CN104480450A - 一种透明导电复合薄膜及其制造方法 - Google Patents

一种透明导电复合薄膜及其制造方法 Download PDF

Info

Publication number
CN104480450A
CN104480450A CN201410764347.3A CN201410764347A CN104480450A CN 104480450 A CN104480450 A CN 104480450A CN 201410764347 A CN201410764347 A CN 201410764347A CN 104480450 A CN104480450 A CN 104480450A
Authority
CN
China
Prior art keywords
film
graphene
polyphenylene ethyl
electrically conducting
conducting transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410764347.3A
Other languages
English (en)
Inventor
姜浩
黄德萍
朱鹏
李占成
高翾
张永娜
史浩飞
杜春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Chongqing Graphene Technology Co Ltd
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Chongqing Graphene Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS, Chongqing Graphene Technology Co Ltd filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN201410764347.3A priority Critical patent/CN104480450A/zh
Publication of CN104480450A publication Critical patent/CN104480450A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明涉及石墨烯材料技术领域,尤其涉及一种透明导电复合薄膜,包括石墨烯薄膜和聚对二甲苯薄膜,所述聚对二甲苯薄膜设置在所述石墨烯薄膜的一面上。本发明的有益效果是:提供一种透明导电复合薄膜,通过聚对二甲苯薄膜对石墨烯薄膜实现支承,聚对二甲苯薄膜能与石墨烯形成分子尺度的紧密接触,通过π-π耦合作用对石墨烯起到有效力学支撑作用,可明显抑制石墨烯热振动,从而稳定石墨烯电性能,大幅度提高石墨烯的使用性能。

Description

一种透明导电复合薄膜及其制造方法
技术领域
本发明涉及石墨烯材料技术领域,尤其涉及一种透明导电复合薄膜。
背景技术
近年来,石墨烯作为一种全新的功能材料,其优异的物理性质引起了全世界范围的高度关注。随着石墨烯制备和应用技术的发展,各界已逐渐认识到该材料所带来的革命契机,尤其是极高的光学透过率、超高的载流子迁移率等特性,为透明导电材料的性能突破提供了全新的方向。
目前,工艺成熟并能够实现大面积制备石墨烯的方法是化学气相沉积法(CVD)。CVD法制备的石墨烯是由尺寸约数微米到数十微米的石墨烯单晶片拼接而成,众多晶界的存在大大降低了石墨烯的力学强度。另外,石墨烯是二维纳米材料,单层厚度仅0.34nm。因此,要作为透明导电材料应用,石墨烯必须通过其它透明材料支撑,从而具备一定的力学性能及可操作性。现有石墨烯支撑材料通常为玻璃或PET薄膜。二者与石墨烯间的作用力弱,间距大,石墨烯基本处于自由状态。这就导致:一方面,石墨烯得不到支撑基材有力支撑,一碰就碎;另一方面,物理吸附的掺杂剂分子受石墨烯热振动影响而从其表面解吸附,使石墨烯电性能不稳定并迅速恶化。
发明内容
本发明所要解决的技术问题是提供一种能为石墨烯提供有效力学支承,从而稳定石墨烯电学性能的透明导电复合薄膜及其制造方法。
本发明解决上述技术问题的技术方案如下:一种透明导电复合薄膜,包括石墨烯薄膜和聚对二甲苯薄膜,所述聚对二甲苯薄膜设置在所述石墨烯薄膜的一面上。
本发明的有益效果是:提供一种透明导电复合薄膜,通过聚对二甲苯薄膜对石墨烯薄膜实现支承,聚对二甲苯薄膜能与石墨烯形成分子尺度的紧密接触,通过π-π耦合作用对石墨烯起到有效力学支撑作用,可明显抑制石墨烯热振动,从而稳定石墨烯电性能,大幅度提高石墨烯的使用性能。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述石墨烯薄膜和所述聚对二甲苯薄膜通过分子间作用力固定连接。
采用上述进一步方案的有益效果是:聚对二甲苯薄膜能与石墨烯形成分子尺度的紧密接触,起到有效的力学支承。
进一步,所述聚对二甲苯薄膜的厚度为2-100μm。
进一步,所述聚对二甲苯薄膜(3)的成分为聚对二甲苯和/或聚3-氯对二甲苯和/或聚2,5-二氯对二甲苯和/或聚氟代对二甲苯。
采用上述进一步方案的有益效果是:聚对二甲苯薄膜的厚度为2-100μm,即能保证对石墨烯薄膜起到足够的支承作用,又能避免复合薄膜的厚度过厚。
一种透明导电复合薄膜的制造方法,包括以下步骤:
步骤一,在由金属生长基底和石墨烯薄膜组成的复合材料的石墨烯薄膜表面沉积聚对二甲苯;
步骤二,对表面沉积了聚对二甲苯的复合材料进行分离,分离掉金属生长基底得到石墨烯薄膜和聚对二甲苯薄膜3组成的复合薄膜。
进一步,所述步骤一中,采用室温CVD法沉积聚对二甲苯。
进一步,所述步骤一中沉积的聚对二甲苯和/或聚对二甲苯衍生物的厚度为2-100μm。
进一步,所述步骤一种沉积的聚对二甲苯和/或聚对二甲苯衍生物的厚度为20-50μm。
上述方法的有益效果是:聚对二甲苯和/或聚对二甲苯衍生物采用室温真空气相沉积工艺,制备过程温和,并能与石墨烯形成分子尺度的紧密接触支撑;所沉积的聚对二甲苯和/或聚对二甲苯衍生物厚度均匀、致密无针孔、透明无应力,不会对石墨烯薄膜造成损伤;聚对二甲苯和/或聚对二甲苯衍生物含有与石墨烯结构相近的苯环,通过π-π耦合作用对石墨烯起到强力支撑作用,并能够进一步地稳定石墨烯电性能;聚对二甲苯和/或聚对二甲苯衍生物具有优异的力学性能,复合后石墨烯可大幅度提高石墨烯的使用性能。
附图说明
图1为本发明一种透明导电复合薄膜的结构示意图;
图2为本发明一种透明导电复合薄膜沉积聚对二甲苯前金属生长基底和石墨烯薄膜组成的符合材料的结构示意图;
图3为本发明一种透明导电复合薄膜在积聚对二甲苯薄膜后的结构示意图;
图4为本发明一种透明导电复合薄膜的制造方法的流程图。
附图中,各标号所代表的部件列表如下:
1、金属生长基底,2、石墨烯薄膜,3、聚对二甲苯薄膜。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1所示,本发明所示的一种透明导电复合薄膜包括石墨烯薄膜2和聚对二甲苯薄膜3,所述聚对二甲苯薄膜3设置在所述石墨烯薄膜2的一面上。所述石墨烯薄膜2和所述聚对二甲苯薄膜3通过分子间作用力固定连接。
优选的技术方案是:所述聚对二甲苯薄膜3的厚度为2-100μm。所述聚对二甲苯薄膜3的成分为聚对二甲苯和/或聚3-氯对二甲苯和/或聚2,5-二氯对二甲苯和/或聚氟代对二甲苯。
如图4所示,一种透明导电复合薄膜的制造方法,包括以下步骤:
步骤一S01,在由金属生长基底1和石墨烯薄膜2组成的复合材料的表面沉积聚对二甲苯和/或聚对二甲苯衍生物,沉积前金属生长基底1和石墨烯薄膜2组成的复合材料如图2所示,沉积后的结构如图3所示;
步骤二S02,对表面沉积了聚对二甲苯和/或聚对二甲苯衍生物的复合材料进行分离,分离掉金属生长基底1得到石墨烯薄膜2和聚对二甲苯薄膜3组成的复合薄膜,如图1所示。
进一步,所述步骤一中,采用室温CVD法沉积聚对二甲苯和/或聚对二甲苯衍生物。
进一步,所述步骤一中沉积的聚对二甲苯和/或聚对二甲苯衍生物的厚度为2-100μm。
进一步,所述步骤一种沉积的聚对二甲苯和/或聚对二甲苯衍生物的厚度为20-50μm。
进一步,所述步骤S02中金属基底分离方法为电解水鼓泡法。
本发明的有益效果是:提供一种透明导电复合薄膜,通过聚对二甲苯薄膜对石墨烯薄膜实现支承,聚对二甲苯薄膜能与石墨烯形成分子尺度的紧密接触,通过π-π耦合作用对石墨烯起到有效力学支撑作用,可明显抑制石墨烯热振动,从而稳定石墨烯电性能,大幅度提高石墨烯的使用性能。聚对二甲苯和/或聚对二甲苯衍生物采用室温真空气相沉积工艺,制备过程温和,并能与石墨烯形成分子尺度的紧密接触支撑;所沉积的聚对二甲苯和/或聚对二甲苯衍生物厚度均匀、致密无针孔、透明无应力,不会对石墨烯薄膜造成损伤;聚对二甲苯和/或聚对二甲苯衍生物含有与石墨烯结构相近的苯环,通过π-π耦合作用对石墨烯起到强力支撑作用,并能够进一步地稳定石墨烯电性能;聚对二甲苯和/或聚对二甲苯衍生物具有优异的力学性能,复合后石墨烯可大幅度提高石墨烯的使用性能。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种透明导电复合薄膜,其特征在于,包括石墨烯薄膜(2)和聚对二甲苯薄膜(3),所述聚对二甲苯薄膜(3)设置在所述石墨烯薄膜(2)的一面上。
2.根据权利要求1所述的一种透明导电复合薄膜,其特征在于,所述石墨烯薄膜(2)和所述聚对二甲苯薄膜(3)通过分子间作用力固定连接。
3.根据权利要求1或2所述的一种透明导电复合薄膜,其特征在于,所述聚对二甲苯薄膜(3)的厚度为2-100μm。
4.根据权利要求1或2所述的一种透明导电复合薄膜,其特征在于,所述聚对二甲苯薄膜(3)的成分为聚对二甲苯和/或聚3-氯对二甲苯和/或聚2,5-二氯对二甲苯和/或聚氟代对二甲苯。
5.一种透明导电复合薄膜的制造方法,其特征在于,包括以下步骤:
步骤一,在由金属生长基底(1)和石墨烯薄膜(2)组成的复合材料的石墨烯薄膜(2)表面上沉积聚对二甲苯和/或聚对二甲苯衍生物;
步骤二,对表面沉积了聚对二甲苯和/或聚对二甲苯衍生物的复合材料进行分离,分离掉金属生长基底(1)得到石墨烯薄膜(2)和聚对二甲苯薄膜(3)组成的复合薄膜。
6.根据权利要求5所述的一种透明导电复合薄膜的制造方法,其特征在于,所述步骤一中,采用室温CVD法沉积聚对二甲苯和/或聚对二甲苯衍生物。
7.根据权利要求5或6所述的一种透明导电复合薄膜的制造方法,其特征在于,所述步骤一中沉积的聚对二甲苯和/或聚对二甲苯衍生物的厚度为2-100μm。
8.根据权利要求5或6所述的一种透明导电复合薄膜的制造方法,其特征在于,所述步骤一种沉积的聚对二甲苯和/或聚对二甲苯衍生物的厚度为20-50μm。
CN201410764347.3A 2014-12-12 2014-12-12 一种透明导电复合薄膜及其制造方法 Pending CN104480450A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410764347.3A CN104480450A (zh) 2014-12-12 2014-12-12 一种透明导电复合薄膜及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410764347.3A CN104480450A (zh) 2014-12-12 2014-12-12 一种透明导电复合薄膜及其制造方法

Publications (1)

Publication Number Publication Date
CN104480450A true CN104480450A (zh) 2015-04-01

Family

ID=52755049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410764347.3A Pending CN104480450A (zh) 2014-12-12 2014-12-12 一种透明导电复合薄膜及其制造方法

Country Status (1)

Country Link
CN (1) CN104480450A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694879A (zh) * 2015-04-08 2015-06-10 吴子豹 一种免喷漆真空电镀工艺
CN105425463A (zh) * 2015-12-16 2016-03-23 青岛海信电器股份有限公司 显示装置、背光模组、量子点光学膜片及其制备方法
WO2017158235A1 (en) * 2016-03-15 2017-09-21 Aalto University Foundation Composite film comprising an electrically conductive layer
US20230183071A1 (en) * 2015-03-09 2023-06-15 Centre National De La Recherche Scientifique Method of forming a graphene device using polymer material as a support for a graphene film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925859A (zh) * 2011-10-23 2013-02-13 常州碳元科技发展有限公司 一种具有保护层结构的碳层材料的制备方法
KR20140015927A (ko) * 2012-07-27 2014-02-07 율촌화학 주식회사 적층 배리어 필름

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925859A (zh) * 2011-10-23 2013-02-13 常州碳元科技发展有限公司 一种具有保护层结构的碳层材料的制备方法
KR20140015927A (ko) * 2012-07-27 2014-02-07 율촌화학 주식회사 적층 배리어 필름

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
屈凌波: "《新型功能材料设计及应用》", 31 May 2014, 郑州大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230183071A1 (en) * 2015-03-09 2023-06-15 Centre National De La Recherche Scientifique Method of forming a graphene device using polymer material as a support for a graphene film
CN104694879A (zh) * 2015-04-08 2015-06-10 吴子豹 一种免喷漆真空电镀工艺
CN105425463A (zh) * 2015-12-16 2016-03-23 青岛海信电器股份有限公司 显示装置、背光模组、量子点光学膜片及其制备方法
WO2017158235A1 (en) * 2016-03-15 2017-09-21 Aalto University Foundation Composite film comprising an electrically conductive layer

Similar Documents

Publication Publication Date Title
Song et al. Superstable transparent conductive Cu@ Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics
Wang et al. Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials
CN104480450A (zh) 一种透明导电复合薄膜及其制造方法
Xu et al. Graphene as transparent electrodes: fabrication and new emerging applications
US9067795B2 (en) Method for making graphene composite structure
Ge et al. Stretchable conductors based on silver nanowires: improved performance through a binary network design
JP5571814B2 (ja) 透明導電性フィルム
JP4991657B2 (ja) 高密度カーボンナノチューブアレイを含む熱伝導シート及びその製造方法
Luo et al. Carbon nanotube/chitosan-based elastic carbon aerogel for pressure sensing
US8052825B2 (en) Method for making composite material having carbon nanotube array
Guo et al. Preparation of flexible, highly transparent, cross-linked cellulose thin film with high mechanical strength and low coefficient of thermal expansion
US20120298623A1 (en) Method for making thermoacoustic element
KR101693774B1 (ko) 탄소 나노튜브 투명 복합전극의 제조 방법
KR101677339B1 (ko) 은나노와이어 투명전극 제조방법
KR101009442B1 (ko) 전도성 구조체를 이용한 전도성필름 제조방법 및 전도성필름
Sato et al. Conductivity of ruthenate nanosheets prepared via electrostatic self-assembly: characterization of isolated single nanosheet crystallite to mono-and multilayer electrodes
WO2015010344A1 (zh) 透明导电层、具有该透明导电层的cf基板及其制备方法
CN105190496A (zh) 包含石墨烯层的触摸屏
CN104851889A (zh) 可折叠基板及其制作方法、柔性显示装置
JP4851496B2 (ja) 高密度カーボンナノチューブアレイを含む複合物の製造方法
KR20110048251A (ko) 그라펜 및 유기공액분자의 적층 구조체 및 그의 제조방법
CN104973584B (zh) 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN107910383B (zh) 一种金属网状导电膜的制备方法
CN107993576B (zh) 柔性显示面板的制作方法及柔性显示装置的制作方法
Yun et al. High-performance field-emission properties of boron nitride nanotube field emitters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150401