108503699A (zh) * 2018-06-12 2018-09-07 中国科学院西北高原生物研究所 枸杞基因以及其编码蛋白质、重组载体、及其用途
CN113637679A (zh) * 2021-07-19 2021-11-12 河北农业大学 一种抗逆植物基因及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333250A (zh) * 2008-08-06 2008-12-31 中国农业科学院生物技术研究所 一种植物抗逆蛋白master及其编码基因的应用
CN103146748A (zh) * 2012-04-13 2013-06-12 天津大学 农杆菌介导的侵染月季芽点转基因的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333250A (zh) * 2008-08-06 2008-12-31 中国农业科学院生物技术研究所 一种植物抗逆蛋白master及其编码基因的应用
CN103146748A (zh) * 2012-04-13 2013-06-12 天津大学 农杆菌介导的侵染月季芽点转基因的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALMEIDA,J.R ET AL: "Fragaria x ananassa anthocyanidin reductase (ANR) mRNA, complete", 《GENBANK: DQ664192.1》 *
VINAY KUMAR,ET AL: "Transgenic Tobacco Overexpressing Tea cDNA Encoding Dihydroflavonol 4-Reductase and Anthocyanidin Reductase Induces Early Flowering and Provides Biotic Stress Tolerance", 《PLOS ONE》 *
YANG,M ET AL: "Rosa roxburghii anthocyanidin reductase mRNA, partial cds", 《GENBANK:JQ041640.1 》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107312783A (zh) * 2017-05-17 2017-11-03 运城学院 树莓花青素还原酶基因的全序列及其制作方法
CN107267551A (zh) * 2017-07-27 2017-10-20 扬州大学 玫瑰RrNUDX1 基因在增强植物花香中的应用
CN108004150A (zh) * 2017-12-23 2018-05-08 安徽工程大学 一种黑附球菌ls10h及其应用
CN108503699A (zh) * 2018-06-12 2018-09-07 中国科学院西北高原生物研究所 枸杞基因以及其编码蛋白质、重组载体、及其用途
CN113637679A (zh) * 2021-07-19 2021-11-12 河北农业大学 一种抗逆植物基因及应用
CN113637679B (zh) * 2021-07-19 2024-03-05 河北农业大学 一种抗逆植物基因及应用

Also Published As

Publication number Publication date
CN104694491B (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
Sung et al. Capsaicin biosynthesis in water-stressed hot pepper fruits
Liu et al. Research progress in amur grape, Vitis amurensis Rupr.
CN104694491A (zh) 玫瑰的花青素还原酶RrANR基因及其编码蛋白和应用
US20060225154A1 (en) Method for increasing expression of stress defense genes
Wang et al. Isolation and characterization of a novel chalcone synthase gene family from mulberry
Murakami et al. Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn
CN110845590B (zh) 野葡萄VyPPR基因及其编码蛋白在干旱胁迫中的应用
Hu et al. Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress
CN106256907A (zh) 梨PuADH1基因、分离克隆及表达分析的方法、亚细胞定位方法及其应用
CN103789328A (zh) 玫瑰功能基因RrFLS1在调控植物类黄酮代谢中应用
CN102120996A (zh) 葡萄白藜芦醇-氧-甲基转移酶催化白藜芦醇生成紫檀芪的方法
Sharma et al. Dioscorea alata tuber proteome analysis shows over thirty dioscorin isoforms and novel tuber proteins
CN112626077A (zh) 一种参与抗旱的苹果自噬相关基因及其应用
CN110452917B (zh) 野葡萄VyGOLS基因及其编码蛋白在干旱胁迫中的应用
CN104844702B (zh) 植物耐逆性相关蛋白GmSTOP1及其编码基因的应用
CN107400671A (zh) 梨果实糖转运蛋白基因PbTMT4及其应用
CN109988772B (zh) 马铃薯块茎花色素苷合成转录抑制子StMYB44-1及应用
CN103993019B (zh) 玫瑰RrDFR1基因在调控植物花青素合成中的应用
KR20140040372A (ko) Romt 및 sts 유전자를 이용한 식물의 스틸벤 함량을 증가시키고 화색을 변화시키는 방법
CN105950644B (zh) 芦笋查尔酮异构酶基因及其编码的蛋白与应用
CN109593738A (zh) 秋葵类胡萝卜素生物合成和抗逆性相关蛋白AePDS及其编码基因与应用
CN109678943A (zh) 蛋白AeZDS及其编码基因在提高植物类胡萝卜素积累和抗逆性中的应用
CN105936914B (zh) 芦笋查尔酮合成酶基因及其编码的蛋白与应用
CN102277360A (zh) 一种对樱della蛋白及其编码基因与应用
CN105087508A (zh) 茄子黄烷酮3-羟化酶SmF3H及其基因和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180717

Termination date: 20200119