CN104591302B - A kind of calcium-titanium ore type nano material and preparation method thereof - Google Patents

A kind of calcium-titanium ore type nano material and preparation method thereof Download PDF

Info

Publication number
CN104591302B
CN104591302B CN201510002320.5A CN201510002320A CN104591302B CN 104591302 B CN104591302 B CN 104591302B CN 201510002320 A CN201510002320 A CN 201510002320A CN 104591302 B CN104591302 B CN 104591302B
Authority
CN
China
Prior art keywords
solution
preparation
calcium
titanium ore
ore type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510002320.5A
Other languages
Chinese (zh)
Other versions
CN104591302A (en
Inventor
杨中正
赵顺波
陈希
李克亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Water Resources and Electric Power
Original Assignee
North China University of Water Resources and Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Water Resources and Electric Power filed Critical North China University of Water Resources and Electric Power
Priority to CN201510002320.5A priority Critical patent/CN104591302B/en
Publication of CN104591302A publication Critical patent/CN104591302A/en
Application granted granted Critical
Publication of CN104591302B publication Critical patent/CN104591302B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种钙钛矿型纳米材料及其制备方法,本发明方法以Ca(NO3)2·4H2O、La(NO3)3·6H2O、Fe2(SO4)3·9H2O和Ni(NO3)3·6H2O为原料,采用沉淀‑盐熔法制备纳米CaxLa1‑ xNi0.5Fe0.5O3(x=0.1~0.4)前驱体,前驱体与熔盐混合后经过煅烧,接着采用蒸馏水和乙醇洗涤后即得到纳米CaxLa1‑xNi0.5Fe0.5O3(x=0.1~0.4)材料。本发明方法原料易得,制备方法步骤简单、合成温度低,成本低,产物纯度高、产物尺寸和形貌可控制,结构稳定,耐化学腐蚀,具有较好的工业利用前景。

The invention relates to a perovskite nanomaterial and a preparation method thereof. The method of the invention uses Ca(NO 3 ) 2 .4H 2 O, La(NO 3 ) 3 .6H 2 O, Fe 2 (SO 4 ) 3 . 9H 2 O and Ni(NO 3 ) 3 6H 2 O were used as raw materials, and the nano-Ca x La 1- x Ni 0.5 Fe 0.5 O 3 (x=0.1~0.4) precursor was prepared by precipitation-salt fusion method. The precursor and The molten salts are mixed and calcined, followed by washing with distilled water and ethanol to obtain nano Ca x La 1‑x Ni 0.5 Fe 0.5 O 3 (x=0.1~0.4) materials. The method of the invention has easy-to-obtain raw materials, simple preparation steps, low synthesis temperature, low cost, high product purity, controllable product size and shape, stable structure, chemical corrosion resistance, and good industrial application prospects.

Description

一种钙钛矿型纳米材料及其制备方法A kind of perovskite nanometer material and preparation method thereof

技术领域 technical field

本发明属于纳米材料技术领域,涉及一种钙钛矿型材料纳米材料及其制备方法。 The invention belongs to the technical field of nanomaterials, and relates to a perovskite type material nanomaterial and a preparation method thereof.

背景技术 Background technique

钙钛矿型材料属于三方晶系,基本结构是ABO3 (A 和B 代表阳离子,O 代表氧离子)。至今为止,发现具有钙钛矿型结构的氧化物ABO3型化合物的三种离子半径满足下列关系:RA+RO= t·20.5(RB+RO)(一般情况下t=0.7~1.0)。由于钙钛矿型氧化物材料具有这种特殊的结构,使得钙钛矿型材料具有许多特殊的性质,如热电性能、超导性能、压电性能、光学性能、磁学性能等。实际应用中又可通过掺杂来改善钙钛矿型材料的性能,可以说钙钛矿型材料是一种极其重要的功能材料,应用范围很广,如催化、燃料电池、传感器、制动器、光微电机、存储器件、基体或基板、光电器件等方面。而纳米钙钛矿型材料又具有独特的纳米晶粒及高密度晶界特征以及由此而产生的表面效应、小尺寸效应和宏观量子隧道效应,使其在化学、力学、热学、磁学、光学、电学、声学等性能方面表现出一系列与普通多晶体和非晶态固体的本质差别。 Perovskite materials belong to the trigonal crystal system, and the basic structure is ABO 3 (A and B represent cations, and O represents oxygen ions). So far, it has been found that the three ionic radii of the oxide ABO 3 -type compound with a perovskite structure satisfy the following relationship: R A +R O = t 2 0.5 (R B +R O ) (generally t=0.7 ~1.0). Due to the special structure of perovskite oxide materials, perovskite materials have many special properties, such as thermoelectric properties, superconducting properties, piezoelectric properties, optical properties, magnetic properties, etc. In practical applications, the performance of perovskite materials can be improved by doping. It can be said that perovskite materials are extremely important functional materials with a wide range of applications, such as catalysis, fuel cells, sensors, brakes, light Micro motors, storage devices, substrates or substrates, optoelectronic devices, etc. Nano-perovskite materials have unique nano-grain and high-density grain boundary characteristics and the resulting surface effects, small-size effects and macroscopic quantum tunneling effects, making them widely used in chemistry, mechanics, heat, magnetism, Optical, electrical, acoustic and other properties show a series of essential differences from ordinary polycrystalline and amorphous solids.

中国专利CN103449536A公开了一种钙钛石型纳米Nd1-xMgxCoO3的制备方法,采用金属阳离子取代了钙钛矿ABO3型复合氧化物材料中起支撑结构骨架的A位金属离子,引起较大的晶格畸变,提高了其催化和化学等性能。 Chinese patent CN103449536A discloses a method for preparing perovskite-type nano-Nd 1-x Mg x CoO 3 , which uses metal cations to replace the A-site metal ions in the perovskite ABO 3 -type composite oxide material, which acts as a supporting structure. It causes larger lattice distortion and improves its catalytic and chemical properties.

发明内容 Contents of the invention

本发明的目的在于提供一种钙钛矿型纳米材料,分子式为CaxLa1-xNi0.5Fe0.5O3,式中x=0.1~0.4。 The object of the present invention is to provide a perovskite-type nano material with a molecular formula of Ca x La 1-x Ni 0.5 Fe 0.5 O 3 , where x=0.1-0.4.

本发明的另一目的还在于提供一种钙钛矿型纳米材料的制备方法,步骤简单、合成温度低,成本低,产物纯度高、产物尺寸和形貌可控制。 Another object of the present invention is to provide a method for preparing perovskite nanomaterials, which has simple steps, low synthesis temperature, low cost, high product purity, and controllable product size and shape.

为实现上述目的,本发明采用的如下技术方案: To achieve the above object, the present invention adopts the following technical solutions:

一种钙钛矿型纳米材料,所述钙钛矿型纳米材料的分子式为CaxLa1-xNi0.5Fe0.5O3,式中x=0.1~0.4。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is Ca x La 1-x Ni 0.5 Fe 0.5 O 3 , where x=0.1-0.4.

上述的钙钛矿型纳米材料的制备方法,包括以下步骤: The preparation method of the above-mentioned perovskite-type nanomaterials comprises the following steps:

(1)分别用蒸馏水溶解Ca(NO3)2·4H2O、La(NO3)3·6H2O、Fe2(SO4)3·9H2O和Ni(NO3)3·6H2O,分别配制成Ca(NO3)2、La(NO3)3、Fe2(SO4)3和Ni(NO3)3浓度为0.2~0.5 mol·L-1的溶液; (1) Dissolve Ca(NO 3 ) 2 ·4H 2 O, La(NO 3 ) 3 ·6H 2 O, Fe 2 (SO 4 ) 3 ·9H 2 O and Ni(NO 3 ) 3 ·6H 2 in distilled water respectively O, respectively prepared into Ca(NO 3 ) 2 , La(NO 3 ) 3 , Fe 2 (SO 4 ) 3 and Ni(NO 3 ) 3 solutions with a concentration of 0.2~0.5 mol·L -1 ;

(2)根据CaxLa1-xNi0.5Fe0.5O3材料中金属元素化学计量比(Ca:La:Ni:Fe=x:1-x:0.5:0.5),取一定量的上述步骤(1)所得Ca(NO3)2、La(NO3)3、Fe2(SO4)3和Ni(NO3)3溶液混合,超声分散10~15 min,得到混合溶液A; (2) According to the stoichiometric ratio of metal elements in the Ca x La 1-x Ni 0.5 Fe 0.5 O 3 material (Ca:La:Ni:Fe=x:1-x:0.5:0.5), take a certain amount of the above steps ( 1) The resulting Ca(NO 3 ) 2 , La(NO 3 ) 3 , Fe 2 (SO 4 ) 3 and Ni(NO 3 ) 3 solutions were mixed and ultrasonically dispersed for 10-15 min to obtain a mixed solution A;

(3)将浓度为0.15~0.40 mol·L-1的KOH溶液和浓度为0.10~0.20 mol·L-1的K2CO3溶液按体积比为1~2:1混合,得到溶液B; (3) Mix the KOH solution with a concentration of 0.15~0.40 mol L -1 and the K 2 CO 3 solution with a concentration of 0.10~0.20 mol L -1 at a volume ratio of 1~2:1 to obtain solution B;

(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散30~60 min,至溶液的pH值为10~11,接着离心分离3~5 min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散10~20 min后,再进行离心分离3~5min,如此反复3~5次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 30-60 min until the pH value of the solution is 10-11, then centrifuge for 3-5 min, collect the precipitate, and wash the precipitate with distilled water until After washing until neutral, filter with suction, then dissolve the filter cake with ethanol, continue ultrasonic dispersion for 10-20 minutes, and then perform centrifugation for 3-5 minutes, repeat this process for 3-5 times, and obtain precipitated sample C;

(5)将沉淀样品C置于烘箱中,于100~110 ℃条件下烘干12~24 h,接着将烘干的样品充分研磨成粉状物,即得CaxLa1-xNi0.5Fe0.5O3前驱体D,所述x=0.1~0.4; (5) Place the precipitated sample C in an oven, and dry it at 100-110 °C for 12-24 h, and then grind the dried sample fully into a powder to obtain Ca x La 1-x Ni 0.5 Fe 0.5 O 3 precursor D, said x=0.1~0.4;

(6)将前驱体D与NaNO3和LiNO3的混合盐按照摩尔比1:2~6混合,然后球磨10~16 h,得到混合物E; (6) Mix the precursor D with the mixed salt of NaNO 3 and LiNO 3 according to the molar ratio of 1:2~6, and then ball mill for 10~16 h to obtain the mixture E;

(7)将混合物E置于电炉中,以5~10 ℃·min-1的升温速率加热至450~500℃保温1~3 h后,再以3~6 ℃·min-1的升温速率继续加热至600~700 ℃保温2.0~4.0 h后,自然降温冷却至室温,得到固体材料F; (7) Put the mixture E in an electric furnace, heat it to 450-500°C at a heating rate of 5-10 ℃·min -1 and keep it for 1-3 h, then continue at a heating rate of 3-6 ℃·min -1 After heating to 600-700 ℃ for 2.0-4.0 h, cooling down to room temperature naturally to obtain solid material F;

(8)将固体材料F用蒸馏水洗涤6~10次,直至将熔盐全部去除,接着再用乙醇洗涤3~5次后,置于烘箱中于75~80 ℃下干燥3~6 h,即得纳米CaxLa1-xNi0.5Fe0.5O3材料,所述x=0.1~0.4。 (8) Wash the solid material F with distilled water for 6 to 10 times until all the molten salts are removed, then wash with ethanol for 3 to 5 times, and then dry it in an oven at 75 to 80 °C for 3 to 6 h. A nano Ca x La 1-x Ni 0.5 Fe 0.5 O 3 material is obtained, where x=0.1-0.4.

根据上述的钙钛矿型纳米材料的制备方法,步骤(5)所述的烘箱为鼓风干燥烘箱。 According to the above method for preparing perovskite-type nanomaterials, the oven described in step (5) is a blast drying oven.

根据上述的钙钛矿型纳米材料的制备方法,步骤(6)所述的NaNO3和LiNO3的混合盐中NaNO3与LiNO3摩尔比为1:1~3。 According to the above method for preparing perovskite nanomaterials, the molar ratio of NaNO 3 to LiNO 3 in the mixed salt of NaNO 3 and LiNO 3 in step (6) is 1:1-3.

根据上述的钙钛矿型纳米材料的制备方法,步骤(8)所述的纳米CaxLa1-xNi0.5Fe0.5O3材料粒径为60~90 nm。 According to the above method for preparing perovskite nanomaterials, the particle size of the nano Ca x La 1-x Ni 0.5 Fe 0.5 O 3 material in step (8) is 60-90 nm.

本发明的积极有益效果:Positive beneficial effect of the present invention:

(1)本发明采用其他金属阳离子取代了钙钛矿ABO3型复合氧化物材料中起主要支撑结构骨架的A位金属离子,引起较大的晶格畸变,提高了其催化和化学等性能;在A为取代的基础上,又采用其他过渡金属阳离子取代了起主要催化活性等功能的B位离子,制备出具有A位和B位取代的和具有混合价的结构的钙钛矿型材料,使得该材料体系能量更大,只需在较小的能量驱动下即可发生电子结构匹配上的转变,从而获得更优良的磁学、光学、电学、表面和催化等性能。 (1) The present invention uses other metal cations to replace the A-site metal ions in the perovskite ABO 3 type composite oxide material, which is the main support structure skeleton, causing larger lattice distortion and improving its catalytic and chemical properties; On the basis of substitution by A, other transition metal cations are used to replace the B-site ions that have the main catalytic activity and other functions, and a perovskite-type material with A-site and B-site substitutions and a mixed-valence structure is prepared. The energy of the material system is higher, and the transformation of electronic structure matching can occur only under the driving of a small energy, so as to obtain better magnetic, optical, electrical, surface and catalytic properties.

(2)本发明钙钛矿型纳米CaxLa1-xNi0.5Fe0.5O3材料采用A位和B位离子同时置换取代的氧化物钙钛矿材料,具有较大范围内调变和控制结构中的离子价态和晶体缺陷的特点,同时又可保持较好的热力学稳定性。 (2) The perovskite-type nano-Ca x La 1-x Ni 0.5 Fe 0.5 O 3 material of the present invention adopts the oxide perovskite material replaced by A-site and B-site ions at the same time, and has a wide range of modulation and control The characteristics of ionic valence states and crystal defects in the structure, while maintaining good thermodynamic stability.

(3)本发明采用沉淀-盐熔法制备纳米CaxLa1-xNi0.5Fe0.5O3(x=0.1~0.4)前驱体,NaNO3和LiNO3的混合盐含有金属阳离子和非金属阴离子所组成的盐,作为介质,并利用高温下熔融的盐作为液相环境,从而实现在较短时间内和较低的反应温度下合成高活性、高纯度粉体。 (3) The present invention adopts the precipitation-salt melting method to prepare nano-Ca x La 1-x Ni 0.5 Fe 0.5 O 3 (x=0.1~0.4) precursor, and the mixed salt of NaNO 3 and LiNO 3 contains metal cations and non-metal anions The composed salt is used as a medium, and the molten salt at high temperature is used as a liquid phase environment, so as to realize the synthesis of high activity and high purity powder in a short period of time and at a low reaction temperature.

(4)本发明方法原料易得,制备方法步骤简单,合成温度低,成本低,产物纯度高、产物尺寸和形貌可控制,粒径为60~90 nm,结构稳定,耐化学腐蚀,具有较好的工业利用前景。 (4) The raw materials of the method of the present invention are easy to obtain, the preparation method is simple, the synthesis temperature is low, the cost is low, the product purity is high, the product size and shape can be controlled, the particle size is 60-90 nm, the structure is stable, chemical corrosion resistance, and has Good prospects for industrial utilization.

附图说明 Description of drawings

图1为本发明实施例1钙钛矿型材料的X射线衍射的XRD图谱; Fig. 1 is the XRD spectrum of the X-ray diffraction of the perovskite type material of embodiment 1 of the present invention;

图2为本发明实施例2钙钛矿型材料的X射线衍射的XRD图谱; Fig. 2 is the XRD spectrum of the X-ray diffraction of the perovskite type material of embodiment 2 of the present invention;

图3为本发明实施例3钙钛矿型材料的X射线衍射的XRD图谱。 FIG. 3 is an XRD pattern of X-ray diffraction of the perovskite-type material of Example 3 of the present invention.

具体实施方式 detailed description

下面结合一些具体实施例对本发明进一步说明。 The present invention will be further described below in conjunction with some specific examples.

实施例1 Example 1

一种钙钛矿型纳米材料,所述钙钛矿型纳米材料的分子式为CaxLa1-xNi0.5Fe0.5O3,式中x=0.4。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is Ca x La 1-x Ni 0.5 Fe 0.5 O 3 , where x=0.4.

上述钙钛矿型纳米材料的制备方法,包括以下步骤: The preparation method of the above-mentioned perovskite-type nanomaterials comprises the following steps:

(1)分别称量11.8075g的Ca(NO3)2·4H2O、21.6500g的La(NO3)3·6H2O、28.1005g的Fe2(SO4)3·9H2O和14.5395g的Ni(NO3)3·6H2O,然后分别加入一定量蒸馏水制成Ca(NO3)2、La(NO3)3、Fe2(SO4)3和Ni(NO3)3浓度为0.5 mol·L-1的溶液; (1) Weigh 11.8075g of Ca(NO 3 ) 2 ·4H 2 O, 21.6500g of La(NO 3 ) 3 ·6H 2 O, 28.1005g of Fe 2 (SO 4 ) 3 ·9H 2 O and 14.5395g g of Ni(NO 3 ) 3 ·6H 2 O, and then add a certain amount of distilled water to make the concentrations of Ca(NO 3 ) 2 , La(NO 3 ) 3 , Fe 2 (SO 4 ) 3 and Ni(NO 3 ) 3 0.5 mol L -1 solution;

(2)根据Ca0.4La0.6Ni0.5Fe0.5O3材料中金属元素化学计量比(Ca:La:Ni:Fe=0.4:0.6:0.5:0.5),将上述步骤(1)所得40 ml的Ca(NO3)2溶液、60 ml的La(NO3)3溶液、50 ml的Ni(NO3)3溶液、25 ml的Fe2(SO4)3溶液混合,超声分散15 min,得到混合溶液A; (2) According to the stoichiometric ratio of metal elements in the Ca 0.4 La 0.6 Ni 0.5 Fe 0.5 O 3 material (Ca: La: Ni: Fe = 0.4: 0.6: 0.5: 0.5), 40 ml of Ca obtained in the above step (1) (NO 3 ) 2 solution, 60 ml of La(NO 3 ) 3 solution, 50 ml of Ni(NO 3 ) 3 solution, and 25 ml of Fe 2 (SO 4 ) 3 solution were mixed and ultrasonically dispersed for 15 min to obtain a mixed solution A;

(3)将浓度为0.40 mol·L-1的KOH溶液和浓度为0.20 mol·L-1的K2CO3溶液按体积比为1:1混合,得到溶液B; (3) Mix the KOH solution with a concentration of 0.40 mol L -1 and the K 2 CO 3 solution with a concentration of 0.20 mol L -1 at a volume ratio of 1:1 to obtain solution B;

(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散60 min,至溶液的pH值为10,接着离心分离3 min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散15 min后,再进行离心分离3min,如此反复5次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 60 min, until the pH value of the solution is 10, then centrifuge for 3 min, collect the precipitate, wash the precipitate with distilled water until it is neutral, then pump Filter, then dissolve the filter cake with ethanol, continue to ultrasonically disperse for 15 min, and then perform centrifugation for 3 min, and repeat this 5 times to obtain precipitated sample C;

(5)将沉淀样品C置于鼓风烘箱中,于100 ℃条件下烘干24 h,最后将烘干的样品充分研磨成粉状物,即得Ca0.4La0.6Ni0.5Fe0.5O3前驱体D; (5) Place the precipitated sample C in a blast oven, dry it at 100 °C for 24 h, and finally grind the dried sample into a powder to obtain the Ca 0.4 La 0.6 Ni 0.5 Fe 0.5 O 3 precursor Body D;

(6)将前驱体D与NaNO3和LiNO3混合盐(NaNO3和LiNO3的摩尔比为1:1)按照摩尔比为1:2混合,然后球磨14 h,得到混合物E; (6) The precursor D was mixed with the mixed salt of NaNO 3 and LiNO 3 (the molar ratio of NaNO 3 and LiNO 3 was 1:1) according to the molar ratio of 1:2, and then ball milled for 14 h to obtain the mixture E;

(7)将混合物E置于电炉中,以10℃·min-1的升温速率加热至450℃保温2h后,再以4 ℃·min-1的升温速率继续加热至700℃保温2.0h后,自然降温冷却至室温,得到固体材料F; (7) Put the mixture E in an electric furnace, heat it to 450°C at a heating rate of 10°C·min -1 and keep it for 2 hours, then continue to heat it at a rate of 4°C·min -1 to 700°C and hold it for 2.0 hours. Cool down to room temperature naturally to obtain solid material F;

(8)将固体材料F先用去离子水洗涤6次,直至将熔盐全部去除,然后再用乙醇洗涤5次后,在置于烘箱中于75 ℃下干燥6 h,即得纳米Ca0.4La0.6Ni0.5Fe0.5O3材料。 (8) The solid material F was washed 6 times with deionized water until all the molten salts were removed, then washed 5 times with ethanol, and dried in an oven at 75 °C for 6 h to obtain nano-Ca 0.4 La 0.6 Ni 0.5 Fe 0.5 O 3 material.

从图1可以看出,产物Ca0.4La0.6Ni0.5Fe0.5O3材料纯度高,为单一的Ca0.4La0.6Ni0.5Fe0.5O3钙钛矿晶相,平均粒径为60 nm,转化率为98%。 It can be seen from Figure 1 that the product Ca 0.4 La 0.6 Ni 0.5 Fe 0.5 O 3 has high material purity and is a single Ca 0.4 La 0.6 Ni 0.5 Fe 0.5 O 3 perovskite crystal phase with an average particle size of 60 nm and a high conversion rate. 98%.

实施例Example 22

一种钙钛矿型纳米材料,所述钙钛矿型纳米材料的分子式为CaxLa1-xNi0.5Fe0.5O3,式中x=0.3。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is Ca x La 1-x Ni 0.5 Fe 0.5 O 3 , where x=0.3.

上述钙钛矿型纳米材料的制备方法,包括以下步骤: The preparation method of the above-mentioned perovskite-type nanomaterials comprises the following steps:

(1)分别称量7.0845g的Ca(NO3)2·4H2O、12.9900g的La(NO3)3·6H2O、16.8603g的Fe2(SO4)3·9H2O和8.7237g的Ni(NO3)3·6H2O,然后分别加入一定量蒸馏水制成Ca(NO3)2、La(NO3)3、Fe2(SO4)3和Ni(NO3)3浓度为0.3 mol·L-1的溶液; (1) Weigh 7.0845g of Ca(NO 3 ) 2 ·4H 2 O, 12.9900g of La(NO 3 ) 3 ·6H 2 O, 16.8603g of Fe 2 (SO 4 ) 3 ·9H 2 O and 8.7237g g of Ni(NO 3 ) 3 ·6H 2 O, and then add a certain amount of distilled water to make the concentrations of Ca(NO 3 ) 2 , La(NO 3 ) 3 , Fe 2 (SO 4 ) 3 and Ni(NO 3 ) 3 0.3 mol L -1 solution;

(2)根据Ca0.3La0.7Ni0.5Fe0.5O3材料中金属元素化学计量比(Ca:La:Ni:Fe=0.3:0.7:0.5:0.5),将上述步骤(1)所得30ml的Ca(NO3)2溶液、70ml的La(NO3)3溶液、50ml的Ni(NO3)3溶液、25ml的Fe2(SO4)3溶液混合,超声分散10min,得到混合溶液A; (2) According to the stoichiometric ratio of metal elements in Ca 0.3 La 0.7 Ni 0.5 Fe 0.5 O 3 material (Ca: La: Ni: Fe = 0.3: 0.7: 0.5: 0.5), 30ml of Ca( NO 3 ) 2 solution, 70ml of La(NO 3 ) 3 solution, 50ml of Ni(NO 3 ) 3 solution, and 25ml of Fe 2 (SO 4 ) 3 solution were mixed and ultrasonically dispersed for 10 minutes to obtain mixed solution A;

(3)将0.15 mol·L-1的KOH与0.1 mol·L-1的K2CO3的体积比为2:1混合,得到溶液B; (3) Mix 0.15 mol L -1 KOH and 0.1 mol L -1 K 2 CO 3 at a volume ratio of 2:1 to obtain solution B;

(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散50 min,至溶液的pH值为11,接着离心分离4 min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散10 min后,再进行离心分离5 min,如此反复3次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 50 minutes, until the pH value of the solution is 11, then centrifuge for 4 minutes, collect the precipitate, wash the precipitate with distilled water until it reaches neutrality, and pump Filter, then dissolve the filter cake with ethanol, continue to ultrasonically disperse for 10 min, then centrifuge for 5 min, and repeat this process 3 times to obtain precipitated sample C;

(5)将沉淀C置于鼓风烘箱中于110℃条件下烘干12 h,最后将烘干的物质充分研磨成粉状物,即得Ca0.3La0.7Ni0.5Fe0.5O3前驱体D; (5) Put the precipitate C in a blast oven and dry it at 110°C for 12 h, and finally grind the dried material into a powder to obtain the Ca 0.3 La 0.7 Ni 0.5 Fe 0.5 O 3 precursor D ;

(6)将前驱体D与NaNO3和LiNO3混合盐(NaNO3和LiNO3的摩尔比为1:2)按照摩尔比为1:4混合,然后球磨10 h,得到混合物E; (6) The precursor D was mixed with the mixed salt of NaNO 3 and LiNO 3 (the molar ratio of NaNO 3 and LiNO 3 was 1:2) according to the molar ratio of 1:4, and then ball milled for 10 h to obtain the mixture E;

(7)将混合物E置于电炉中,以5 ℃·min-1的升温速率加热至480 ℃保温3 h后,再以6 ℃·min-1的升温速率继续加热至600℃保温4 h后,自然降温冷却至室温,得到固体材料F; (7) Put the mixture E in an electric furnace, heat it to 480 °C at a heating rate of 5 °C min -1 and keep it for 3 h, then continue to heat it to 600 °C at a heating rate of 6 °C min -1 and keep it for 4 h , cooling down to room temperature naturally to obtain solid material F;

(8)将固体材料F先用去离子水洗涤8次,直至将熔盐全部去除,然后再用乙醇洗涤4次后,在置于烘箱中于80℃下干燥3h,即得纳米Ca0.3La0.7Ni0.5Fe0.5O3材料。 (8) The solid material F was washed 8 times with deionized water until all the molten salts were removed, and then washed 4 times with ethanol, and then dried in an oven at 80°C for 3 hours to obtain nano-Ca 0.3 La 0.7 Ni 0.5 Fe 0.5 O 3 material.

从图2可以看出,产物Ca0.3La0.7Ni0.5Fe0.5O3材料纯度高,为单一的产物Ca0.3La0.7Ni0.5Fe0.5O3钙钛矿晶相,平均粒径为85 nm,转化率为100%。 It can be seen from Figure 2 that the product Ca 0.3 La 0.7 Ni 0.5 Fe 0.5 O 3 has a high material purity and is a single product Ca 0.3 La 0.7 Ni 0.5 Fe 0.5 O 3 perovskite crystal phase with an average particle size of 85 nm and a conversion The rate is 100%.

实施例Example 33

一种钙钛矿型纳米材料,所述钙钛矿型纳米材料的分子式为CaxLa1-xNi0.5Fe0.5O3,式中x=0.1。 A perovskite nanomaterial, the molecular formula of the perovskite nanomaterial is Ca x La 1-x Ni 0.5 Fe 0.5 O 3 , where x=0.1.

上述钙钛矿型纳米材料的制备方法,包括以下步骤: The preparation method of the above-mentioned perovskite-type nanomaterials comprises the following steps:

(1)分别称量9.4460g的Ca(NO3)2·4H2O、17.3200g的La(NO3)3·6H2O、22.4802g的Fe2(SO4)3·9H2O和11.6316g的Ni(NO3)3·6H2O,然后分别加入一定量蒸馏水制成Ca(NO3)2、La(NO3)3、Fe2(SO4)3和Ni(NO3)3浓度为0.2 mol·L-1的溶液; (1) Weigh 9.4460g of Ca(NO 3 ) 2 ·4H 2 O, 17.3200g of La(NO 3 ) 3 ·6H 2 O, 22.4802g of Fe 2 (SO 4 ) 3 ·9H 2 O and 11.6316 g of Ni(NO 3 ) 3 ·6H 2 O, and then add a certain amount of distilled water to make the concentrations of Ca(NO 3 ) 2 , La(NO 3 ) 3 , Fe 2 (SO 4 ) 3 and Ni(NO 3 ) 3 0.2 mol L -1 solution;

(2)根据Ca0.1La0.9Ni0.5Fe0.5O3材料中金属元素比(Ca:La:Ni:Fe=0.1:0.9:0.5:0.5),将上述步骤(1)所得20ml的Ca(NO3)2溶液、180 ml的La(NO3)3溶液、100ml的Ni(NO3 ) 3溶液、50ml的Fe2(SO4)3溶液混合,超声分散混合12 min后,得到混合溶液A; (2) According to the metal element ratio in the Ca 0.1 La 0.9 Ni 0.5 Fe 0.5 O 3 material (Ca:La:Ni:Fe=0.1:0.9:0.5:0.5), 20ml of Ca(NO 3 ) 2 solution, 180 ml of La(NO 3 ) 3 solution, 100 ml of Ni ( NO 3 ) 3 solution, and 50 ml of Fe 2 (SO 4 ) 3 solution were mixed, and after ultrasonic dispersion and mixing for 12 min, a mixed solution A was obtained;

(3)将0.2 mol·L-1的KOH与0.1 mol·L-1的K2CO3的体积比为1:1混合,得到溶液B; (3) Mix 0.2 mol L -1 KOH and 0.1 mol L -1 K 2 CO 3 at a volume ratio of 1:1 to obtain solution B;

(4)将溶液B逐滴加入溶液A中,搅拌均匀,超声分散30 min,至溶液的pH值为10,接着离心分离5 min,收集沉淀,采用蒸馏水洗涤沉淀,直至洗涤至中性后抽滤,接着用乙醇溶解滤饼,继续超声分散20 min后,再进行离心分离4 min,如此反复4次,得到沉淀样品C; (4) Add solution B to solution A drop by drop, stir evenly, disperse by ultrasonic for 30 minutes, until the pH value of the solution is 10, then centrifuge for 5 minutes, collect the precipitate, wash the precipitate with distilled water until it reaches neutrality, and pump Then, dissolve the filter cake with ethanol, continue to ultrasonically disperse for 20 min, and then centrifuge for 4 min, and repeat this 4 times to obtain precipitated sample C;

(5)将沉淀C置于鼓风烘箱中于100℃条件下烘干20 h,最后将烘干的物质充分研磨成粉状物,即得Ca0.1La0.9Ni0.5Fe0.5O3前驱体D; (5) Place the precipitate C in a blast oven at 100°C for 20 h, and finally grind the dried material into a powder to obtain the Ca 0.1 La 0.9 Ni 0.5 Fe 0.5 O 3 precursor D ;

(6)将前驱体D与NaNO3和LiNO3混合盐(NaNO3和LiNO3的摩尔比为1:3)按照摩尔比为1:6混合,然后球磨16 h,得到混合物E; (6) The precursor D was mixed with the mixed salt of NaNO 3 and LiNO 3 (the molar ratio of NaNO 3 and LiNO 3 was 1:3) according to the molar ratio of 1:6, and then ball milled for 16 h to obtain the mixture E;

(7)将混合物E置于电炉中,以6 ℃·min-1的升温速率加热至500℃保温1 h后,再以3 ℃·min-1的升温速率继续加热至650℃保温3 h后,自然降温冷却至室温,得到固体材料F; (7) Put the mixture E in an electric furnace, heat it to 500°C at a heating rate of 6 ℃·min -1 and keep it for 1 hour, then continue to heat it to 650°C at a heating rate of 3 ℃·min -1 for 3 hours , cooling down to room temperature naturally to obtain solid material F;

(8)将固体材料F先用去离子水洗涤10次,直至将熔盐全部去除,然后再用乙醇洗涤3次后,在置于烘箱中于80℃下干燥5h,即得纳米Ca0.1La0.9Ni0.5Fe0.5O3材料。 (8) Wash the solid material F with deionized water for 10 times until all the molten salts are removed, then wash with ethanol for 3 times, and then dry it in an oven at 80°C for 5 hours to obtain nano-Ca 0.1 La 0.9 Ni 0.5 Fe 0.5 O 3 material.

从图3可以看出,产物Ca0.1La0.9Ni0.5Fe0.5O3材料纯度高,为单一的Ca0.1La0.9Ni0.5Fe0.5O3钙钛矿晶相,平均粒径为90 nm,转化率为100%。 It can be seen from Figure 3 that the product Ca 0.1 La 0.9 Ni 0.5 Fe 0.5 O 3 has high material purity and is a single Ca 0.1 La 0.9 Ni 0.5 Fe 0.5 O 3 perovskite crystal phase with an average particle size of 90 nm and a conversion rate of is 100%.

Claims (4)

1. the preparation method of a calcium-titanium ore type nano material, it is characterised in that the molecular formula of described calcium-titanium ore type nano material is CaxLa1-xNi0.5Fe0.5O3, x=0.1~0.4 in formula;
The preparation method of described calcium-titanium ore type nano material, comprises the following steps:
(1) Ca (NO is dissolved with distilled water respectively3)2·4H2O、La(NO3)3·6H2O、Fe2(SO4)3·9H2O and Ni(NO3)3·6H2O, is configured to Ca (NO respectively3)2、La(NO3)3、Fe2(SO4)3With Ni (NO3)3Concentration is 0.2~0.5mol L-1Solution;
(2) according to CaxLa1-xNi0.5Fe0.5O3Metallic element stoichiometric proportion in material, takes a certain amount of above-mentioned steps (1) gained Ca(NO3)2、La(NO3)3、Fe2(SO4)3With Ni (NO3)3Solution, mixing, ultrasonic disperse 10~15min, obtain mixing molten Liquid A;
(3) it is 0.15~0.40mol L by concentration-1KOH solution and concentration be 0.10~0.20mol L-1K2CO3Solution It is 1~2:1 mixing by volume, obtains solution B;
(4) solution B being added dropwise in solution A, stir, ultrasonic disperse 30~60min, the pH value to solution is 10~11, then centrifugation 3~5min, collect precipitation, use distilled water wash precipitation, until washing sucking filtration to neutrality, Then use ethanol dissolving filter cake, after continuing ultrasonic disperse 10~20min, then be centrifuged separating 3~5min, the most repeatedly 3~5 Secondary, it is precipitated sample C;
(5) deposit sample C is placed in baking oven, under the conditions of 100~110 DEG C, dries 12~24h, then the sample of drying is filled Divide and grind to form powder, obtain CaxLa1-xNi0.5Fe0.5O3Presoma D, described x=0.1~0.4;
(6) by presoma D and NaNO3And LiNO3Salt-mixture according to mol ratio 1:2~6 mixing, then ball milling 10~16 H, obtains mixture E;
(7) mixture E is placed in electric furnace, with 5~10 DEG C of min-1Heating rate be heated to 450~500 DEG C, insulation After 1.0~3.0h, then with 3~6 DEG C of min-1Heating rate continue to be heated to 600~700 DEG C, insulation 2.0~4.0h after, from So cooling down is to room temperature, obtains solid material F;
(8) by solid material F distilled water wash 6~10 times, until fused salt is all removed, the most again with washing with alcohol 3~5 times After, it is placed in baking oven at 75~80 DEG C and is dried 3~6h, obtain product nanometer CaxLa1-xNi0.5Fe0.5O3Material.
The preparation method of calcium-titanium ore type nano material the most according to claim 1, it is characterised in that the baking described in step (5) Case is blast dry oven.
The preparation method of calcium-titanium ore type nano material the most according to claim 1, it is characterised in that described in step (6) NaNO3And LiNO3Salt-mixture in NaNO3With LiNO3Mol ratio is 1:1~3.
The preparation method of calcium-titanium ore type nano material the most according to claim 1, it is characterised in that receiving described in step (8) Rice CaxLa1-xNi0.5Fe0.5O3Material particle size is 60~90nm.
CN201510002320.5A 2015-01-05 2015-01-05 A kind of calcium-titanium ore type nano material and preparation method thereof Expired - Fee Related CN104591302B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510002320.5A CN104591302B (en) 2015-01-05 2015-01-05 A kind of calcium-titanium ore type nano material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510002320.5A CN104591302B (en) 2015-01-05 2015-01-05 A kind of calcium-titanium ore type nano material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN104591302A CN104591302A (en) 2015-05-06
CN104591302B true CN104591302B (en) 2016-11-23

Family

ID=53117419

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510002320.5A Expired - Fee Related CN104591302B (en) 2015-01-05 2015-01-05 A kind of calcium-titanium ore type nano material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104591302B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745364A (en) * 2018-05-15 2018-11-06 昆明理工大学 A kind of preparation method of perovskite catalyst for catalytic oxidation NO
CN112058270B (en) * 2020-06-16 2023-05-23 武汉理工大学 Flaky La 0.8 Sr 0.2 CoO 3 In-situ synthesis method and application of perovskite catalyst
CN115385392A (en) * 2022-08-16 2022-11-25 齐鲁工业大学 A nanoporous perovskite oxide and its preparation method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101264934A (en) * 2008-04-11 2008-09-17 浙江大学 Visible light response method for preparing Bi2WO6 photocatalyst fused salt
CN101972659A (en) * 2010-11-22 2011-02-16 成都理工大学 Perovskite catalyst used for autothermal reforming of ethanol for producing hydrogen and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617814B2 (en) * 2000-11-13 2005-02-09 日本電信電話株式会社 Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101264934A (en) * 2008-04-11 2008-09-17 浙江大学 Visible light response method for preparing Bi2WO6 photocatalyst fused salt
CN101972659A (en) * 2010-11-22 2011-02-16 成都理工大学 Perovskite catalyst used for autothermal reforming of ethanol for producing hydrogen and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
La0.5Ca0.5Ni0.5Fe0.5O3催化剂的制备及其对生物质催化热解特性的影响;李倩;《中国学位论文全文数据库》;20121225;正文第13页第4-10段、第17页第16-19行、第18页最后一段及第22页第3段 *
La0.8Ca0.2FeO3钙钛矿整体催化剂用于低浓度甲烷的催化燃烧;史兵兵;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20130715;正文第28页第3.1.1节Ca掺杂比例x对La1-xCaxFeO3粉体催化剂活性的影响 *

Also Published As

Publication number Publication date
CN104591302A (en) 2015-05-06

Similar Documents

Publication Publication Date Title
Xu et al. Synthesis and characterization of single-crystalline alkali titanate nanowires
Chen et al. LaAlO3 hollow spheres: synthesis and luminescence properties
CN101372353A (en) Method for preparing nano CeO2 power by ultrasonic atomization process
CN101597086A (en) Method for preparing nano-manganese dioxide of different crystal forms in low-temperature acid solution
CN103276448B (en) A kind of preparation method of perovskite structure lead titanate monocrystal nano sheet
CN104591302B (en) A kind of calcium-titanium ore type nano material and preparation method thereof
CN105023762A (en) Foliated CuO-NiO composite structure nano-material and preparation method thereof
CN102923766B (en) Preparation method of lead-titanate ceramic single-crystal nanosheet
CN104591722B (en) A kind of calcium-titanium ore type nano material and preparation method thereof
CN104556217B (en) A method for preparing divalent metal titanate microspheres
CN103936082A (en) Synthetic method of samarium cobaltate nanopowder
CN106167276A (en) A kind of preparation method of laminated perovskite type nano material
CN102936031B (en) Room temperature quick preparation method of nano-zinc oxide mesocrystal
CN104195642B (en) A kind of method for preparing single crystal BiFeO3 nano sheet
CN103880079B (en) Tabular particle of a kind of layer structure potassium vanadate and preparation method thereof
CN109534812B (en) Preparation method of strontium potassium niobate microcrystalline powder with micron tube
CN105970281B (en) A kind of simple preparation method of cadmium vanadate monocrystal nanowire
CN106587162B (en) A kind of normal pressure water phase method prepares sillenite Bi25FeO40The method of nano-powder
CN103922413B (en) Method for preparing pyramid-shaped Cr2WO6 microcrystalline by hydrothermal-assisted low-temperature calcination
CN104628374B (en) Nanometer Nd0.1La0.9FexCo1-xO3The preparation method of material
CN103449536B (en) Preparation method of perovskite nanometer Nd1-xMgxCoO3
CN102557636B (en) Sol-gel synthesis method for bismuth layer high-temperature piezoelectric ceramic sodium bismuth niobate nanopowder
CN102838164A (en) Preparation method of metal-ion-modified vanadium dioxide flower-like powder material
CN103332734B (en) A kind of method preparing CaBi4Ti4O15 nano-powder
CN100334261C (en) Rutile type structure TiO2 single dispersed nano-monocrystal and its synthesis method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161123

Termination date: 20170105

CF01 Termination of patent right due to non-payment of annual fee