CN104460678B - 一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法 - Google Patents

一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法 Download PDF

Info

Publication number
CN104460678B
CN104460678B CN201410358107.3A CN201410358107A CN104460678B CN 104460678 B CN104460678 B CN 104460678B CN 201410358107 A CN201410358107 A CN 201410358107A CN 104460678 B CN104460678 B CN 104460678B
Authority
CN
China
Prior art keywords
sliding mode
function
attitude
spacecraft
sigmoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410358107.3A
Other languages
English (en)
Other versions
CN104460678A (zh
Inventor
丛炳龙
任博
马相孚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Machinery Equipment Research Institute
Original Assignee
Beijing Machinery Equipment Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Machinery Equipment Research Institute filed Critical Beijing Machinery Equipment Research Institute
Priority to CN201410358107.3A priority Critical patent/CN104460678B/zh
Publication of CN104460678A publication Critical patent/CN104460678A/zh
Application granted granted Critical
Publication of CN104460678B publication Critical patent/CN104460678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法,本方法将航天器进行大角度姿态机动时的相对姿态运动方程表示成级联形式,在此基础上将典型Sigmoid函数引入滑模函数中,确定Sigmoid型非线性滑模函数以及滑模姿态控制律,使***状态在滑模段内实现期望的等效***动态。对滑模姿态控制律进行修正,抑制控制力矩的抖振,降低切换增益选择的保守性。利用本方法,能够有效解决现有基于线性滑模函数的滑模姿态控制律存在的滑模函数增益选择权衡问题,提高滑模姿态控制律的控制性能。此外,本方法利用Sigmoid函数的有界性有效避免敏感器饱和问题,在相对姿态角速度受限情况下能够实现航天器高性能姿态控制。

Description

一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法
技术领域
本发明涉及一种航天器姿态控制方法,特别是一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法。
背景技术
对于刚体航天器而言,进行大角度姿态机动过程中各通道间耦合严重,呈现出强烈的非线性动态特性。另外,各种参数不确定性以及外部扰动的存在导致其姿态控制变得异常复杂。刚体航天器姿态控制***设计要解决的关键问题是根据非线性姿态运动方程设计姿态控制律抑制参数不确定性和外部干扰的影响。
目前,针对刚体航天器姿态控制***设计的方法已经有许多。其中,滑模控制是应用最为广泛的鲁棒非线性控制方法。滑模控制是变结构控制的一个分支。变结构控制方法根据***的当前状态刻意地改变***的结构。若这种结构的变化能够将***状态约束在状态空间的某一流形上,则称此时的变结构控制为滑模控制。相应地,称状态空间上的流形为滑模面或者滑模流形,***状态在该流形上的运动为滑模运动。滑模控制的最大特点在于其作用下的闭环***对于匹配的干扰和不确定性具有不敏感性,这一特点使得滑模控制在产生之初就被广泛应用到包括姿态控制在内的各个领域。
为了完成航天器姿态跟踪机动控制任务,现有滑模姿态控制律在滑模函数设计上仍然使用诸如特征值或特征结构配置、二次型最小化以及LMI等线性设计方法。其中,针对航天器的姿态稳定问题,Vadali[Vadali S.Variable-structure control of spacecraftlarge-angle maneuvers[J].Journal of Guidance,Control,and Dynamics,1986,9(2):235-239.]以四元数作为姿态表征设计了滑模姿态控制律,并利用最优控制技术研究了滑模函数的综合问题。通过最小化一个四元数和姿态角速度相关的二次型指标,Vadali得到的滑模函数是姿态角速度和四元数的线性函数。在后续研究中,Yeh[Yeh F.Sliding-modeadaptive attitude controller design for spacecrafts with thrusters[J].IETControl Theory Applications,2010,4(7):1254-1264.]、Jorgensen[Jorgensen U,Gravdahl J.Observer based sliding mode attitude control:theoretical andexperimental results[J].Modeling,Identification and Control,2010,31(1):1-9.]以及Zhu[Zhu Z,Xia Y,Fu M.Adaptive sliding mode control for attitudestabilization with actuator saturation[J].IEEE Transactions on IndustrialElectronics,2011,58(10):4898-4907.],基于线性滑模函数研究了姿态重定向和姿态跟踪控制问题。
但是,对于现有线性滑模函数,为了加快相对姿态变量在滑模段的响应速度,滑模姿态控制律需要增加滑模函数增益。由于滑模函数增益直接影响着滑模姿态控制律对应的控制力矩,因此当相对姿态变量较大时,对其进行线性放大会可能导致控制力矩幅值超过执行器的饱和限。除此之外,对于给定的相对姿态变量初值,增加滑模函数增益同样会增加滑模函数的初值,继而增加相对姿态变量到达滑模面的距离。反之,过小的滑模函数增益又会减慢***的响应速度。可见,对于现有基于线性滑模函数设计的滑模姿态控制律而言,在滑模函数增益的选择上存在着权衡问题。由于非连续控制项的存在,基于滑模控制技术设计的姿态控制律存在抖振问题。这种控制信号的高频切换现象容易激发***未建模动态,产生不期望的***响应。另外,滑模控制的切换增益一方面决定了抖振幅值,一方面也决定着姿态控制***对于参数不确定性和外部干扰的鲁棒性。通常而言,为了保证***的鲁棒性,在切换增益的选择上一般采用保守方法,即选择一个充分大的切换增益值。继而加剧了控制力矩的抖振问题,也会导致额外的控制消耗。最后,现有基于线性滑模函数设计的姿态控制律均未考虑敏感器饱和问题,无法在相对角速度受限的情况下完成姿态控制任务。
发明内容
本发明目的在于提供一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法,解决现有基于线性滑模函数的一阶滑模姿态控制律存在的滑模函数增益选择权衡问题、控制力矩抖振、切换增益保守性以及敏感器饱和问题。
一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法,其具体步骤为:
第一步构建基于Sigmoid型非线性滑模函数的航天器姿态控制***
基于Sigmoid型非线性滑模函数的航天器姿态控制***,包括:级联形式相对姿态运动方程模块、Sigmoid型非线性滑模函数模块、滑模姿态控制律模块以及滑模姿态控制律修正模块。级联形式相对姿态运动方程模块的功能为:描述刚性航天器的姿态运动规律,Sigmoid型非线性滑模函数模块的功能为:建立相对姿态参数和相对姿态角速度的Sigmoid型非线性对应关系,滑模姿态控制律模块的功能为:保证航天器姿态控制***具有Sigmoid型非线性滑模函数所对应的等效***动态,滑模姿态控制律修正模块的功能为:消除滑模姿态控制律所存在的抖振及切换增益选择保守性。
第二步级联形式相对姿态运动方程模块建立级联形式相对姿态运动方程
以进行姿态跟踪机动的刚性航天器为对象,级联形式相对姿态运动方程模块在姿态运动的构型空间内以修正罗德里格斯参数作为姿态表征参数定义相对姿态变量,在航天器本体坐标系下建立级联形式相对姿态运动方程。其中,相对姿态动力学方程为:
相对姿态运动学方程为:
式中,为航天器惯量阵张量的标称值在本体坐标系下的矩阵表示,ωe表示航天器本体坐标系与参考坐标系之间的相对姿态角速度矢量在本体坐标系下的向量表示,Tc为控制力矩矢量在本体坐标系下的向量表示,Td为外部干扰力矩和***参数不确定性对航天器姿态运动所产生的干扰力矩在本体坐标系下的向量表示,(·)×表示向量的反对称矩阵算子,R表示航天器本体坐标系与参考坐标之间的转移矩阵,ωd表示参考角速度矢量在参考坐标系下的向量表示。σe表示航天器本体坐标系与参考坐标系之间的相对姿态对应的修正罗德里格斯参数矢量在本体坐标系下的向量表示,M为雅可比矩阵,参数上方带点表示参数的导数。
第三步Sigmoid型非线性滑模函数模块确定Sigmoid型非线性滑模函数
针对建立的相对姿态运动学方程,Sigmoid型非线性滑模函数模块将相对修正罗德里格斯参数作为Sigmoid函数的自变量,以相对姿态角速度作为Sigmoid函数的因变量,确定一类非线性滑模函数。以典型的Sigmoid函数f(x)=arctan(x)为例,将Sigmoid型非线性滑模函数确定为:
s=ωe+karctan(Aσe) (3)
式中,k>0,A=diag(a1,a2,a3)且ai>0(i=1,2,3)。此外,参数ai的选择还满足当|σei|→0时,有下式成立
arctan(aiei|)>|σei|
式中,σei(i=1,2,3)为相对修正罗德里格斯参数在本体坐标系下的向量表示。
第四步滑模姿态控制律模块确定基于Sigmoid型非线性滑模函数的姿态控制律
基于Sigmoid型非线性滑模函数,滑模姿态控制律模块根据等效控制加切换控制理论来确定如公式(4)的姿态控制律。
式中,Teq表示等效控制项,Tsw表示切换控制项,且||·||2为向量的2范数,η>||Td||+δ且||·||为向量的无穷范数,δ>0为任意小的常数。
选择式(5)所示Lyapunov函数
对Lyapunov函数(5)沿闭环轨迹求导有:
对于Lyapunov函数(5),有下述关系成立:
式中,为标称惯量阵的诱导2范数。
将式(6)代入Lyapunov函数的导数中,可得:
根据Lyapunov有限时间稳定原理,对于任意的t0表示初始时刻,表示空间,滑模函数s在有限时间tr内收敛为零。由于t∈[tr,+∞)有s≡0,进一步选择Lyapunov函数:
对其沿s≡0确定的轨迹求导,有:
由于arctan(aiσei)与σei同号,上述Lyapunov函数导数负定。根据Lyapunov稳定性原理可知闭环***是全局一致渐近稳定的。根据等效控制原理,可知闭环***在滑模段的等效***动态为:
第五步滑模姿态控制律修正模块修正姿态控制律
滑模姿态控制律修正模块利用边界层策略和自适应控制策略对姿态控制律进行修正为:
式中,Teq同式(4),Tsa表示修正后的切换控制项,而
式中,κi>0(i=1,2,3),ψi>0,且
至此,完成了基于Sigmoid型非线性滑模函数的航天器姿态控制。
本方法基于Sigmoid函数设计的非线性滑模函数能够有效地解决现有线性滑模函数存在的滑模函数增益选择权衡问题,相应的姿态控制律能够在加快***响应速度的同时抑制控制力矩幅值,提高了姿态控制***的动态性能。在本发明中,Sigmoid函数的有界性使得航天器在进行姿态跟踪机动时相对姿态角速度不会超过敏感器的测量量程,有效地避免了敏感器饱和问题。此外,本发明将边界层方法与自适应控制相结合,能够有效地削弱控制力矩抖振并降低切换增益选择的保守性,便于工程实现。
附图说明
图1一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法的典型Sigmoid函数曲线;
图2一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法的相对修正罗德里格斯参数响应曲线;
图3一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法的相对姿态角速度响应曲线;
图4一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法的控制力矩曲线及局部放大图;
图5一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法的切换增益自适应曲线及局部放大图。
具体实施方式
一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法,其具体步骤为:
第一步构建基于Sigmoid型非线性滑模函数的航天器姿态控制***
基于Sigmoid型非线性滑模函数的航天器姿态控制***,包括:级联形式相对姿态运动方程模块、Sigmoid型非线性滑模函数模块、滑模姿态控制律模块以及滑模姿态控制律修正模块四个部分。级联形式相对姿态运动方程模块的功能为描述刚性航天器的姿态运动规律,Sigmoid型非线性滑模函数模块的功能为建立相对姿态参数和相对姿态角速度的Sigmoid型非线性对应关系,滑模姿态控制律模块的功能为保证航天器姿态控制***具有Sigmoid型非线性滑模函数所对应的等效***动态,滑模姿态控制律修正模块的功能为消除滑模姿态控制律所存在的抖振及切换增益选择保守性问题。
第二步级联形式相对姿态运动方程模块建立级联形式相对姿态运动方程
首先,在航天器本体坐标系下定义相对姿态变量如下:
ωe=ωb-Rωd
式中,σb为航天器本体坐标系姿态对应的修正罗德里格斯参数矢量在本体坐标系下的向量表示,σd为参考坐标系姿态对应的修正罗德里格斯参数矢量在参考坐标系下的向量表示,σe表示航天器本体坐标系与参考坐标系之间的相对姿态对应的修正罗德里格斯参数矢量在本体坐标系下的向量表示,ωb表示航天器角速度矢量在本体坐标系下的向量表示,ωd表示参考角速度矢量在参考坐标系下的向量表示,ωe表示航天器本体坐标系与参考坐标系之间的相对姿态角速度矢量在本体坐标系下的向量表示;||·||表示向量的Euclidean范数,(·)×表示向量的反对称矩阵算子,(·)T表示向量或矩阵的转置算子,表示修正罗德里格斯参数的乘法算子;航天器本体坐标系与参考坐标之间的转移矩阵R为:
式中,I3表示3×3的单位矩阵。
根据欧拉角动量原理,相对姿态动力学方程为:
式中,为航天器惯量阵张量的标称值在本体坐标系下的矩阵表示,Tc为控制力矩矢量在本体坐标系下的向量表示,Td为外部干扰力矩和***参数不确定性对航天器姿态运动所产生的干扰力矩在本体坐标系下的向量表示。
在相对姿态变量定义的基础上,相对姿态运动学方程为:
式中,雅可比矩阵M为:
第三步Sigmoid型非线性滑模函数模块确定Sigmoid型非线性滑模函数
Sigmoid函数是一个S型函数,图1给出了部分典型Sigmoid函数在自变量x∈[-3,3]时的曲线。从中可以看出,当|x|→+∞时,图中所述的Sigmoid函数都趋于极限值,此特点为Sigmoid函数所具有的饱和性和有界性;当|x|→0时,Sigmoid函数的导数将逐渐增加,此特点为Sigmoid函数所具有的变斜率特性。基于Sigmoid型非线性滑模函数的设计思路可描述为:以σe作为Sigmoid函数的自变量,以ωe作为Sigmoid函数的因变量,将Sigmoid函数确定的约束关系转化为滑模函数的约束关系。不失一般性,本发明以一种典型的Sigmoid函数f(x)=arctan(x)为例,给出基于Sigmoid型非线性滑模函数的航天器姿态控制律设计。
根据上述设计思想,将Sigmoid函数f(x)=arctan(x)具体选择为
ωe=-karctan(Aσe)
式中,k>0,A=diag(a1,a2,a3)且ai>0(i=1,2,3)。此外,参数ai的选择还须满足当|σei|→0时,有下式成立
arctan(aiei|)>|σei|
根据上述Sigmoid函数,可将Sigmoid型非线性滑模函数设计为:
s=ωe+karctan(Aσe) (3)
第四步滑模姿态控制律模块确定基于Sigmoid型非线性滑模函数的姿态控制律
基于Sigmoid型非线性滑模函数(3),滑模姿态控制律模块利用等效控制加切换控制的滑模控制律设计方法,将滑模姿态控制律设计分为两步。相应的滑模姿态控制律也由两部分组成,即Tc=Teq+Tsw。其中,Tsw被称作切换控制项,其设计目标为:在干扰力矩Td的影响下,与Teq一起保证si(i=1,2,3)在有限时间内收敛为零;Teq被称作等效控制项,其设计目标为:当s=0时,在干扰力矩的影响下,其和Tsw的联合作用能够使得s始终保持为零(s≡0),并且若不考虑干扰力矩的影响,在其单独作用下,s≡0。
基于上述说明,先设计等效控制Teq。为此,对滑模函数(3)求导,可得:
在不考虑干扰力矩影响时,Teq需要保证滑模函数的不变性。将上式中的Tc替换为Teq,并令Td=0和,有:
对于切换控制Tsw,令:
Tsw=-ηsgn(s)
式中,且||·||2为向量的2范数,η>||Td||+δ且||·||为向量的无穷范数,δ>0为任意小的常数。
至此,基于姿态控制律可描述为:
为分析姿态控制律(4)作用下的姿态控制***稳定性,选择Lyapunov函数
对其沿闭环轨迹求导有:
对于Lyapunov函数(5),有下述关系成立:
式中,为标称惯量阵的诱导2范数。
将式(6)代入Lyapunov函数的导数中,可得:
根据Lyapunov有限时间稳定原理,可知对于任意的滑模函数s在有限时间tr内收敛为零。由于t∈[tr,+∞)有s≡0,进一步选择Lyapunov函数:
对其沿s≡0确定的轨迹求导,有:
由于arctan(aiσei)与σei同号,上述Lyapunov函数导数负定。根据Lyapunov稳定性原理可知闭环***是全局一致渐近稳定的。
根据等效控制方法,可知在姿态控制律(4)作用下的等效***动态为:
而现有基于线性滑模函数对应的等效***动态为:
对比两种等效***动态可以发现:对于线性滑模函数而言,相对修正罗德里格斯参数的收敛速度仅取决于参数k,k值越大,***的响应速度越快,所需的控制力矩幅值也越大,反之亦然;而对于非线性滑模函数而言,当相对修正罗德里格斯参数的幅值较大时,由于Sigmoid函数的饱和特性,控制力矩幅值能够被有效抑制,而随着相对修正罗德里格斯参数的收敛,Sigmoid函数的变斜率特性使得式(10)对应反馈增益逐渐增加,从而能够加快***的响应速度。综上可知,基于Sigmoid型非线性滑模函数设计的滑模姿态控制律能够抑制大跟踪误差情况下的控制力矩幅值,同时随着跟踪误差的收敛,***响应的速度也随之加快,有效地解决了现有线性滑模函数存在的滑模函数增益k的权衡选择问题。
第五步滑模姿态控制律修正模块修正姿态控制律
由于切换控制项的存在,滑模姿态控制律在工程应用中会产生抖振现象,不利于算法的工程实现。此外,滑模姿态控制律中切换控制项的切换增益依赖于干扰上界的先验信息。但在多数情况下,这一上界的先验信息是无法测量或估计的,需要采用保守方法选择一个足够大的切换增益来保证***的稳定性。为解决上述问题,滑模姿态控制律修正模块结合边界层法和自适应控制策略对滑模姿态控制律(4)进行修正。首先,假设干扰力矩对航天器本体产生的影响是有界的,并且满足下述不等式:
||Td||≤c1+c2||σe||∞+c3||ωe||
式中,ci≥0(i=1,2,3)为未知常标量,
将滑模姿态控制律(4)修改为:
式中,Teq同式(4),而
式中,κi>0(i=1,2,3),ψi>0,且
选择Lyapunov函数
时,对该Lyapunov函数沿闭环轨迹求导,有:
时,对该Lyapunov函数沿闭环轨迹求导,有:
综合上述两种情况,可知对于任意的Lyapunov函数导数满足:
根据Lyapunov稳定性原理,可知闭环***一致毕竟有界的。
实施例
本发明在Matlab2009a环境下进行仿真验证。航天器惯量阵的标称值为
惯量阵的不确定性范围为±20%,外部干扰由航天器所在轨道参数确定,航天器初始惯性姿态变量为:σb(t0)=0,ωb(t0)=0(rad/s)。期望姿态变量为目标轨道LVLH系对应的σd和ωd。其中,目标轨道为圆形轨道,轨道半径a=6899807(m),偏心率为0,轨道倾角i=30°,升交点赤经Ω=60°,近地点幅角ω=0°,初始真近点角f(t0)=90°。仿真中考虑姿态敏感器在测量相对姿态角速度的量程为0.02(rad/s)。
控制律参数选择:k=0.0127,ai=200(i=1,2,3),ψi=0.01。仿真结果如图2至图5所示。
本发明基于Sigmoid型非线性滑模函数的滑模姿态控制律作用下的σe响应曲线如图2所示,ωe响应曲线如图3所示。可以看出,与现有基于线性滑模函数的滑模姿态控制相比,采用本发明提出的基于Sigmoid型非线性滑模函数的滑模姿态控制律能够对航天器进行姿态跟踪机动过程中相对姿态角速度进行规划,近似实现“最大加速度加速-匀速-最大加速度减速”的跟踪过程,在抑制大误差情况下控制力矩幅值的前提下保证***的响应速度,并且有效地避免了敏感器饱和问题。本发明基于Sigmoid型非线性滑模函数的滑模姿态控制律作用下的Tc曲线如图4所示。可以看出,采用边界层法结合自适应控制策略,能够有效地约束控制力矩存在的抖振问题。图5给出了切换增益的自适应曲线,表明本发明能够在干扰上界未知的情况下,通过自适应控制对切换增益进行调节,有效地降低了切换增益选择的保守性。

Claims (1)

1.一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法,其特征在于具体步骤为:
第一步构建基于Sigmoid型非线性滑模函数的航天器姿态控制***
基于Sigmoid型非线性滑模函数的航天器姿态控制***,包括:级联形式相对姿态运动方程模块、Sigmoid型非线性滑模函数模块、滑模姿态控制律模块以及滑模姿态控制律修正模块;级联形式相对姿态运动方程模块的功能为:描述刚性航天器的姿态运动规律,Sigmoid型非线性滑模函数模块的功能为:建立相对姿态对应的修正罗德里格斯参数和相对姿态角速度的Sigmoid型非线性对应关系,滑模姿态控制律模块的功能为:保证航天器姿态控制***具有Sigmoid型非线性滑模函数所对应的等效***动态,滑模姿态控制律修正模块的功能为:消除滑模姿态控制律所存在的抖振及切换增益选择保守性;
第二步级联形式相对姿态运动方程模块建立级联形式相对姿态运动方程
以进行姿态跟踪机动的刚性航天器为对象,级联形式相对姿态运动方程模块在姿态运动的构型空间内以修正罗德里格斯参数作为姿态表征参数定义相对姿态变量,在航天器本体坐标系下建立级联形式相对姿态运动方程;其中,相对姿态动力学方程为:
相对姿态运动学方程为:
σ · e = Mω e - - - ( 2 )
式中,为航天器惯量阵张量的标称值在航天器本体坐标系下的矩阵表示,ωe表示航天器本体坐标系与参考坐标系之间的相对姿态角速度矢量在航天器本体坐标系下的向量表示,Tc为控制力矩矢量在航天器本体坐标系下的向量表示,Td为外部干扰力矩和***参数不确定性对航天器姿态运动所产生的干扰力矩在航天器本体坐标系下的向量表示,(·)×表示向量的反对称矩阵算子,R表示航天器本体坐标系与参考坐标之间的转移矩阵,ωd表示参考角速度矢量在参考坐标系下的向量表示;σe表示航天器本体坐标系与参考坐标系之间的相对姿态对应的修正罗德里格斯参数矢量在航天器本体坐标系下的向量表示,M为雅可比矩阵,参数上方带点表示参数的导数;
第三步Sigmoid型非线性滑模函数模块确定Sigmoid型非线性滑模函数
针对建立的相对姿态运动学方程,Sigmoid型非线性滑模函数模块将相对姿态对应的修正罗德里格斯参数作为Sigmoid函数的自变量,以相对姿态角速度作为Sigmoid函数的因变量,确定一类非线性滑模函数;Sigmoid函数采用f(x)=arctan(x),将Sigmoid型非线性滑模函数确定为:
s=ωe+karctan(Aσe) (3)
式中,k>0,A=diag(a1,a2,a3)且ai>0,i=1,2,3;此外,参数ai的选择还满足当|σei|→0时,有下式成立
arctan(aiei|)>|σei|
式中,σei为相对姿态对应的修正罗德里格斯参数在航天器本体坐标系下的向量表示,i=1,2,3;
第四步滑模姿态控制律模块确定基于Sigmoid型非线性滑模函数的姿态控制律
基于Sigmoid型非线性滑模函数,滑模姿态控制律模块根据等效控制加切换控制理论来确定如公式(4)的姿态控制律;
式中,Teq表示等效控制项,Tsw表示切换控制项,且||·||2为向量的2范数,η>||Td||+δ且||·||为向量的无穷范数,δ>0为任意小的常数;
选择式(5)所示Lyapunov函数
对Lyapunov函数(5)沿闭环轨迹求导有:
对于Lyapunov函数(5),有下述关系成立:
式中,为标称惯量阵的诱导2范数;
将式(6)代入Lyapunov函数的导数中,可得:
根据Lyapunov有限时间稳定原理,对于任意的t0表示初始时刻,表示空间,滑模函数s在有限时间tr内收敛为零;由于t∈[tr,+∞)有s≡0,进一步选择Lyapunov函数:
对其沿s≡0确定的轨迹求导,有:
由于arctan(aiσei)与σei同号,上述Lyapunov函数导数负定;根据Lyapunov稳定性原理可知闭环***是全局一致渐近稳定的;根据等效控制原理,可知闭环***在滑模段的等效***动态为:
σ · e = - k M arctan ( Aσ e ) - - - ( 10 )
第五步滑模姿态控制律修正模块修正姿态控制律
滑模姿态控制律修正模块利用边界层策略和自适应控制策略对姿态控制律进行修正为:
式中,Teq同式(4),Tsa表示修正后的切换控制项,而
c ^ 1 = κ 1 | | s | | 2 - κ 1 ψ 1 c ^ 1 c ^ 2 = κ 2 | | s | | 2 | | σ e | | ∞ - κ 2 ψ 2 c ^ 2 c ^ 3 = κ 3 | | s | | 2 | | σ e | | ∞ - κ 3 ψ 3 c ^ 3 - - - ( 12 )
式中,κi>0,ψi>0,i=1,2,3,且
至此,完成了基于Sigmoid型非线性滑模函数的航天器姿态控制。
CN201410358107.3A 2014-07-25 2014-07-25 一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法 Active CN104460678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410358107.3A CN104460678B (zh) 2014-07-25 2014-07-25 一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410358107.3A CN104460678B (zh) 2014-07-25 2014-07-25 一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法

Publications (2)

Publication Number Publication Date
CN104460678A CN104460678A (zh) 2015-03-25
CN104460678B true CN104460678B (zh) 2017-02-22

Family

ID=52906899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410358107.3A Active CN104460678B (zh) 2014-07-25 2014-07-25 一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法

Country Status (1)

Country Link
CN (1) CN104460678B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105955284B (zh) * 2016-05-30 2018-10-02 中国人民解放军国防科学技术大学 一种在轨加注航天器姿态控制方法
CN110018637B (zh) * 2018-12-27 2021-08-13 西北工业大学 一种考虑完成时间约束的航天器姿态跟踪保性能控制方法
CN113377006B (zh) * 2021-06-08 2022-05-27 华南理工大学 一种基于不变流形观测器的全局快速终端滑模控制方法
CN113703471B (zh) * 2021-08-27 2022-03-25 哈尔滨工业大学(深圳) 刚体航天器基于mrp参数的抗退绕滑模姿态机动控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439975A (zh) * 2013-09-09 2013-12-11 北京理工大学 一种分布式指数时变滑模姿态协同跟踪控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439975A (zh) * 2013-09-09 2013-12-11 北京理工大学 一种分布式指数时变滑模姿态协同跟踪控制方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Adaptive Sliding Mode Control for Attitude Stabilization With Actuator Saturation;Zheng zhu 等;《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》;20111031;第58卷(第10期);第4898-4907页 *
Error Reduction of Sliding Mode Control Using Sigmoid-Type Nonlinear Interpolation in the Boundary Layer;Yoo-Kyung Kim 等;《Intternational Journal of Control,Automation,and Systems》;20041231;第2卷(第4期);第523-529页 *
Observer Based Sliding Mode Attitude Control Theoretical and Experimental Results;U. Jorgensen 等;《Modeling, Identification and Control》;20111231;第32卷(第3期);第113-121页 *
Sliding-mode adaptive attitude controller design for spacecrafts with thrusters;F.-K. Yeh;《IET Control Theory Appl.》;20101231;第4卷(第7期);第1254-1264页 *
一种改进的自适应滑模控制及其在航天器姿态控制中的应用;丛炳龙 等;《控制与决策》;20121031;第27卷(第10期);第1471-1476页 *
刚体航天器姿态跟踪***的自适应积分滑模控制;丛炳龙 等;《航空学报》;20130325;第34卷(第3期);第620-628页 *

Also Published As

Publication number Publication date
CN104460678A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
Boukattaya et al. Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems
Xiang et al. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties
Zhang et al. Fixed-time extended state observer-based trajectory tracking and point stabilization control for marine surface vessels with uncertainties and disturbances
Boukens et al. Robust adaptive neural network-based trajectory tracking control approach for nonholonomic electrically driven mobile robots
CN110347170B (zh) 可重复使用运载器再入段鲁棒容错制导控制***及工作方法
CN105242676B (zh) 一种有限时间收敛时变滑模姿态控制方法
Do et al. State-and output-feedback robust path-following controllers for underactuated ships using Serret–Frenet frame
CN107807657B (zh) 一种基于路径规划的挠性航天器姿态自适应控制方法
Bu et al. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints
Wu et al. Fixed-time disturbance observer-based chattering-free sliding mode attitude tracking control of aircraft with sensor noises
Kori et al. Extended state observer based robust control of wing rock motion
CN111650832B (zh) 一种水下多足步行机器人机械足姿态跟踪控制方法
CN110018637B (zh) 一种考虑完成时间约束的航天器姿态跟踪保性能控制方法
CN104460678B (zh) 一种基于Sigmoid型非线性滑模函数的航天器姿态控制方法
Yu et al. H∞ tracking adaptive fuzzy integral sliding mode control for parallel manipulators
CN104122794A (zh) 微陀螺仪的自适应模糊神经补偿非奇异终端滑模控制方法
CN109507890A (zh) 一种基于eso的无人机动态逆广义预测控制器
CN115686048B (zh) 执行器受限航天器交会***的动态触发有限时间控制方法
Do Global output-feedback path-following control of unicycle-type mobile robots: A level curve approach
Andrievsky et al. Simple adaptive control for airfoil flutter suppression
Zhao et al. Adaptive finite‐time tracking control of 6DOF spacecraft motion with inertia parameter identification
Zhu et al. Adaptive tracking and command shaped vibration control of flexible spacecraft
CN103455035B (zh) 基于反步设计和非线性反馈的pd+姿态控制律设计方法
Dong et al. Adaptive nonsingular fixed‐time control for hypersonic flight vehicle considering angle of attack constraints
Xiao et al. Adaptive quaternion-based output feedback control for flexible spacecraft attitude tracking with input constraints

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant