CN104576714A - 一种硅上高迁移率GaN基异质结构及其制备方法 - Google Patents

一种硅上高迁移率GaN基异质结构及其制备方法 Download PDF

Info

Publication number
CN104576714A
CN104576714A CN201510037027.2A CN201510037027A CN104576714A CN 104576714 A CN104576714 A CN 104576714A CN 201510037027 A CN201510037027 A CN 201510037027A CN 104576714 A CN104576714 A CN 104576714A
Authority
CN
China
Prior art keywords
layer
silicon substrate
heterostructure
gallium nitride
gan base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510037027.2A
Other languages
English (en)
Other versions
CN104576714B (zh
Inventor
杨学林
沈波
程建朋
桑玲
许福军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing zhongbosin Semiconductor Technology Co., Ltd
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201510037027.2A priority Critical patent/CN104576714B/zh
Publication of CN104576714A publication Critical patent/CN104576714A/zh
Application granted granted Critical
Publication of CN104576714B publication Critical patent/CN104576714B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供了一种硅衬底上高迁移率GaN基异质结构及其制备方法,属于半导体技术领域。该GaN基异质结构为层状叠加结构,从下向上的材料依次为:硅衬底、成核层、应力和缺陷控制层、外延层、沟道层、***层和势垒层,其中应力和缺陷控制层为AlGaN层,其厚度为10nm-10μm;且Al摩尔组分为1-26%。与现有的较繁琐的硅上GaN基异质结构外延技术相比,发明可以大幅降低缺陷密度,提高异质结构材料的晶体质量,十分适合于低成的高频、高功率器件的研制。

Description

一种硅上高迁移率GaN基异质结构及其制备方法
技术领域
本发明属于半导体技术领域,特别是涉及一种硅(Si)衬底上高迁移率GaN基异质结构及其制备方法。
背景技术
以III族氮化物为代表的第三代半导体具有高禁带宽度、高击穿电场、高饱和电子漂移速度以及强极化等优异的性质,特别是基于AlGaN/GaN异质结构的高迁移率晶体管(HEMT)具有开关速度快、导通电阻低、器件体积小、耐高温、节能等优异特性,有望在下一代高效功率电子器件领域得到广泛使用。
在以蓝宝石、碳化硅、硅为衬底材料的GaN基异质结构材料中,Si上GaN基异质结构材料及器件因其在大尺寸、低成本以及与现有Si工艺兼容等方面具有明显的优势,在太阳能逆变器、混合动力汽车逆变器、功率电源、家用电器及工业设备的功率转换器等领域有广泛的应用前景,也因此使其成为国际上氮化物领域研究的热点之一。
二维电子气迁移率和浓度是表征GaN基异质结构材料质量的两个最重要指标,对于提高器件的输出电流密度和功率密度具有重要作用。而影响二维电子气迁移率的散射机制主要有界面粗糙度散射,位错散射,合金无序散射以及声子散射等。对于Si衬底上GaN基异质结构材料,由于存在较大的晶格失配,外延出的材料中含有大量的缺陷,这些缺陷大大限制了二维电子气性能的提高,同时严重影响了器件的可靠性。另一方面,由于热失配,高温生长GaN基材料后,在降温的过程中GaN基外延材料会受到Si衬底施加的巨大的张应力,导致外延材料强烈翘曲甚至龟裂,难以满足工艺的要求。因此,如何通过应力和缺陷工程,避免外延材料的龟裂,并获得低缺陷密度的GaN基异质结构外延材料,是研制Si上GaN基功率电子器件需要解决的首要问题。现有技术中为了实现Si上GaN异质结构材料的应力和缺陷控制,提高二维电子气的输运性能,国际上通常采取以下三种方法:
(1)低温AlN***层技术,如[1]A.Dadgar et al.,Jpn.J.Appl.Phys.39 L1183(2000)。这种技术优点是可以实现较厚的GaN基外延层,但由于低温AlN层的晶体质量较差使得GaN基外延层的质量也受到影响,在提高二维电子气的迁移率方面不是很理想。同时在MOCVD外延中需要多次的升温和降温,大大增加了外延工艺的复杂性。
(2)AlN/GaN超晶格技术,如[2]E.Feltin et al.,Phys.Status Solidi(a)188 531(2001)。这种技术在一定程度上可以降低位错密度,提高晶体质量,但在厚膜GaN的制备上具有一定的困难,同时周期长,增加了外延成本。
(3)Al组分梯度渐变AlGaN技术(多为从高Al组分梯度渐变到低Al组分),如[3]K.Chenget al.J.Electron.Mater.25,4(2006)。这种技术介于上面两个技术中间,但涉及到多次(三次以上)三元合金AlGaN的生长,因为Al组分受MOCVD反应室如温度的影响较敏感,外延步骤较多,在应力控制的可重复性和稳定性上也受到一定的挑战。
发明内容
本发明的目的在于克服现有Si上GaN基异质结构外延技术上的不足以及工艺的复杂性,提供了一种Si上高迁移率GaN基异质结构,即利用单层的低Al组分AlGaN作为应力和缺陷控制层,来制备Si上高迁移率GaN基异质结构材料。
为了实现上述目的,技术方案如下:一种Si上高迁移率GaN基异质结构,由下至上依次包括:硅衬底;成核层;该成核层在硅衬底之上,应力和缺陷控制层;该应力和缺陷控制层在成核层之上,外延层;该外延层在应力和缺陷控制层之上,沟道层;该沟道层在外延层之上,***层;该***层在沟道层之上,势垒层;该势垒层在***层之上,其中应力和缺陷控制层为AlGaN层,其厚度为10nm-10μm,且Al摩尔组分为1-26%。
本发明还提供一种高迁移率GaN基异质结构的制备方法,采用该方法能够有效克服现有Si衬底上GaN基异质结构外延技术上的复杂性,外延工艺简单且快捷有效,稳定性高,同时能大幅度提高异质结构晶体质量,提高二维电子气的输运性质,包括如下步骤:
(1)选择Si衬底;
(2)在Si衬底上生长一层铝镓氮或氮化铝成核层;
(3)在成核层上生长应力和缺陷控制层,该应力和缺陷控制层为AlGaN层,其厚度为10nm-10μm,且Al摩尔组分为1-26%;
(4)在应力和缺陷控制层上生长氮化镓或铝镓氮外延层;
(5)在外延层上生长氮化镓或铟镓氮沟道层;
(6)在沟道层上生长氮化铝***层;
(7)在***层上生长铝镓氮势垒层或铟铝氮势垒层,从而在Si衬底上制备出GaN基异质结构。
优选的,所述成核层、应力和缺陷控制层、外延层、沟道层、***层和势垒层的生长方法为金属有机化合物气相外延(MOCVD),分子束外延(MBE),氢化物气相外延(HVPE)和气相外延(CVD)中的一种。
本发明采用独特的单层低铝组分铝镓氮作为应力和缺陷控制层,进一步通过精确控制生长条件,如温度,压力,V/III等,可有效的降低了GaN外延层中的缺陷密度,提高了异质结构材料的晶体质量,特别是二维电子气的迁移率。参考图2所示,采用本发明制备的GaN外延层的X射线衍射(XRD)对称面(002)和非对称面(102)摇摆曲线的半高宽(FWHM)分别为389arcsec和527arcsec;在此基础上外延的AlGaN/GaN异质结构室温下二维电子气(2DEG)迁移率μ=2030cm2/V.s,载流子浓度n=8.4E12/cm2
与现有的较繁琐的Si上GaN基异质结构外延技术相比,本发明将单层低铝组分铝镓氮作为应力和缺陷控制层,不仅制备方法简单易行,而且可以大幅降低缺陷密度,提高异质结构材料的晶体质量,十分适合于低成本的高频、高功率器件的研制。
附图说明
图1为本发明硅上高迁移率GaN基异质结构示意图;
图2为采用本发明制备的GaN外延层的X射线衍射(XRD)图;其中(a)为GaN外延层的XRD对称面(002)摇摆曲线;(b)为GaN外延层的XRD非对称面(102)摇摆曲线。
具体实施方式
参考图1所示,本发明提供了一种硅上高迁移率GaN基异质结构,由下至上依次包括:单晶硅衬底1;成核层2;应力和缺陷控制层3;氮化镓外延层4;氮化镓沟道层5;氮化铝***层6;铝镓氮势垒层或铟铝氮势垒层7。
实施例1
(1)选择一种单晶硅衬底1,硅的晶向包括硅(111)、硅(100)、硅(110)等;
(2)在单晶衬底上生长铝镓氮作为成核层2,生长温度为900-1200℃,生长压力为10-200mbar,生长厚度为10nm-2μm;
(3)在成核层2上外延生长铝镓氮作为应力和缺陷控制层3,生长温度为900-1200℃,生长压力为10-200mbar,生长厚度为10nm-10μm,铝的摩尔组分为1%,该层起到调控应力和抑制缺陷的作用;
(4)在应力和缺陷控制层3上生长氮化镓外延层4,生长温度为900-1100℃,生长压力为10-200mbar,厚度为10nm-20μm,氮化镓外延层起到提高晶体质量和表面形貌的作用;
(5)在氮化镓外延层4上生长氮化镓沟道层5,生长温度为900-1200℃,生长压力为10-200mbar,厚度为2nm-1.0μm,为二维电子气提供一个良好的输运通道;
(6)在氮化镓沟道层5上生长氮化铝***层6,降低合金无序散射,生长温度为900-1200℃,生长压力为10-200mbar,厚度为0.5nm-3.0nm;
(7)在氮化铝***层6上生长铝镓氮势垒层7,生长温度为750-1200℃,生长压力为10-200mbar,厚度为3nm-50nm,与其下面的氮化镓沟道层5和氮化铝***层6一起构成半导体异质结构,在其界面处形成高浓度的具有高迁移特性的二维电子气。
实施例2
(1)选择一种单晶硅衬底1,硅的晶向包括硅(111)、硅(100);
(2)在单晶衬底上生长氮化铝作为成核层2,生长温度为900-1200℃,生长压力为10-200mbar,生长厚度为10nm-2μm;
(3)在成核层2上外延生长铝镓氮作为应力和缺陷控制层3,生长温度为900-1200℃,生长压力为10-200mbar,生长厚度为10nm-10μm,铝的摩尔组分为15%,该层起到调控应力和抑制缺陷的作用;
(4)在应力和缺陷控制层3上生长铝镓氮外延层4,该铝镓氮外延层4的铝的摩尔组分为0.01-15%,生长温度为900-1100℃,生长压力为10-200mbar,厚度为10nm-20μm,铝镓氮外延层起到提高晶体质量和表面形貌的作用;
(5)在铝镓氮外延层4上生长氮化镓沟道层5,生长温度为900-1200℃,生长压力为10-200mbar,厚度为2nm-1.0μm,为二维电子气提供一个良好的输运通道;
(6)在氮化镓沟道层5上生长氮化铝***层6,降低合金无序散射,生长温度为900-1200℃,生长压力为10-200mbar,厚度为0.5nm-3.0nm;
(7)在氮化铝***层6上生长铟铝氮势垒层7,生长温度为750-1200℃,生长压力为10-200mbar,厚度为3nm-50nm,与其下面的氮化镓沟道层5和氮化铝***层6一起构成半导体异质结构,在其界面处形成高浓度的具有高迁移特性的二维电子气。
实施例3
(1)选择一种单晶硅衬底1;
(2)在单晶衬底上生长铝镓氮或氮化铝作为成核层2,生长温度为900-1200℃,生长压力为10-200mbar,生长厚度为10nm-2μm;
(3)在成核层2上外延生长铝镓氮作为应力和缺陷控制层3,生长温度为900-1200℃,生长压力为10-200mbar,生长厚度为10nm-10μm,铝的摩尔组分为23.4%,该层起到调控应力和抑制缺陷的作用;
(4)在应力和缺陷控制层3上生长氮化镓外延层4,生长温度为900-1100℃,生长压力为10-200mbar,厚度为10nm-20μm,氮化镓外延层起到提高晶体质量和表面形貌的作用;
(5)在氮化镓外延层4上生长铟镓氮沟道层5,该铟镓氮沟道层的铟的摩尔组分为0.01-100%,生长温度为600-1200℃,生长压力为10-1000mbar,厚度为2nm-1.0μm,为二维电子气提供一个良好的输运通道;
(6)在铟镓氮沟道层5上生长氮化铝***层6,降低合金无序散射,生长温度为900-1200℃,生长压力为10-200mbar,厚度为0.5nm-3.0nm;
(7)在氮化铝***层6上生长铝镓氮势垒层或铟铝氮势垒层7,生长温度为750-1200℃,生长压力为10-200mbar,厚度为3nm-50nm,与其下面的氮化镓沟道层5和氮化铝***层6一起构成半导体异质结构,在其界面处形成高浓度的具有高迁移特性的二维电子气。
以上所述的实施例仅为说明本发明的技术思想及特点,其描述较为具体和详细,其目的在于使本领域的普通技术人员能够了解本发明的内容并据以实施,因此不能仅以此来限定本发明的专利范围,但并不能因此而理解为对本发明范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,即凡依据本发明所揭示的精神所作的变化,仍应涵盖在本发明的专利范围内。

Claims (8)

1.一种硅衬底上高迁移率GaN基异质结构,该结构为层状叠加结构,从下向上的材料依次为:硅衬底、成核层、应力和缺陷控制层、外延层、沟道层、***层和势垒层,所述沟道层、***层和势垒层一起构成半导体异质结构,其特征在于,应力和缺陷控制层为AlGaN层,其厚度为10nm-10μm;且Al摩尔组分为1-26%。
2.如权利要求1所述的硅衬底上高迁移率GaN基异质结构,其特征在于,所述硅衬底为导电硅衬底或半绝缘硅衬底,硅的晶向包括硅(111)、硅(100)、硅(110)。
3.如权利要求1所述的硅衬底上高迁移率GaN基异质结构,其特征在于,所述成核层为AlGaN层或AlN层,其厚度范围为10nm-2μm。
4.如权利要求1所述的硅衬底上高迁移率GaN基异质结构,其特征在于,所述外延层为氮化镓或铝镓氮,其厚度范围为10nm-20μm。
5.如权利要求1所述的硅衬底上高迁移率GaN基异质结构,其特征在于,所述沟道层为氮化镓或铟镓氮,其厚度范围为2nm-1.0μm。
6.如权利要求1所述的硅衬底上高迁移率GaN基异质结构,其特征在于,所述***层为氮化铝,其厚度范围为0.5nm-3.0nm。
7.如权利要求1所述的硅衬底上高迁移率GaN基异质结构,其特征在于,所述势垒层为铝镓氮或铟铝氮,其厚度范围为3nm-50nm。
8.一种制备如权利要求1所述的硅衬底上高迁移率GaN基异质结构的方法,其特征在于,采用金属有机化合物气相外延、分子束外延、氢化物气相外延、或气相外延方法中的一种或多种,在Si衬底上生长一层铝镓氮或氮化铝成核层;随后在成核层上生长AlGaN应力和缺陷控制层;接着在应力和缺陷控制层上生长氮化镓或铝镓氮外延层;再在外延层上生长氮化镓或铟镓氮沟道层;接着在沟道层上生长氮化铝***层;最后在氮化铝***层上生长铝镓氮势垒层或铟铝氮势垒层,从而在Si衬底上制备出GaN基异质结构。
CN201510037027.2A 2015-01-23 2015-01-23 一种硅上高迁移率GaN基异质结构及其制备方法 Active CN104576714B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510037027.2A CN104576714B (zh) 2015-01-23 2015-01-23 一种硅上高迁移率GaN基异质结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510037027.2A CN104576714B (zh) 2015-01-23 2015-01-23 一种硅上高迁移率GaN基异质结构及其制备方法

Publications (2)

Publication Number Publication Date
CN104576714A true CN104576714A (zh) 2015-04-29
CN104576714B CN104576714B (zh) 2017-11-07

Family

ID=53092368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510037027.2A Active CN104576714B (zh) 2015-01-23 2015-01-23 一种硅上高迁移率GaN基异质结构及其制备方法

Country Status (1)

Country Link
CN (1) CN104576714B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106601787A (zh) * 2016-12-01 2017-04-26 北京大学 一种InxAlyGa1‑x‑yN/GaN异质结构外延方法
CN106783726A (zh) * 2016-12-30 2017-05-31 苏州爱彼光电材料有限公司 复合衬底及其制备方法、半导体器件
CN107546261A (zh) * 2016-06-29 2018-01-05 江西省昌大光电科技有限公司 半绝缘GaN薄膜及高电子迁移率晶体管外延结构
CN108172501A (zh) * 2017-12-22 2018-06-15 北京大学 一种异质衬底上GaN连续厚膜的外延生长方法
CN108550518A (zh) * 2018-05-10 2018-09-18 南京大学 采用分子束外延技术生长用于缓解/消除铝镓氮薄膜表面裂纹的超晶格***层的方法
CN111009468A (zh) * 2018-10-08 2020-04-14 北京大学 一种半导体异质结构制备方法及其用途
CN111009579A (zh) * 2018-10-08 2020-04-14 合肥彩虹蓝光科技有限公司 半导体异质结构及半导体器件
CN111863945A (zh) * 2020-07-15 2020-10-30 北京大学 一种高阻氮化镓及其异质结构的制备方法
CN113725330A (zh) * 2021-08-10 2021-11-30 广州市众拓光电科技有限公司 一种硅基led外延结构及其制备方法和应用
CN118016710A (zh) * 2024-04-10 2024-05-10 英诺赛科(珠海)科技有限公司 一种GaN HEMT器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098490B2 (en) * 2003-06-02 2006-08-29 Hrl Laboratories, Llc GaN DHFET
CN101312207A (zh) * 2007-05-21 2008-11-26 张乃千 一种增强型氮化镓hemt器件结构
CN102569390A (zh) * 2010-12-24 2012-07-11 中国科学院微电子研究所 高击穿氮化镓基场效应晶体管器件及其制作方法
CN102842613A (zh) * 2012-09-18 2012-12-26 中国科学院半导体研究所 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
CN102931230A (zh) * 2012-11-19 2013-02-13 中国科学院半导体研究所 铝镓氮做高阻层的双异质结氮化镓基hemt及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098490B2 (en) * 2003-06-02 2006-08-29 Hrl Laboratories, Llc GaN DHFET
CN101312207A (zh) * 2007-05-21 2008-11-26 张乃千 一种增强型氮化镓hemt器件结构
CN102569390A (zh) * 2010-12-24 2012-07-11 中国科学院微电子研究所 高击穿氮化镓基场效应晶体管器件及其制作方法
CN102842613A (zh) * 2012-09-18 2012-12-26 中国科学院半导体研究所 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法
CN102931230A (zh) * 2012-11-19 2013-02-13 中国科学院半导体研究所 铝镓氮做高阻层的双异质结氮化镓基hemt及制作方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546261A (zh) * 2016-06-29 2018-01-05 江西省昌大光电科技有限公司 半绝缘GaN薄膜及高电子迁移率晶体管外延结构
CN106601787B (zh) * 2016-12-01 2020-06-26 北京大学 一种InxAlyGa1-x-yN/GaN异质结构及其外延方法
CN106601787A (zh) * 2016-12-01 2017-04-26 北京大学 一种InxAlyGa1‑x‑yN/GaN异质结构外延方法
CN106783726A (zh) * 2016-12-30 2017-05-31 苏州爱彼光电材料有限公司 复合衬底及其制备方法、半导体器件
CN108172501A (zh) * 2017-12-22 2018-06-15 北京大学 一种异质衬底上GaN连续厚膜的外延生长方法
CN108550518A (zh) * 2018-05-10 2018-09-18 南京大学 采用分子束外延技术生长用于缓解/消除铝镓氮薄膜表面裂纹的超晶格***层的方法
CN108550518B (zh) * 2018-05-10 2020-03-24 南京大学 采用分子束外延技术生长用于缓解/消除铝镓氮薄膜表面裂纹的超晶格***层的方法
CN111009468A (zh) * 2018-10-08 2020-04-14 北京大学 一种半导体异质结构制备方法及其用途
CN111009579A (zh) * 2018-10-08 2020-04-14 合肥彩虹蓝光科技有限公司 半导体异质结构及半导体器件
CN111863945A (zh) * 2020-07-15 2020-10-30 北京大学 一种高阻氮化镓及其异质结构的制备方法
CN113725330A (zh) * 2021-08-10 2021-11-30 广州市众拓光电科技有限公司 一种硅基led外延结构及其制备方法和应用
CN118016710A (zh) * 2024-04-10 2024-05-10 英诺赛科(珠海)科技有限公司 一种GaN HEMT器件及其制作方法
CN118016710B (zh) * 2024-04-10 2024-07-02 英诺赛科(珠海)科技有限公司 一种GaN HEMT器件及其制作方法

Also Published As

Publication number Publication date
CN104576714B (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
CN104576714B (zh) 一种硅上高迁移率GaN基异质结构及其制备方法
Green et al. β-Gallium oxide power electronics
JP6705831B2 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
CN109346400B (zh) 一种高质量Ga2O3薄膜及其异质外延制备方法
CN101266999B (zh) 氮化镓基双异质结场效应晶体管结构及制作方法
CN106920849A (zh) 一种散热性好的Ga2O3基金属氧化物半导体场效应晶体管及其制备方法
CN104600109A (zh) 一种高耐压氮化物半导体外延结构及其生长方法
CN102851734B (zh) 半导体外延结构及其生长方法
WO2017077989A1 (ja) 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法
CN102969341A (zh) 组分渐变AlyGa1-yN缓冲层的氮化物高电子迁移率晶体管外延结构
CN102427084B (zh) 氮化镓基高电子迁移率晶体管及制作方法
Oshima et al. Progress and challenges in the development of ultra-wide bandgap semiconductor α-Ga2O3 toward realizing power device applications
KR102232558B1 (ko) 13족 질화물 복합 기판, 반도체 소자, 및 13족 질화물 복합 기판의 제조 방법
CN104752162A (zh) 一种半绝缘GaN薄膜及其制备方法
CN103633134A (zh) 一种厚膜高阻氮化物半导体外延结构及其生长方法
JP6730301B2 (ja) 半導体素子用エピタキシャル基板の製造方法
CN101901759B (zh) 基于r面Al2O3衬底上非极性a面GaN薄膜的MOCVD生长方法
CN111063726A (zh) 一种Si基氮化镓器件的外延结构
CN104733511A (zh) 一种在硅衬底上生长的氮化镓外延结构
CN104465720A (zh) 一种半导体外延结构及其生长方法
CN102856359B (zh) 半导体外延结构及其生长方法
CN111584627A (zh) 一种近似同质外延hemt器件结构及其制备方法
CN212991102U (zh) 一种复合衬底结构
CN111081762B (zh) 一种hemt器件的外延结构
JP6944569B2 (ja) 半導体素子用エピタキシャル基板および半導体素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201012

Address after: 101300, No. two, 1 road, Shunyi Park, Zhongguancun science and Technology Park, Beijing, Shunyi District

Patentee after: Beijing zhongbosin Semiconductor Technology Co., Ltd

Address before: 5 Yiheyuan Road, Haidian District, Beijing 100871

Patentee before: Peking University