CN104513485B - 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法 - Google Patents

碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法 Download PDF

Info

Publication number
CN104513485B
CN104513485B CN201410832252.0A CN201410832252A CN104513485B CN 104513485 B CN104513485 B CN 104513485B CN 201410832252 A CN201410832252 A CN 201410832252A CN 104513485 B CN104513485 B CN 104513485B
Authority
CN
China
Prior art keywords
carbon nano
tube
composite material
preparation
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410832252.0A
Other languages
English (en)
Other versions
CN104513485A (zh
Inventor
梁国正
焦成
焦一成
顾嫒娟
袁莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201410832252.0A priority Critical patent/CN104513485B/zh
Publication of CN104513485A publication Critical patent/CN104513485A/zh
Priority to PCT/CN2015/080146 priority patent/WO2016107058A1/zh
Priority to US15/534,500 priority patent/US10053544B2/en
Application granted granted Critical
Publication of CN104513485B publication Critical patent/CN104513485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • C08J3/2056Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase the polymer being pre-melted
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • B29K2079/085Thermoplastic polyimides, e.g. polyesterimides, PEI, i.e. polyetherimides, or polyamideimides; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0006Dielectric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Abstract

本发明公开了一种碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法。按重量计,将100份聚醚酰亚胺与1~7份碳纳米管在Haake转矩熔腔中混合均匀得到碳纳米管/聚醚酰亚胺复合物;将20份的碳纳米管/聚醚酰亚胺复合物溶于100~150份的二氯甲烷中,再将混合溶液加入到100份熔融的可热固化的热固性树脂中混合,保温搅拌,待混合物形成均匀状态,经固化和后处理后得到一种碳纳米管/热固性树脂介电复合材料,其基体具有典型的反转相结构,而碳纳米管分散于聚醚酰亚胺相中。该复合材料具有较低的渗流阈值、高介电常数和低介电损耗。本发明制备方法工艺简单,适合于大规模生产。

Description

碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法
技术领域
本发明涉及一种介电复合材料及其制备技术,特别涉及一种由相反转结构的树脂基体构成的具有高介电常数的碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及其制备方法。
背景技术
高介电常数聚合物基复合材料是重要的功能材料,在绝缘、机电、生物工程等众多领域具有重要应用价值。在聚合物中加入导体是制备高介电常数聚合物基复合材料的重要类型。碳纳米管因其突出的电性能、大的长径比以及良好的机械性能而受到人们的广泛关注。迄今,人们已制备了多种碳纳米管/聚合物复合材料。作为导体/聚合物复合材料,碳纳米管/聚合物复合材料在碳纳米管的含量接近渗流阈值时发生绝缘体-导体的转变,从而获得高介电常数,但同时也往往具有高介电损耗。另一方面,为了保持聚合物良好的加工性以及降低生产成本,低渗流阈值无疑极具吸引力。
目前,降低介电损耗的重要途径是在导体外包覆非导体,通过避免导体间的相互接触获得低介电损耗。但是,也往往导致复合材料的渗流阈值升高。为此,人们又尝试通过形成双逾渗结构,达到降低渗流阈值的目标。具体做法是由两种不相容聚合物组成具有双连续相结构的聚合物基体,通过无机功能体分散在其中某个聚合物连续相中,或者使无机功能体分散在相界面处,从而降低导体的含量。例如,在本发明做出之前,Dang等人(参见文献:Xiaodong Zhao, Jun Zhao, Jianping Cao, Dongrui Wang, Guohua Hu, FenghuaChen,Zhimin Dang. Effect of the selective localization of carbon nanotubes inpolystyrene/poly(vinylidene fluoride) blends on their dielectric, thermal,and mechanical properties. Materials and Design. 2014,56: 807–815.)制备了具有双连续相结构的聚苯乙烯(PS)/聚偏氟乙烯(PVDF)聚合物基体,而后与碳纳米管复合成复合材料。发现在碳纳米管含量不变的情况下,碳纳米管分散在聚苯乙烯或聚偏氟乙烯相所得到的复合材料具有不同的介电性能。但是,100Hz下,所有复合材料中所取得的最大介电常数为485,此时碳纳米管的含量仍高达3.9vol%。为了进一步优化,他们(参见文献:Xiaodong Zhao, Jianping Cao,Jun Zhao, Guohua Hu, Zhimin Dang. Advanceddielectric polymer nanocomposites by constructing a ternary continuousstructure in polymer blends containing poly(methyl methacrylate) (PMMA)modified carbon nanotubes. J. Mater. Chem. A, 2014, 2, 10614–10622.)将经化学处理的碳纳米管固定在聚甲基丙烯酸甲酯(PMMA)中,而后包覆PVDF,形成核壳结构的复合物;该复合物与PS复合形成复合材料,从而达到将碳纳米管分散在PS/PVDF两相界面处的效果。其中,当碳纳米管含量在0.4wt%~0.6wt%时,获得的100Hz下的最大介电常数仅为398,而介电损耗介于0.8~200之间。可见,双逾渗结构可以获得高介电常数及降低渗流阈值,但是对于降低介电损耗并不是有效,这不是实际应用中所期望的。此外,复杂的结构设计并未达到复合材料综合介电性能的显著提升,同时更多的聚合物的引入使得加工工艺更加复杂和难于控制。
综上所述,在获得高介电常数的基础上,如何通过简单易行的方法获得高介电常数、较低介电损耗和低渗流阈值的导体/聚合物介电复合材料,仍然是一个艰巨的挑战。
发明内容
本发明针对现有热固性树脂介电复合材料存在的不足,提供一种保持较低的渗流阈值,兼具高介电常数和低介电损耗的碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及其制备方法,提供的制备方法简单易行、工艺可控,易于规模化生产。
实现本发明目的的技术方案是提供一种碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料的制备方法,包括如下步骤:
1、按重量计,将100份聚醚酰亚胺和1~7份碳纳米管混合均匀,加入到Haake转矩流变仪的熔腔中,在温度为300~340℃、转速为50~150转/min的条件下密炼10~30min,得到碳纳米管/聚醚酰亚胺复合物;
2、按质量计,将20份碳纳米管/聚醚酰亚胺复合物溶于120~150份的二氯甲烷中,得到的溶液与100份熔融状态的热固性树脂混合,保温搅拌30~50min混合均匀,再经固化处理后得到一种碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料。
本发明技术方案中,所述的碳纳米管为未经表面处理的单壁碳纳米管、多壁碳纳米管中的一种,或它们的任意组合。
所述的热固性树脂为自身可热固化树脂,如双马来酰亚胺树脂、氰酸酯及其组合;或由自身不能热固化的树脂与固化剂组成的树脂体系,如环氧树脂。
本发明技术方案还包括按上述制备方法得到的一种碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料。
与现有技术相比,本发明取得的有益效果是:
1、本发明以未经任何化学处理的碳纳米管为导体,最大限度地保留了碳纳米管良好的物理性能。通过Haake(哈克流变仪)熔融密炼混合促使聚醚酰亚胺产生电子受体,并与碳纳米管的π-π电子云体系形成电子受体-供体的复合物,实现了其在复合材料中的聚醚酰亚胺相中的可控分布,适于大规模生产。同时,碳纳米管表面粘附薄的聚醚酰亚胺树脂包覆层,避免了碳纳米管的直接接触,降低了漏导损耗,有助于复合材料获得低介电损耗。
2、本发明提供的聚醚酰亚胺/热固性树脂基体中,聚醚酰亚胺的质量分数低于热固性树脂的含量,而整个基体呈现经典的反转相结构。碳纳米管在聚醚酰亚胺连续相中的分布,确保了碳纳米管在较少的填充量下就形成有效的导电网络通路,从而为获得高介电常数提供保障。
3、本发明制备的复合材料的反转相结构中,含量占多数的热固性树脂作为分散相并以球状形态分散在聚醚酰亚胺连续相中,碳纳米管/聚醚酰亚胺复合体包覆在众多热固性树脂球状相周围,从而在球半径平行切面上的碳纳米管形成很多新的微电容结构,为大幅度提高复合材料的介电常数提供了额外的保障。
4、本发明提出的制备方法将Haake密炼混合与熔融混合相结合,成功实现了碳纳米管的优先指定分散。同时,阶段连续升温的固化工艺,为复合材料反转相结构的形成提供了充分的时间和适宜的温度,因此结构稳定性较高,批次稳定性好。同时,工艺简单,利于规模生产,具有广阔的应用前景。
附图说明
图1是本发明实施例1与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料断面的扫描电镜(SEM)对比照片。
图2是本发明实施例1与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的电导率随频率变化曲线对比图。
图3是本发明实施例1与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的介电常数随频率变化曲线对比图。
图4是本发明实施例1与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的介电损耗随频率变化曲线对比图。
图5是本发明实施例1与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的电容值随频率变化曲线对比图。
图6是本发明实施例1、2、3、4、5、6和7制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料在1Hz下的电导率随碳纳米管含量的变化关系图。
具体实施方式
下面结合附图和实施例,对本发明技术方案作进一步描述。
实施例1
1、碳纳米管/聚醚酰亚胺复合物的制备
将3.0g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中,熔融密炼共混(共混条件是330℃下15min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的制备
将10.5g碳纳米管/聚醚酰亚胺复合物溶于100mL二氯甲烷中,形成均匀溶液A;将37g 2.2’-二烯丙基双酚A加入到溶液A中,搅拌升温至150℃;缓慢加入50g N,N'-(4,4’-亚甲基二苯基)双马来酰亚胺,保温搅拌40min,得到预聚体。将预聚体倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中,碳纳米管的质量分数为0.45%。
本实施例制备的复合材料断裂面的SEM照片图、电导率-频率谱图、介电常数-频率谱图、介电损耗-频率谱图、电容-频率谱图、1Hz下的电导率,分别参见附图1、2、3、 4 、5和6所示。
3、制备对比例1:碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料
将37g 2.2’- 二烯丙基双酚A与0.45g多壁碳纳米管混合,将混合物在70℃下超声分散1h,得到混合物A;将10g聚醚酰亚胺溶于100mL二氯甲烷中,形成均匀溶液B,将B加入到混合物A中,并搅拌升温至150℃;缓慢加入50g N,N'-(4,4’-亚甲基二苯基)双马来酰亚胺,保温搅拌40min,,得到预聚体。将预聚体倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中碳纳米管的质量分数为0.45%。
对比例1制备得到的复合材料断裂面的SEM照片图、电导率-频率谱图、介电常数-频率谱图、介电损耗-频率谱图、电容值-频率谱图,参见附图1、2、3、 4 和5所示。
参见附图1,它是本实施例和对比例1提供的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的断面扫描电镜(SEM)对比照片,其中,a图为本实施例断面的全貌图, b图和c图为a图的局部放大图,图中可以清楚地看出,聚醚酰亚胺/双马来酰亚胺树脂基体在低倍下即可观察到明显的反转相结构,其中质量分数大的双马来酰亚胺树脂为球状且为分散相,质量分数小的聚醚酰亚胺为连续相,而碳纳米管分散在聚醚酰亚胺相中。碳纳米管/聚醚酰亚胺复合物包覆球状双马来酰亚胺树脂周围,从b图和c图中可看出清楚的相界面。
由于聚醚酰亚胺及双马来酰亚胺树脂均与多壁碳纳米管的界面能差异较大,其中双马来酰亚胺与碳纳米管的亲和性较好,且其熔融粘度远低于聚醚酰亚胺树脂。因此,通过对比例1的工艺可成功控制碳纳米管分散在双马来酰亚胺中。图1中,d图为比例1断面的全貌图,e图和f图为d图的局部放大图, d图表明,对比例1制备的复合材料也是反转相结构,e图和f图可清晰表明碳纳米管分散在双马来酰亚胺树脂相中。
参见附图2,它是本实施例与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的电导率-频率曲线比较图。可以看出,本实施例制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的电导率明显高于对比例1提供的复合材料的电导率,说明本实施例制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料在降低导体含量方面具有优势。
参见附图3,它是本实施例与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的介电常数-频率曲线比较图。可以看出,本实施例制备的复合材料的介电常数远远高于对比例1制备的复合材料的相应值。例如,本实施例与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料在100Hz下的介电常数分别为1742和71;表明本实施例制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料具有更优的介电性能。
参见附图4,它是本实施例与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的介电损耗-频率曲线比较图。可以看出,两种复合材料的介电损耗数值相近,说明本实施例制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料在大幅提高介电常数的同时并未导致介电损耗的大幅上升,仍维持在相对较低的水平。
参见附图5,它是本实施例与对比例1制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的电容值-频率曲线比较图。与对比例1提供的复合材料的电容相比,本实施例制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的电容高出两个数量级。这是由于本实施例制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料中,碳纳米管/聚醚酰亚胺复合体包覆在众多热固性树脂球状相周围,从而在球半径平行切面上的碳纳米管形成很多新的微电容结构。
实施例2
1、碳纳米管/聚醚酰亚胺复合物的制备
将0.6g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中,熔融密炼共混(共混条件是330℃下15min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的制备
将10.1g碳纳米管/聚醚酰亚胺复合物溶于75mL二氯甲烷中,形成均匀溶液A;将30g 2.2’-二烯丙基双酚A加入到溶液A中,搅拌升温至150℃;缓慢加入50g N,N'-(4,4’-亚甲基二苯基)双马来酰亚胺,保温搅拌40min,得到预聚体。将预聚体倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中碳纳米管的质量分数为0.1%,其1Hz下的电导率值参见附图6所示。
实施例3
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将4.2g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是340℃下10min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于100mL二氯甲烷中,形成均匀溶液A,将45g 2,2’-二烯丙基双酚A加入到溶液A中,搅拌升温至150℃;缓慢加入50g N,N'-(4,4’-亚甲基二苯基)双马来酰亚胺,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中碳纳米管质量分数为0.67%,其1Hz下的电导率值参见附图6。
实施例4
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将2.4g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是300℃下25min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于90mL二氯甲烷中,形成均匀溶液A,将38g 2,2’-二烯丙基双酚A加入到溶液A中,搅拌升温至150℃;缓慢加入50g 4,4'-双马来酰亚胺二苯醚,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中碳纳米管质量分数为0.36%,其1Hz下的电导率值参见附图6。
实施例5
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将1.8g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是340℃下10min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于85mL二氯甲烷中,形成均匀溶液A,将35g 2, 2’-二烯丙基双酚S加入到溶液A中,搅拌升温至150℃;缓慢加入50g N,N'-间苯撑双马来酰亚胺,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中碳纳米管质量分数为0.25%,其1Hz下的电导率值参见附图6。
实施例6
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将3.6g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是330℃下10min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于80mL二氯甲烷中,形成均匀溶液A,将37g 2, 2’-二烯丙基双酚S加入到溶液A中,搅拌升温至150℃;缓慢加入50g N,N'-(4,4’-亚甲基二苯基)双马来酰亚胺和N,N'-间苯撑双马来酰亚胺混合物,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中碳纳米管质量分数为0.58%,其1Hz下的电导率值参见附图6。
实施例7
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将3.3g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是300℃下15min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于80mL二氯甲烷中,形成均匀溶液A,将38g 2, 2’-二烯丙基双酚A加入到溶液A中,搅拌升温至150℃;缓慢加入50g N,N'-(4,4’-亚甲基二苯基)双马来酰亚胺和4,4'-双马来酰亚胺二苯醚的混合物,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料,其中碳纳米管质量分数为0.50%,其1Hz下的电导率值参见附图6。
参见附图6,它是本发明实施例1、2、3、4、5、6和7所制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料在1Hz下的电导率;图中插图为电导率与()的对数图,其中f c为渗流阈值。通过最小二乘法模拟,得到碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料的渗流阈值为0.35wt%,说明本发明制备的碳纳米管/聚醚酰亚胺/双马来酰亚胺树脂介电复合材料具有低渗流阈值维。
实施例8
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将3.0g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是300℃下15min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/氰酸酯树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于80mL二氯甲烷中,形成均匀溶液A,将50g双酚A型氰酸酯加入到溶液A中,搅拌升温至150℃,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照150℃/2h+180℃/2h+200℃/2h+200℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/氰酸酯树脂介电复合材料。
实施例9
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将0.6g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是340℃下10min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/氰酸酯树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于60mL二氯甲烷中,形成均匀溶液A,将50g双酚A型氰酸酯加入到溶液A中,搅拌升温至150℃,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照150℃/2h+180℃/2h+200℃/2h+200℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/氰酸酯树脂介电复合材料。
实施例10
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将4.2g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是330℃下20min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/氰酸酯树脂介电复合材料的制备
将8.0g碳纳米管/聚醚酰亚胺复合物溶于75mL二氯甲烷中,形成均匀溶液A,将40g双酚A型氰酸酯加入到溶液A中,搅拌升温至150℃,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照150℃/2h+180℃/2h+200℃/2h+200℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/氰酸酯树脂介电复合材料。
实施例11
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将3.0g多壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是330℃下25min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/双马来酰亚胺-三嗪树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于80mL二氯甲烷中,形成均匀溶液A,将8g双酚A型氰酸酯与42g N,N'-(4,4’-亚甲基二苯基)双马来酰亚胺加入到溶液A中,搅拌升温至150℃,保温搅拌40min,预聚结束后倒入预热好的模具中,在145℃下真空脱泡30min,按照165℃/2h+185℃/2h+220℃/2h+240℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/双马来酰亚胺-三嗪树脂介电复合材料。
实施例12
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将4.2g单壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是340℃下10min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/环氧树脂介电复合材料的制备
将10.0g碳纳米管/聚醚酰亚胺复合物溶于70mL二氯甲烷中,形成均匀溶液A,将50g E-51型环氧树脂加入到溶液A中,搅拌升温至60℃,保温搅拌40min,真空脱泡30min,加入2g 2-乙基-4-甲基咪唑,继续搅拌10min,预聚结束后倒入预热好的模具中,真空脱泡30min,按照80℃/2h+100℃/2h+120℃/2h+150℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/环氧树脂介电复合材料。
实施例13
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将0.4g多壁碳纳米管、0.2g单壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是300℃下30min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/环氧树脂介电复合材料的制备
将8.0g碳纳米管/聚醚酰亚胺复合物溶于65mL二氯甲烷中,形成均匀溶液A,将40gE-51型环氧树脂加入到溶液A中,搅拌升温至60℃,保温搅拌40min,真空脱泡30min,加入2g2-乙基-4-甲基咪唑,继续搅拌10min,预聚结束后倒入预热好的模具中,真空脱泡30min,按照80℃/2h+100℃/2h+120℃/2h+150℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/环氧树脂介电复合材料。
实施例14
1、碳纳米管/聚醚酰亚胺Haake复合物的制备
将2.4g单壁碳纳米管和60g聚醚酰亚胺混合搅匀,将混合物加入到Haake熔腔中熔融密炼共混(共混条件是320℃下25min)。密炼结束后,冷却,即得到碳纳米管/聚醚酰亚胺复合物。
2、碳纳米管/聚醚酰亚胺/环氧树脂介电复合材料的制备
将9.0g碳纳米管/聚醚酰亚胺复合物溶于80mL二氯甲烷中,形成均匀溶液A,将45gE-51型环氧树脂加入到溶液A中,搅拌升温至60℃,保温搅拌40min,真空脱泡30min,加入2g2-乙基-4-甲基咪唑,继续搅拌10min,预聚结束后倒入预热好的模具中,真空脱泡30min,按照80℃/2h+100℃/2h+120℃/2h+150℃/4h进行固化和后处理,即得一种碳纳米管/聚醚酰亚胺/环氧树脂介电复合材料。

Claims (3)

1.一种碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料的制备方法,其特征在于包括如下步骤:
(1) 按重量计,将100份聚醚酰亚胺和1~7份碳纳米管混合均匀,加入到Haake转矩流变仪的熔腔中,在温度为300~340℃、转速为50~150转/min的条件下密炼10~30min,得到碳纳米管/聚醚酰亚胺复合物;
(2) 按质量比,将20份碳纳米管/聚醚酰亚胺复合物溶于120~150份的二氯甲烷中,得到的溶液与100份熔融状态的热固性树脂混合,保温搅拌30~50min混合均匀,再经固化处理后得到一种碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料;
其中,所述的热固性树脂为自身可热固化树脂,或由自身不能热固化的树脂与固化剂组成的树脂体系;所述的自身可热固化树脂为双马来酰亚胺树脂、氰酸酯及其组合;所述自身不能热固化的树脂为环氧树脂。
2.根据权利要求1所述的一种碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料的制备方法,其特征在于:所述的碳纳米管为未经表面处理的单壁碳纳米管、多壁碳纳米管中的一种,或它们的任意组合。
3.一种按权利要求1制备方法得到的碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料。
CN201410832252.0A 2014-12-29 2014-12-29 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法 Active CN104513485B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410832252.0A CN104513485B (zh) 2014-12-29 2014-12-29 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法
PCT/CN2015/080146 WO2016107058A1 (zh) 2014-12-29 2015-05-28 碳纳米管 / 聚醚酰亚胺 / 热固性树脂介电复合材料及制备方法
US15/534,500 US10053544B2 (en) 2014-12-29 2015-05-28 Carbon nanotube/polyetherimide/thermosetting resin dielectric composite and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410832252.0A CN104513485B (zh) 2014-12-29 2014-12-29 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN104513485A CN104513485A (zh) 2015-04-15
CN104513485B true CN104513485B (zh) 2017-01-18

Family

ID=52789370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410832252.0A Active CN104513485B (zh) 2014-12-29 2014-12-29 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法

Country Status (3)

Country Link
US (1) US10053544B2 (zh)
CN (1) CN104513485B (zh)
WO (1) WO2016107058A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513485B (zh) * 2014-12-29 2017-01-18 苏州大学 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法
CN109100039B (zh) * 2018-09-06 2024-01-23 广州大学 一种基于碳纳米管环氧树脂复合薄膜的柔性温度传感器及其制备方法
CN109810279B (zh) * 2019-01-25 2021-05-28 陕西科技大学 一种高介电性能聚合物基复合微孔材料的制备方法
CN113512188B (zh) * 2021-08-06 2022-07-12 宁夏清研高分子新材料有限公司 一种低损耗lcp材料及其制备方法
CN114470972A (zh) * 2021-12-28 2022-05-13 盐城工学院 一种碳纳米管聚酯复合滤料的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
CN101081923A (zh) * 2007-06-01 2007-12-05 苏州大学 一种高性能复合树脂及其制备方法
CN101805491A (zh) * 2009-09-22 2010-08-18 龙海市奈特化工有限责任公司 一种具有电磁波遮蔽效果的复合材料及其制备方法
CN102070876A (zh) * 2010-12-30 2011-05-25 桂林电子科技大学 一种具有甚低逾渗阈值的环氧树脂基多元导电复合材料及其制备方法
CN102492298A (zh) * 2011-12-19 2012-06-13 苏州大学 一种改性聚醚酰亚胺/双马来酰亚胺树脂及其制备方法
CN102604383A (zh) * 2012-02-16 2012-07-25 苏州大学 碳纳米管/热固性树脂复合材料及其制备方法
CN103194858A (zh) * 2013-04-23 2013-07-10 北京化工大学 一种高介电常数低介电损耗的弹性体复合材料及其制备方法
CN104130575A (zh) * 2014-05-28 2014-11-05 李树茂 一种具有高尺寸稳定性树脂混合物及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264317A1 (en) * 2008-04-18 2009-10-22 University Of Massachusetts Functionalized nanostructure, methods of manufacture thereof and articles comprising the same
GB2464085A (en) 2008-06-07 2010-04-07 Hexcel Composites Ltd Improved Conductivity of Resin Materials and Composite Materials
US20100280151A1 (en) * 2009-05-04 2010-11-04 Toray Industries, Inc. Toughened fiber reinforced polymer composite with core-shell particles
CN104513485B (zh) 2014-12-29 2017-01-18 苏州大学 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
CN101081923A (zh) * 2007-06-01 2007-12-05 苏州大学 一种高性能复合树脂及其制备方法
CN101805491A (zh) * 2009-09-22 2010-08-18 龙海市奈特化工有限责任公司 一种具有电磁波遮蔽效果的复合材料及其制备方法
CN102070876A (zh) * 2010-12-30 2011-05-25 桂林电子科技大学 一种具有甚低逾渗阈值的环氧树脂基多元导电复合材料及其制备方法
CN102492298A (zh) * 2011-12-19 2012-06-13 苏州大学 一种改性聚醚酰亚胺/双马来酰亚胺树脂及其制备方法
CN102604383A (zh) * 2012-02-16 2012-07-25 苏州大学 碳纳米管/热固性树脂复合材料及其制备方法
CN103194858A (zh) * 2013-04-23 2013-07-10 北京化工大学 一种高介电常数低介电损耗的弹性体复合材料及其制备方法
CN104130575A (zh) * 2014-05-28 2014-11-05 李树茂 一种具有高尺寸稳定性树脂混合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrical Property of Carbon nanotubes/Epoxy Resin/Polyetherimide Composites with Inverted-Phase Structure;Dong-yong Xi et al;《Advanced Materials Research》;20130125;第652-654卷;第56-59页 *
k Carbon Nanotube/Poly(EtherImide)/Bismaleimide Composites through Controlling the Location and Distribution of Carbon Nanotubes.《The Journal of Physical Chemistry C》.2014,第118卷第24091&#8722 *
Yicheng Jiao et al.Facile Preparation and Origin of High&#8209 *

Also Published As

Publication number Publication date
US20170335069A1 (en) 2017-11-23
WO2016107058A1 (zh) 2016-07-07
US10053544B2 (en) 2018-08-21
CN104513485A (zh) 2015-04-15

Similar Documents

Publication Publication Date Title
CN104513485B (zh) 碳纳米管/聚醚酰亚胺/热固性树脂介电复合材料及制备方法
Ruan et al. Ordered alignment of liquid crystalline graphene fluoride for significantly enhancing thermal conductivities of liquid crystalline polyimide composite films
CN104860293B (zh) 碳纳米管三维网络宏观体、其聚合物复合材料及其制备方法
CN102286189B (zh) 一种氧化石墨烯/环氧树脂纳米复合材料的制备方法
CN102732037B (zh) 石墨烯泡沫∕聚合物高导电复合材料及其制备方法和应用
CN103483516B (zh) 一种氧化石墨烯-硼改性酚醛树脂的制备方法
CN104927330A (zh) 一种高导热绝缘高分子复合材料及其制备方法和用途
CN102796374B (zh) 一种碳纳米管/苯并噁嗪/双马来酰亚胺复合材料及其制备方法
CN102561037B (zh) 一种苯并噁嗪修饰超疏水纳米纤维膜及其制备方法
CN105778427A (zh) 一种氮化硼-碳纳米管纳米复合物协同改性环氧树脂的方法
CN107459774A (zh) 一种石墨烯/纳米二氧化硅/环氧树脂复合材料及其制备方法
CN103965590B (zh) 一种协同增韧的环氧树脂复合材料及其制备方法
CN103540104A (zh) 一种氧化石墨烯增强乙烯基酯复合材料及其制备方法
CN106744900A (zh) 一种高分散性石墨烯的制备方法
CN102618014B (zh) 含酚酞侧基的聚芳醚酮(砜)树脂基混杂多尺度复合材料的制备方法
CN104861633B (zh) 具有树枝状泡孔结构的导电高分子复合材料及其制备方法
CN106633649A (zh) 一种适用于微波固化树脂基体及制备方法
CN106118018A (zh) 一种高性能聚苯醚/石墨烯纳米复合材料制备方法
CN104264263A (zh) 一种丝蛋白/碳纳米管杂化纤维及其制备方法
CN104558650A (zh) 碳纳米管/短切碳纤维/环氧树脂复合材料的制备方法
Luo et al. Synergistic effect of multiscale BNs/CNT and 3D melamine foam on the thermal conductive of epoxy resin
CN108559228B (zh) 一种环氧树脂基电磁屏蔽复合材料及其制备方法
CN107722595A (zh) 一种纤维‑石墨烯‑热塑性聚芳醚多尺度复合材料的制备方法
CN104530651A (zh) 一种热固性树脂纳米复合材料及其制备方法
CN103011131B (zh) 偶联剂修饰的碳纳米管的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant