CN104681677B - 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法 - Google Patents

一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法 Download PDF

Info

Publication number
CN104681677B
CN104681677B CN201510086426.8A CN201510086426A CN104681677B CN 104681677 B CN104681677 B CN 104681677B CN 201510086426 A CN201510086426 A CN 201510086426A CN 104681677 B CN104681677 B CN 104681677B
Authority
CN
China
Prior art keywords
layer
algan
nio
type
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510086426.8A
Other languages
English (en)
Other versions
CN104681677A (zh
Inventor
董鑫
杜国同
殷景志
张源涛
张宝林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiadan Electronic Information Co ltd
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201510086426.8A priority Critical patent/CN104681677B/zh
Publication of CN104681677A publication Critical patent/CN104681677A/zh
Application granted granted Critical
Publication of CN104681677B publication Critical patent/CN104681677B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明属于半导体发光器件及其制备技术领域,涉及一类具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法。器件由衬底、衬底上外延生长的AlN缓冲层和下限制层、下限制层上制备的相互分立的AlGaN材料系多量子阱发光层和下电极、发光层上制备的p型AlGaN上限制层、上限制层上制备的p型空穴注入层、空穴注入层上面制备的上电极构成,下限制层是两次完成生长的具有微孔结构的n‑AlGaN外延层,p型空穴注入层是p型NiO薄膜,p型AlGaN上限制层的厚度为5~150nm。本发明利用微孔高效吸收应力与位错,提高外延层晶体质量,利用高空穴浓度的NiO薄膜提高空穴注入效率,以提高紫外发光管的输出功率和效率。

Description

一种具有微孔结构的NiO-AlGaN紫外发光管及其制备方法
技术领域
本发明属于半导体发光器件及其制备技术领域,特别是涉及一类具有微孔结构的NiO-AlGaN紫外发光管及其制备方法。
背景技术
随着第三代半导体材料氮化镓的突破和蓝、绿、白光发光二极管的问世,继半导体技术引发微电子革命之后,又在孕育一场新的产业革命———照明革命,其标志是半导体灯将逐步替代白炽灯和荧光灯。由于半导体照明(亦称固态照明)具有节能、长寿命、免维护、环保等优点,业内普遍认为,如同晶体管替代电子管一样,半导体灯替代传统的白炽灯和荧光灯,也是科学技术发展的必然和大势所趋。目前用于半导体照明的白光发光管(LED)主要是用GaN材料系的蓝光发光管涂覆黄光荧光粉构成,其发光效率不高。如果用紫外光发光管直接激发白光荧光粉发光效率会大大提高。此外,紫外光发光管在丝网印刷、聚合物固化、环境保护、曝光照明以及军事探测等领域都有重大应用价值。所以AlGaN紫外光发光管是近几年人们研究开发的热点。目前大多数的AlGaN LED是在Al2O3单晶衬底上外延生长多层AlGaN系材料薄膜制备的。但是由于Al2O3单晶和AlGaN晶格失配比和GaN晶格失配还大,所以外延生长的AlGaN系薄膜晶体质量不好,位错密度可能高达10E10~10E9/cm3,导致发光效率低。另一方面,AlGaN随着Al组分的提高,施主和受主的离化能逐渐增大,载流子浓度降低,特别是p型AlGaN解决不好,使空穴注入效率低,也导致发光效率低。
为了克服上述AlGaN材料系紫外发光管制备的这一困难,本发明提出一种新型具有微孔结构的NiO-AlGaN紫外发光管及其制备方法。
发明内容
本发明的目的就是为解决上述AlGaN材料系紫外发光管的这一问题,在外延生长发光有源层之前制备一层具有微孔结构的AlGaN下限制层,对AlGaN薄膜内应力与位错高效吸收,以提高AlGaN系量子阱有源层晶体质量;同时利用具有高空穴浓度的p-NiO做空穴注入层,以提高空穴注入效率,提高紫外LED发光效率,从而提供一种新型具有微孔结构的NiO-AlGaN紫外发光管及其制备方法。
本发明的技术方案是:
本发明所设计的一种新型具有微孔结构的NiO-AlGaN紫外发光管(见附图1和附图说明),其特征在于:由衬底1、衬底1上制备的AlN缓冲层2、AlN缓冲层2上制备的下限制层3、下限制层3上制备的相互分立的AlGaN材料系多量子阱发光层4和下电极7、多量子阱发光层4上制备的p型AlGaN上限制层5、p型上限制层5上面制备的p型空穴注入层6、空穴注入层6上面制备的上电极8构成,衬底1是Al2O3单晶片,下限制层3是两次生长得到的内部具有椭球形微孔结构的n-Alx1Ga1-x1N外延层(第一次生长时n-Alx1Ga1-x1N下限制层3的厚度为1~3微米,第二次生长时下限制层3的厚度为2~200纳米),p型空穴注入层6是p型NiO薄膜,p型AlGaN上限制层5的厚度为5~150nm,以使p型空穴注入层的空穴能有效的注入到多量子阱发光层4中,多量子阱发光层4由5~10对量子阱组成,阱层与垒层由Al组分不同的AlGaN材料制成,垒层材料为Alx2Ga1-x2N,阱层材料为Alx3Ga1-x3N;其中,0≤x3≤0.8,且x1≥x2>x3;阱层厚度为2~5nm,垒层厚度为10~20nm。
该种发光管为倒装(即外延层面向下装配焊接在支架或热沉上)结构,电子与空穴在多量子阱发光层4中复合发光并出射。衬底出光,出光方向如箭头9所示。
进一步地为了克服极化效应对发光效率的影响,使器件发光效率进一步提高,可以制备非极性或半极性面AlGaN材料系多量子阱发光层4的具有微孔结构的NiO-AlGaN紫外发光管。这种器件结构的特征在于:控制具有微孔结构n-Alx1Ga1-x1N下限制层3的微孔上面的生长厚度(即下限制层3二次生长时的厚度)要薄,厚度控制在2~100nm之间,使微孔上面的n-AlGaN外延层表面呈现更多的非极性面或半极性面,这样在下限制层3上外延生长的多量子阱发光层4就会有更多非极性或半极性生长,如图2所示的多量子阱发光层4。
前面所述的具有微孔结构的NiO-AlGaN紫外发光管的制备方法,其步骤如下:
A、采用金属有机物化学气相沉积(MOCVD)方法在Al2O3单晶衬底1(厚度为300~500微米)上依次制备AlN缓冲层2和n-Alx1Ga1-x1N下限制层3;AlN缓冲层2的厚度为2~150nm,生长源为三甲基铝和高纯氨气,不掺杂,生长温度为600~800℃,生长压强为300~400torr;n-Alx1Ga1-x1N下限制层3的厚度为1~3微米,生长源为三甲基铝、三甲基镓和高纯氨气,利用气态硅烷进行Si元素掺杂,生长温度为900~1100℃,生长压强为300~400torr,掺杂的粒子浓度为1017~1019/cm3(如图3a所示);
B、采用感应耦合式刻蚀机,利用氯气与其他氯化物的混合气体在室温、低压(10~20mtorr)下对n-Alx1Ga1-x1N下限制层3进行腐蚀,其腐蚀速度为100~300nm/min,腐蚀3~10分钟,腐蚀后在n-Alx1Ga1-x1N下限制层3上得到面密度为108~1010/cm2的纳米柱,纳米柱的高度为700~1000nm,直径为50~100nm(如图3b所示,);再放入MOCVD反应室进行n-Alx1Ga1-x1N下限制层3的二次生长,生长厚度控制在2~200纳米范围内,在纳米柱之间就会形成椭球形微孔,微孔的高度为800~1100nm,微孔的中心直径为200~400nm;这些椭球形微孔会吸收n-Alx1Ga1-x1N下限制层3薄膜内的应力与位错,使再生长的下限制层3具有较高的晶体质量(如图3c所示);同时在量子阱发光层4中形成大量的半极化面与非极化面(具有半极化面与非极化面),从而降低、甚至消除极化效应的影响并增加器件的发光面积。另外,微孔还可以起到波导和散射的作用,显著提高光的出射率;
C、再在二次生长的n-Alx1Ga1-x1N下限制层3上面继续用MOCVD方法依次生长AlGaN材料系多量子阱(包括垒层材料Alx2Ga1-x2N和阱层材料Alx3Ga1-x3N,其生长温度和压强均与下限制层3的生长条件相同,阱层的厚度为2~5nm,垒层的厚度为10~20nm)发光层4和经二茂镁掺杂的、粒子掺杂浓度为2×1017~8×1017/cm3的p型AlGaN上限制层5(生长温度为900~1100℃,压强为300~400torr,厚度范围是5~150nm);然后,在p型AlGaN上限制层5上利用磁控溅射(功率控制在60~140W,使用气体为氧气和氩气的混合气体,压强为15~30mtorr,氧气和氩气的混合气体中氧气体积含量为20%~80%)制备p型NiO薄膜为p型空穴注入层6(掺杂剂为Li元素,掺杂粒子浓度范围为1018~1019/cm3),厚度为800~1000nm;AlGaN材料系多量子阱发光层4中阱层的Al组分x3含量根据所要制备发光管的发光波长设计,一般地,0≤x3≤0.8,且x1≥x2>x3。
D、制备上电极8和下电极7,厚度在150~300nm范围内;上电极8和下电极7材料可用Au、Ni-Au、Ti-Au、Zn-Au或Pt-Au等二元合金材料,也可以用Ti-Pt-Au、Ti-Ni-Au或Ni-Pt-Au等三元合金材料,蒸镀下电极的方法可采用热蒸镀、电子束蒸镀或磁控溅射方法制备;合金中材料的比例关系需根据所接触半导体材料的功函数进行计算;
E、最后,进行划片,制备成边长200微米~3毫米的方形管芯,然后将管芯倒装,即外延层面向下,装配焊接在热沉或支架上,便制备得到这种发光管。
本发明的效果和益处:
本发明可以克服Al2O3单晶衬底和AlGaN晶格失配大,AlGaN外延层晶体质量不高的缺点;可以克服目前制备的p型AlGaN或p型GaN空穴浓度低,导致空穴注入效率低的问题,提高空穴注入效率,以提高紫外发光管的输出功率和效率。
附图说明
图1:具有微孔结构的NiO-AlGaN紫外发光管结构示意图(这一技术方案能够解决下限制层3的晶体质量问题);
图2:具有非极性或半极性面多量子阱发光层4的微孔结构NiO-AlGaN紫外发光管结构示意图(这一技术方案是在图1所示方案的基础上,解决极化效应的问题);
图3:微孔结构n-AlGaN下限制层3的制备工艺过程示意图。
图4:正常生长的AlGaN薄膜(a)与利用微孔结构生长AlGaN薄膜(b)的原子力显微镜照片
图5:实施例1发光器件的电注入发光谱图;
图6:常规的LED与利用微孔法制成的LED的光输出强度对比。
图中部件1为衬底,2为AlN缓冲层,3为具有微孔结构的下限制层,4为AlGaN材料系多量子阱发光层,5为p型AlGaN上限制层,6为p型NiO空穴注入层,7为下电极,8为上电极,9为出光方向箭头。
具体实施方式
实施例1:
波长360nm左右的具有微孔结构的NiO-AlGaN紫外发光管。这种新型微孔结构NiO-AlGaN紫外发光管结构见附图1,依次由衬底1、衬底1上外延生长的AlN缓冲层2和下限制层3、下限制层3上制备的相互分立的AlGaN材料系多量子阱发光层4和下电极7、发光层4上制备的p型AlGaN上限制层5、上限制层5上面制备的p型空穴注入层6、空穴注入层6上面制备的上电极8构成,其特征在于:衬底1是Al2O3单晶片,下限制层3是具有微孔结构的n-AlGaN外延层,p型空穴注入层6是p型NiO薄膜,p型AlGaN上限制层5厚度为100nm,以使p型空穴注入层的空穴能有效的注入到多量子阱发光层4中。
其制备过程为,以Al2O3单晶片为衬底1,厚度为500微米,首先在超声状态下依次使用甲苯、丙酮、乙醇和去离子水分别清洗衬底5分钟,然后利用高纯氮气将衬底吹干。氮化物的生长使用目前成熟的常规MOCVD工艺,生长源为三甲基铝、三甲基镓和高纯氨气。先在衬底1上生长AlN缓冲层2(生长温度为720℃,生长压强为300torr,厚度为100nm)和经硅烷掺杂的n-Alx1Ga1-x1N下限制层3(生长温度为970℃,生长压强为350torr,掺杂粒子浓度为5.7×1018/cm3,厚度为2微米)。
然后在感应耦合式刻蚀机中,采用Cl2与BCl3混合气体(流量分别为27sccm和5sccm)在室温、15mtorr的压强下对n-Alx1Ga1-x1N下限制层3进行腐蚀,腐蚀速度为210nm/min,腐蚀时间为5分钟。腐蚀后留下面密度为3.2×108/cm2的纳米柱,其高度为900nm,直径为80nm;再放入MOCVD反应室进行n-Alx1Ga1-x1N下限制层3的二次生长,生长厚度为50nm,在纳米柱之间就会形成椭球形微孔,微孔的平均高度为1微米,中心直径约为300nm。这些椭球形微孔会吸收n-Alx1Ga1-x1N下限制层3薄膜内应力与位错,使再生长的下限制层3具有较高的晶体质量,这一具有椭球形微孔结构n-Alx1Ga1-x1N下限制层3的制备工艺过程如图3所示。再在二次生长的n-Alx1Ga1-x1N下限制层3上面继续用MOCVD方法依次生长AlGaN材料系多量子阱发光层4(由5对量子阱组成,阱层与垒层的生长温度均为970℃,生长压强为350torr,垒层的厚度为10nm,Al组分x2=0.2,阱层的厚度为2nm,Al组分x3=0)和p型AlGaN上限制层5(生长温度为970℃,生长压强为350torr,厚度为100nm,掺杂源为二茂镁,掺杂粒子浓度为7.8×1017/cm3);然后,采用磁控溅射方法制备p型NiO的空穴注入层6,NiO的p型掺杂剂为Li元素,磁控溅射采用Li元素摩尔浓度为5%的NiO陶瓷靶材,制备p型NiO为p型空穴注入层6,使用功率为100W,使用气体为氧气、氩气的混合气体(其中氧气占总体积的40%),压强为15mtorr,厚度为1000nm,p型NiO的掺杂粒子浓度为2.24X1019/cm3
360nm左右波长的AlGaN材料系多量子阱发光层4中阱层的Al组分x3为0,即GaN材料,多量子阱发光层4中垒层的Al组分x2含量为0.2;n-Alx1Ga1-x1N下限制层3的Al组分含量x1为0.2。然后,采用目前成熟的同面电极LED工艺,即光刻ITO、ICP刻蚀、光刻电极、蒸镀电极、剥离合金等一系列流程(详见:徐进,《GaN欧姆接触及器件的研究》,2003,浙江大学硕士论文)制备上电极8和下电极7;上电极8和下电极7材料分别为Au0.83Zn0.17和Ni0.5Au0.5,厚度均为200nm。最后,进行划片,制备成边长为500微米的正方形管芯,然后将管芯倒装,即外延层面向下,装配焊接在热沉或支架上,便制备得到发光管。
本实施例中各项性能测试数据如下:
a.相比较晶体质量提高数据:
表1:有微孔结构的n-AlGaN下限制层3和没有微孔结构的下限制层薄膜在不同晶面倾斜角下的双晶摇摆曲线半高宽
从表1的数据可见,利用微孔法制备的薄膜,其XRD摇摆曲线半高宽仅为0.1°,而且基本不随测试晶面倾斜角的变化而增加。这说明该薄膜各向均匀,晶体质量有了极大提高。同理,对比附图4中薄膜的原子力显微镜照片也能够发现微孔法能够显著提高薄膜的晶体质量。
b.制备的p型NiO电学特性数据:
表2:不同氧分压下溅射法得到NiO薄膜的霍尔测试结果
表3:不同溅射功率下NiO薄膜样品的霍尔测试结果
样品/功率 电阻率(Ω·cm) 迁移率(cm2/v.s) 载流子浓度(/cm3)
(A)/60W 2.428 0.0267 +9.638e+20
(B)/80W 1.847 0.0358 +9.442e+19
(C)/100W 1.806 0.18 +1.917e+19
(D)/120W 1.429 0.284 +1.539e+19
(E)/140W 1.809 0.201 +1.853e+19
测量设备为HL5055型号霍尔系数测量仪。由表2数据可见,在溅射过程中加大氧气的压强能够显著增加样品的空穴浓度、降低电阻率。由表3数据可见,适当的调节溅射功率也同样可以增加空穴浓度。所以,氧分压与溅射功率对NiO薄膜的空穴浓度影响很大。考虑到目前p型GaN材料系最高的载流子浓度仅为5X1017~1X1018/cm3,所以如果我们控制好氧分压和溅射功率,完全可以获得比目前p型GaN材料系高1~2个数量级的空穴浓度,达到4X1018~9X1019/cm3
c.实施例器件电学和发光特性数据:
实施例发光管器件呈现典型的二极管整流特性,正向开启电压为2.8~3.2V,反向击穿电压大于10V。
实施例发光管器件的电注入发光特性,正向导通后发光波长在360nm左右,由于p型载流子注入效率较高,有的器件还产生了随机激光溅射发光,其发光光谱见附图5,这是目前国内外未见报道的优异结果。从附图6中还可以发现,利用微孔法制备的LED器件,其输出光强度较以往提高了3倍以上。由上面一些数据可以看出本发明方案的优越性和效果。从而表明了,本发明利用微孔高效吸收应力与位错,提高外延层晶体质量,利用高空穴浓度的NiO薄膜提高空穴注入效率,以提高紫外发光管的输出功率和效率。

Claims (6)

1.一种具有微孔结构的NiO-AlGaN紫外发光管,其特征在于:由衬底(1)、衬底(1)上制备的AlN缓冲层(2)、AlN缓冲层(2)上制备的下限制层(3)、下限制层(3)上制备的相互分立的AlGaN材料系多量子阱发光层(4)和下电极(7)、多量子阱发光层(4)上制备的p型AlGaN上限制层(5)、p型AlGaN上限制层(5)上面制备的p型空穴注入层(6)、空穴注入层(6)上面制备的上电极(8)构成;且衬底(1)是Al2O3单晶片,下限制层(3)是两次生长得到的内部具有椭球形微孔结构的n-Alx1Ga1-x1N外延层,p型空穴注入层(6)是p型NiO薄膜,p型AlGaN上限制层(5)的厚度为5~150nm,多量子阱发光层(4)由5~10对量子阱组成,阱层与垒层由Al组分不同的AlGaN材料制成,垒层材料为Alx2Ga1-x2N,阱层材料为Alx3Ga1-x3N;其中,0≤x3≤0.8,x1≥x2>x3;
其中,n-Alx1Ga1-x1N下限制层(3)是利用气态硅烷进行Si元素掺杂,生长温度为900~1100℃,生长压强为300~400torr,掺杂的粒子浓度为1017~1019/cm3;p型AlGaN上限制层(5)的掺杂粒子是二茂镁,掺杂浓度为2×1017~8×1017/cm3;p型空穴注入层(6)掺杂粒子是Li元素,掺杂浓度为1018~1019/cm3
2.如权利要求1所述的一种具有微孔结构的NiO-AlGaN紫外发光管,其特征在于:n-Alx1Ga1-x1N下限制层(3)第一次生长时的厚度为1~3微米,第二次生长时的厚度为2~200纳米。
3.如权利要求2所述的一种具有微孔结构的NiO-AlGaN紫外发光管,其特征在于:n-Alx1Ga1-x1N下限制层(3)第二次生长时的厚度为2~100纳米。
4.如权利要求1所述的一种具有微孔结构的NiO-AlGaN紫外发光管,其特征在于:衬底(1)的厚度为300~500微米,AlN缓冲层(2)的厚度为2~150nm;多量子阱发光层(4)中阱层厚度为2~5nm,垒层厚度为10~20nm;p型空穴注入层(6)的厚度为800~1000nm;上电极(8)和下电极(7)的厚度为150~300nm。
5.如权利要求1所述的一种具有微孔结构的NiO-AlGaN紫外发光管,其特征在于:微孔的高度为800~1100nm,微孔的中心直径为200~400nm。
6.权利要求1~5任何一项所述的微孔结构的NiO-AlGaN紫外发光管的制备方法,其步骤如下:
1)采用金属有机物化学气相沉积方法在衬底(1)上依次制备AlN缓冲层(2)和n-Alx1Ga1-x1N下限制层(3);
2)采用感应耦合式刻蚀机,在室温、10~20mtorr条件下对n-Alx1Ga1-x1N下限制层(3)进行腐蚀,腐蚀后在n-Alx1Ga1-x1N下限制层(3)上得到面密度为108~1010/cm2的纳米柱;再放入MOCVD反应室进行n-Alx1Ga1-x1N下限制层(3)的二次生长,从而在纳米柱之间形成椭球形微孔;
3)再在二次生长的n-Alx1Ga1-x1N下限制层(3)上面继续用MOCVD方法依次生长AlGaN材料系多量子阱发光层(4)和p型AlGaN上限制层(5);然后,在p型AlGaN上限制层(5)上利用磁控溅射制备p型NiO薄膜为p型空穴注入层(6);
4)制备上电极(8)和下电极(7);上电极(8)和下电极(7)材料为Au、Ni-Au、Ti-Au、Zn-Au、Pt-Au、Ti-Pt-Au、Ti-Ni-Au或Ni-Pt-Au;
5)最后进行划片,制备成边长200微米~3毫米的方形管芯,然后将管芯倒装,即外延层面向下,装配焊接在热沉或支架上,便制备得到具有微孔结构的NiO-AlGaN紫外发光管。
CN201510086426.8A 2015-02-17 2015-02-17 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法 Active CN104681677B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510086426.8A CN104681677B (zh) 2015-02-17 2015-02-17 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510086426.8A CN104681677B (zh) 2015-02-17 2015-02-17 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法

Publications (2)

Publication Number Publication Date
CN104681677A CN104681677A (zh) 2015-06-03
CN104681677B true CN104681677B (zh) 2017-10-27

Family

ID=53316484

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510086426.8A Active CN104681677B (zh) 2015-02-17 2015-02-17 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法

Country Status (1)

Country Link
CN (1) CN104681677B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552182B (zh) * 2016-03-09 2017-10-24 太原理工大学 一种高发光效率氮化镓基led外延片的制备方法
US10217897B1 (en) * 2017-10-06 2019-02-26 Wisconsin Alumni Research Foundation Aluminum nitride-aluminum oxide layers for enhancing the efficiency of group III-nitride light-emitting devices
CN110459628A (zh) * 2019-07-31 2019-11-15 华南理工大学 一种多量子阱蓝光探测器及制备方法与应用
CN113380933A (zh) * 2021-05-28 2021-09-10 西安交通大学 具有n-AlGaN层纳米多孔结构深紫外LED器件及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888061A (zh) * 2010-06-22 2010-11-17 武汉大学 ZnO/ZnMgO多量子阱紫外激光二极管及其制备方法
CN103730545A (zh) * 2013-12-26 2014-04-16 广州有色金属研究院 一种AlGaN基垂直结构深紫外LED的制造方法
CN203659914U (zh) * 2013-10-17 2014-06-18 武汉光电工业技术研究院有限公司 一种深紫外二极管外延片和芯片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642368B2 (en) * 2010-03-12 2014-02-04 Applied Materials, Inc. Enhancement of LED light extraction with in-situ surface roughening
CN101820041A (zh) * 2010-04-01 2010-09-01 晶能光电(江西)有限公司 降低硅衬底led外延应力的方法以及结构
US20130200391A1 (en) * 2010-09-28 2013-08-08 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication
EP2709712B1 (en) * 2011-05-16 2019-04-17 Vivasure Medical Limited Sheath-dilator system
CN102222745A (zh) * 2011-06-23 2011-10-19 映瑞光电科技(上海)有限公司 发光二极管及其制造方法
CN102280533A (zh) * 2011-06-23 2011-12-14 西安神光安瑞光电科技有限公司 氮化镓衬底材料制造方法
CN102244169A (zh) * 2011-06-23 2011-11-16 映瑞光电科技(上海)有限公司 发光二极管及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888061A (zh) * 2010-06-22 2010-11-17 武汉大学 ZnO/ZnMgO多量子阱紫外激光二极管及其制备方法
CN203659914U (zh) * 2013-10-17 2014-06-18 武汉光电工业技术研究院有限公司 一种深紫外二极管外延片和芯片
CN103730545A (zh) * 2013-12-26 2014-04-16 广州有色金属研究院 一种AlGaN基垂直结构深紫外LED的制造方法

Also Published As

Publication number Publication date
CN104681677A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
Rahman Zinc oxide light-emitting diodes: a review
Jinmin et al. Advances and prospects in nitrides based light-emitting-diodes
CN103137805B (zh) 用于光电微型传感器的宽谱紫外发光二极管及其制作方法
CN102368519B (zh) 一种提高半导体二极管多量子阱发光效率的方法
CN103367594B (zh) 一种发光二极管及其制备方法
Jung et al. Highly ordered catalyst-free InGaN/GaN core–shell architecture arrays with expanded active area region
Sarwar et al. Ultrathin GaN quantum disk nanowire LEDs with sub-250 nm electroluminescence
CN105140356B (zh) 一种Al组分渐变式N型LED结构及其制备方法
CN104409587B (zh) 一种InGaN基蓝绿光发光二极管外延结构及生长方法
CN105914273B (zh) 一种红黄光发光二极管外延片及其制备方法
CN105405939B (zh) 一种发光二极管及其制造方法
JP2011155241A (ja) 歪平衡発光デバイス及びその製造方法
CN106784188B (zh) 一种具有复合电子阻挡层的近紫外led的制备方法
CN104681677B (zh) 一种具有微孔结构的NiO‑AlGaN紫外发光管及其制备方法
CN105449051B (zh) 一种采用MOCVD技术在GaN衬底或GaN/Al2O3复合衬底上制备高亮度同质LED的方法
CN101488548A (zh) 一种高In组分多InGaN/GaN量子阱结构的LED
CN105679910A (zh) 一种高出光效率的深紫外发光二极管芯片及其制备方法
CN109427938A (zh) 一种深紫外半导体器件及其制作方法
CN103681996A (zh) 一种紫外发光二极管及其制备方法
CN104282808A (zh) 一种紫外led外延有源区结构生长方法
CN107170864A (zh) 一种led外延片及其制备方法
Huang et al. Study of deep ultraviolet light-emitting diodes with ap-AlInN/AlGaN superlattice electron-blocking layer
CN105161592A (zh) 一种具有N型AlInGaN接触层的LED及其制备方法
CN106033788B (zh) 一种采用MOCVD技术制备370-380nm高亮度近紫外LED的方法
CN110459652A (zh) AlGaN基紫外LED器件及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220511

Address after: 201913 building 11, Lane 1333, Jiangnan Avenue, Changxing Town, Chongming District, Shanghai

Patentee after: Shanghai Jiadan Electronic Information Co.,Ltd.

Address before: 130012 No. 2699 Qianjin Street, Jilin, Changchun

Patentee before: Jilin University

TR01 Transfer of patent right