CN104457901B - A kind of method and system for determining the depth of water - Google Patents

A kind of method and system for determining the depth of water Download PDF

Info

Publication number
CN104457901B
CN104457901B CN201410713468.5A CN201410713468A CN104457901B CN 104457901 B CN104457901 B CN 104457901B CN 201410713468 A CN201410713468 A CN 201410713468A CN 104457901 B CN104457901 B CN 104457901B
Authority
CN
China
Prior art keywords
mrow
msub
delta
rho
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410713468.5A
Other languages
Chinese (zh)
Other versions
CN104457901A (en
Inventor
董昌明
李俊德
丁涛
梁楚进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Second Institute of Oceanography SOA
Original Assignee
Nanjing University of Information Science and Technology
Second Institute of Oceanography SOA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology, Second Institute of Oceanography SOA filed Critical Nanjing University of Information Science and Technology
Priority to CN201410713468.5A priority Critical patent/CN104457901B/en
Publication of CN104457901A publication Critical patent/CN104457901A/en
Application granted granted Critical
Publication of CN104457901B publication Critical patent/CN104457901B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention provides a kind of method and system for determining the depth of water, methods described includes:Obtain the initial depth of water;Initial time sea table atmospheric pressure is obtained respectively is terminating the termination pressure at the depth of water with second pressure sum caused by the above unit area seawater of seabed and measuring instrument with initial pressure, the end time sea table atmospheric pressure of first pressure sum, measuring instrument in initial water depths caused by the above unit area seawater of seabed;First pressure sum and the difference of initial pressure are determined respectively, obtains the difference of the first numerical value, second pressure sum and termination pressure, obtain second value;The difference of second value and the first numerical value is determined, obtains third value;The reference density of sea water and the ratio of acceleration of gravity parameter multiplied result for determining third value and transferring, obtain vertical displacement;It is determined that the initial depth of water and the difference of vertical displacement, obtain the depth of water terminated at the depth of water;It this method eliminates it is determined that error during the depth of water, directly obtains depth of the measuring instrument relative to mean sea level.

Description

A kind of method and system for determining the depth of water
Technical field
The present invention relates to ocean dynamics technical field, more specifically to a kind of method and system for determining the depth of water.
Background technology
Oceanographic survey be with respective measuring instrument directly or indirectly to the physics of ocean, chemistry, biology, geology, Geomorphology, meteorology are the means that other oceanic conditions are investigated.In oceanographic survey, measuring instrument is in ocean Accurate depth of water position is that researcher conducts a research work, obtains the premise of high-quality discharge observation data.
On ocean circle, typically existed by the conversion pressure for measuring measuring instrument in ocean into the depth of water to calculate measuring instrument Exact position in ocean.The method of traditional marine bottom conversion pressure depth of water is to be based on hydrostatic equation and seawater shape The empirical equation of state equation inference.Using the empirical equation of derivation, the pressure conversion most obtained at last is the gained depth of water, that is, is surveyed Depth of the measuring appratus to freely extra large surface.
But existing method needs to consider change and sea of the acceleration of gravity with the depth of water and latitude in derivation The influence of coolant-temperature gage, salinity to density of sea water.Because latitude does not change over time, influence of the latitude to acceleration of gravity is just not yet Change over time, but the temperature of seawater and salinity change with time larger, density of sea water will also change with the time, i.e., The method of the existing pressure conversion depth of water can have error at each moment, and this error is to change with time and change 's.In actual measurement process, measurement of the Marine Environment Factors such as wave, tide and ocean current to seawater pressure can produce shadow Ring, and depth of the depth of water in existing method obtained by pressure conversion for measuring instrument to freely extra large surface, therefore these factors Caused error will directly affect last transformation result.
The content of the invention
In view of this, it is an object of the invention to provide a kind of method and system for determining the depth of water to obtain accurate measurement Instrument relative to average extra large surface depth.
To achieve these goals, the present invention provides following technical scheme:
A kind of method for determining the depth of water, methods described include:
Obtain the initial depth of water;
Initial time sea table atmospheric pressure and the first pressure of pressure caused by the above unit area seawater of seabed are obtained respectively Sum, measuring instrument the initial water depths initial pressure, end time sea table atmospheric pressure and seabed above unit area The second pressure sum and measuring instrument of pressure caused by seawater are terminating the termination pressure at the depth of water;
The difference of the first pressure sum and the initial pressure is determined respectively, obtains the first numerical value, second pressure The difference of power sum and the termination pressure, obtain second value;
The difference of the second value and first numerical value is determined, obtains third value;
The reference density of sea water and the ratio of acceleration of gravity parameter multiplied result for determining the third value and transferring, are obtained Take vertical displacement;
The initial depth of water and the difference of the vertical displacement are determined, obtains the depth of water terminated at the depth of water.
Preferably, the difference of the second value and first numerical value is determined, obtains the described 3rd according to the following equation Numerical value:
Wherein ,-D (t) is the depth of water, and ρ (t, z) is density of sea water,g(z) it is acceleration of gravity.
Preferably, the time scale that the time span measured according to measuring instrument is far smaller than the change of layer density of sea water is closed System, obtains the first discreet value of the third value according to the following equation:
Wherein, Δ g (z) is the function of the depth of water, and Δ ρ (t, z) is the function of ocean temperature, salinity and density.
Preferably, according to vertical displacement delta h (t) scope and the Δ g (z) and Δ ρ (t, z) variation relation, and First discreet value of the third value, second discreet value is obtained according to the following equation:
Preferably, the vertical displacement is obtained according to second discreet value and following formula:
Preferably, methods described also includes:
The 3rd discreet value is obtained, the 3rd discreet value is used for the discreet value for determining the vertical displacement.
Preferably, acquisition the 3rd discreet value includes:
Determine the ratio with the density of sea water and the expression formula multiplied result of the acceleration of gravity;
The reciprocal value is subjected to first order Taylor expansion, obtains the 3rd discreet value reciprocal according to the following equation:
A kind of system for determining the depth of water, the system include:
First acquisition unit, for obtaining the initial depth of water;
Second acquisition unit, cause for obtaining initial time sea table atmospheric pressure respectively with seabed above unit area seawater The first pressure sum of pressure, measuring instrument the initial pressure of the initial water depths, end time sea table atmospheric pressure with The second pressure sum of pressure caused by the above unit area seawater of seabed and measuring instrument are terminating the termination pressure at the depth of water;
First determining unit, for determining the difference of the first pressure sum and the initial pressure respectively, obtain the One numerical value, the difference of the second pressure sum and the termination pressure is determined, obtain second value;
Second determining unit, for determining the difference of the second value and first numerical value, obtain third value;
4th acquiring unit, for the reference density of sea water and acceleration of gravity parameter for determining the third value Yu transferring The ratio of multiplied result, obtain vertical displacement;
3rd determining unit, for determining the initial depth of water and the difference of the vertical displacement, obtain the termination water The depth of water of depths.
Preferably, the system also includes:
First estimates unit, and the time span measured according to measuring instrument is far smaller than the time scale of density of sea water change Relation, the first discreet value of the third value is obtained according to the following equation:
Wherein, Δ g (z) be the depth of water function, the function of Δ ρ (t, z) position ocean temperature, salinity and density;
Second estimates unit, for the change according to vertical displacement delta h (t) scope and the Δ g (z) and Δ ρ (t, z) Change relation, and the first discreet value of the third value, obtain second discreet value according to the following equation:
3rd estimates unit, for determining the discreet value of the vertical displacement.
Preferably, the described 3rd estimate unit and include:
First computing unit, the inverse of the expression formula multiplied result for determining density of sea water and acceleration of gravity;
Second computing unit, for the reciprocal value to be carried out into first order Taylor expansion, acquisition is described according to the following equation The 3rd several discreet values:
4th determining unit, the discreet value of the vertical displacement is determined according to the 3rd discreet value and following formula:
Compared with prior art, advantages of the present invention is as follows:
The method provided by the invention for determining the depth of water is simple and easily realizes, passes through the initial depth of water and initial time and end Only vertical displacement is subtracted each other in the time, is eliminated it is determined that during the depth of water caused by the environmental factors such as wave, tide and ocean current Error, directly obtain depth of the measuring instrument relative to mean sea level.Due in determination depth of water method provided by the invention Error is change not over time and changed, therefore the error is foreseeable.
Brief description of the drawings
In order to illustrate more clearly about the embodiment of the present invention or technical scheme of the prior art, below will be to embodiment or existing There is the required accompanying drawing used in technology description to be briefly described, it should be apparent that, drawings in the following description are only this The embodiment of invention, for those of ordinary skill in the art, on the premise of not paying creative work, can also basis The accompanying drawing of offer obtains other accompanying drawings.
Fig. 1 is a kind of a kind of flow chart of method for determining the depth of water provided in an embodiment of the present invention;
Fig. 2 is a kind of another flow chart of method for determining the depth of water provided in an embodiment of the present invention;
Fig. 3 is a kind of a kind of structural representation of system for determining the depth of water provided in an embodiment of the present invention;
Fig. 4 is a kind of another structural representation of system for determining the depth of water provided in an embodiment of the present invention;
Fig. 5 is an a kind of kernel texture schematic diagram of system for determining the depth of water provided in an embodiment of the present invention.
Embodiment
Below in conjunction with the accompanying drawing in the embodiment of the present invention, the technical scheme in the embodiment of the present invention is carried out clear, complete Site preparation describes, it is clear that described embodiment is only part of the embodiment of the present invention, rather than whole embodiments.It is based on Embodiment in the present invention, those of ordinary skill in the art are obtained every other under the premise of creative work is not made Embodiment, belong to the scope of protection of the invention.
Refer to Fig. 1, the embodiments of the invention provide it is a kind of determine the depth of water method a kind of flow chart, can include with Lower step:
Step 100:Obtain the initial depth of water.
Step 101:Initial time sea table atmospheric pressure and pressure caused by the above unit area seawater of seabed are obtained respectively First pressure sum, measuring instrument initial water depths initial pressure, end time sea table atmospheric pressure and seabed above unit The second pressure sum and measuring instrument of pressure caused by area seawater are terminating the termination pressure at the depth of water.
Step 102:First pressure sum and the difference of initial pressure are determined respectively, are obtained the first numerical value, are determined the second pressure The difference of power sum and termination pressure, obtain second value.
Step 103:The difference of second value and the first numerical value is determined, obtains third value.
Step 104:The reference density of sea water and the ratio of acceleration of gravity parameter multiplied result for determining third value and transferring Value, obtain vertical displacement.
Step 105:It is determined that the initial depth of water and the difference of vertical displacement, obtain the depth of water terminated at the depth of water.
The method provided by the invention for determining the depth of water, by the initial depth of water and initial time with terminating vertical displacement in the time The method subtracted each other, eliminate it is determined that error during the depth of water, directly obtains depth of the measuring instrument relative to mean sea level. Change because the error in determination depth of water method provided by the invention is change not over time, thus the error be can Prediction.
Refer to Fig. 2, it illustrates it is provided in an embodiment of the present invention it is a kind of determine the depth of water method another flow chart, It may comprise steps of:
Step 200:Obtain the initial depth of water.
The initial depth of water is set as h (t0), wherein initial depth of water h (t0) can exist by LP methods or according to measuring instrument What initial time was laid determines in the position that anchor is fastened.
It should be noted that LP methods correct item to realize by adding one.
Step 201:Initial time sea table atmospheric pressure and pressure caused by the above unit area seawater of seabed are obtained respectively First pressure sum, measuring instrument initial water depths initial pressure, end time sea table atmospheric pressure and seabed above unit The second pressure sum and measuring instrument of pressure caused by area seawater are terminating the termination pressure at the depth of water.
Wherein, first pressure sum is by sitting base pressure force sensor measuring, being specifically placed in pressure sensor Seabed or close on the investigation equipment in seabed, because marine bottom is influenceed by environmental factor smaller, sit base pressure force snesor In seat bottom pressure meter can accurately measure the SEA LEVEL VARIATION of monitoring point, therefore accurate termination can be measured by sitting base pressure force snesor The depth of water.It should be noted that the acquisition methods of second pressure sum are identical with the acquisition methods of first pressure sum.
By moment t0Initial time is set to, wherein in initial time, the pressure sat measured by base pressure force snesor is extra large table Atmospheric pressure PaWith seabed above unit area seawater caused by pressure sum Pb(t0).Due to P-h(t) represent that the depth of water is-h (t) places Utilize acoustic Doppler fluid velocity profile instrument (ADCP.Acoustic Doppler Current Profiler), conductivity-temperature-depth system Pressure obtained by (Conductivity Temperature and Pressure) or other measuring instruments.I.e. initial The depth of water-h (t0) place, the initial pressure obtained by measuring instrument in initial water depths is P-h(t0)。
Step 202:First pressure sum and the difference of initial pressure are determined respectively, are obtained the first numerical value, are determined the second pressure The difference of power sum and termination pressure, obtain second value.
Step 203:The difference of second value and the first numerical value is determined, obtains third value.
Step 204:Obtain the first discreet value of third value.
Step 205:Obtain the second discreet value.
Step 206:Vertical displacement is obtained according to the second discreet value.
Step 207:The 3rd discreet value is obtained, the 3rd discreet value is used for the discreet value for determining vertical displacement.
It should be noted that the acquisition of the 3rd discreet value can be realized in the following way:
One is to determine the inverse of density of sea water and the expression formula multiplied result of acceleration of gravity.
Second, reciprocal value is subjected to first order Taylor expansion, and the formula to carrying out Taylor expansion makees first approximation, can obtain The 3rd discreet value that must be estimated.
Step 208:It is determined that the initial depth of water and the difference of vertical displacement, obtain the depth of water terminated at the depth of water.
Wherein, obtain is depth of the measuring instrument relative to average extra large surface to the present invention, relative to obtaining in the prior art The depth on the extra large surface of freedom got, the water depth value at the termination depth of water that the present invention is got are more accurate.
It should be noted that in the case where not considering Pressure Sensor Precision, the pressure that base pressure force snesor is surveyed is sat PbFor extra large table atmospheric pressure PaWith seabed above unit area seawater caused by pressure sum, its expression formula is:
Wherein, η (t) represents that sea level height rises and falls, and ρ (t, z) represents density of sea water, and g (z) represents acceleration of gravity.
When the depth of water is-h (t), the pressure P that is measured using measuring instrument-h(t) expression formula is:
Wherein, h (t) is the depth of water of the measuring instrument relative to mean sea level.
Wherein, above-mentioned measuring instrument can use ADCP or CTD, while other measuring instruments can also be used to carry out Pressure measxurement.
Formula (2) is subtracted using formula (1), obtains formula:
Wherein, depth of water h (t) expression formula is:
H (t)=h (t0)-Δh(t) (4)
Wherein, h (t0) it is t=t0The depth of water where moment measuring instrument, Δ h (t) are measuring instrument relative to t=t0When The vertical displacement at quarter.
When measuring instrument is fixed on marine mooring system, due to being influenceed by horizontal ocean current, measuring instrument will be in level Direction produces motion.Again because anchor system is anchored on seabed, therefore will produce again while measuring instrument produces motion in the horizontal direction The displacement of vertical direction, i.e. vertical displacement.
Formula (4) is substituted into formula (3), obtained:
By t=t0, formula (5) is substituted into, is obtained:
Formula (6) is subtracted using formula (5), is obtained:
Because marine bottom ocean current is weaker, seawater flowing is very slow, therefore can consider that sitting bottom pressure meter is maintained at one The fixed depth of water (change for generally there was only several meters), i.e. D (t) is constant.
Assuming that t-t0< < T, the time span of measuring instrument measurement are far smaller than the time scale of density of sea water change, therefore The Section 1 on the right can be ignored in formula (7), you can obtain the first discreet value.
Because the g (z) of density p (t, z) and the gravity acceleration of seawater expression formula can be written as respectively:
ρ (t, z)=ρ (t0,h(t0))+Δρ(t,z) (8)
G (z)=g (h (t0))+Δg(z) (9)
Wherein, ρ (t0,h(t0)) represent initial time depth of water h (t0) place density of sea water;g(h(t0)) represent initial time Depth of water h (t0) place acceleration of gravity.
Formula (8) and formula (9) are substituted into formula (7), the expression formula for obtaining Section 2 in formula (7) is:
Wherein, a fixed position, Δ g (z) is only the function of the depth of water, and every meter of change is about 1.092*10- 6m*s-2.According to sea water state equation, Δ ρ (t, z) is the function of ocean temperature, salinity and density.When the vertical position of measuring instrument When shifting change is less than 10 meters of magnitudes, Δ ρ (t, z) and Δ g (z) excursion are respectively:10kg*m-3With 10-4m*s-2
Compared with Section 1 in formula (10), its last three can be estimated as:
Error caused by last three is up to 1%, ignores error term, you can the second discreet value is obtained, it is as follows Shown in formula:
Formula (14) is substituted into formula (7) to obtain:
Therefore,
In formula (16), ρ (t0,h(t0)) and g (h (t0)) can be written as respectively:
ρ(t0,h(t0))=ρ0+Δρ(t0,h(t0)) (17)
g(h(t0))=g0+Δg(h(t0)) (18)
Wherein ρ0=1020kg*m-3And g0=9.8m*s-2Respectively refer to density of sea water and acceleration of gravity.
Formula (17) and formula (18) substitute into the Section 2 on the right in formula (16), while can be with using the expansion of first order Taylor formula Obtain:
In ocean, ρ (t0,h(t0)) and g (h (t0)) excursion be respectively 20kg*m-3And 0.1m*s-2.In formula (19) in, the estimation expression formula of single order item is respectively:
Wherein, the worst error of single order item is 3% in formula (20), (21), (22), ignores density of sea water and acceleration of gravity Caused error, the 3rd discreet value is obtained, is shown below:
Composite type (15) and formula (23) obtain the discreet value of vertical displacement, are shown below:
The expression formula of the depth of water for sum up obtaining terminating at the depth of water is:
Wherein, initial depth of water h (t0) by LP methods or anchor can be placed in initial time cloth according to measuring instrument fasten Position determine.
Therefore, according to formula (25), if given t sits the pressure of base pressure force snesor and measuring instrument, can with Depth of water h (t) where to measuring instrument.
The method provided in an embodiment of the present invention for determining the depth of water, marine bottom conversion pressure ocean is being carried out using this method During the depth of water, theory deduction is carried out using linear perturbation theory, predictor error, directly obtains the water relative to mean sea level It is deep, reduce influence of the environmental factor to calculating.Error caused by the wherein initial depth of water is an offset error, will not calculated Change in journey over time and change.When the initial depth of water is mainly derived from measuring instrument and existed to timing, the error of above method The change that density of sea water caused by the displacement of vertical direction and gravity accelerate, vertical displacement is understood according to above-mentioned theory analysis Caused relative error is not over 4%, and the error does not change with time and changed.
Corresponding with above method embodiment, the embodiment of the present invention additionally provides a kind of system for determining the depth of water, is applied to In oceanographic survey, determine that the structural representation of the system of the depth of water refer to shown in Fig. 3, including:First acquisition unit 11, second are obtained Take unit 12, the first determining unit 13, the second determining unit 14, the 3rd acquiring unit 15 and the 3rd determining unit 16.Wherein:
First acquisition unit 11, for obtaining the initial depth of water.
The initial depth of water is set as h (t0), wherein initial depth of water h (t0) can exist by LP methods or according to measuring instrument Initial time cloth is placed on position that anchor fastens to determine.
It should be noted that LP methods correct item to realize by adding one.
Second acquisition unit 12, draw for obtaining initial time sea table atmospheric pressure respectively with seabed above unit area seawater Initial pressure, end time sea table atmospheric pressure of the first pressure sum, measuring instrument of the pressure risen in the initial water depths With seabed above unit area seawater caused by pressure second pressure sum and measuring instrument terminate the depth of water at termination pressure Power.
Wherein, first pressure sum is by sitting base pressure force sensor measuring, being specifically placed in pressure sensor Seabed or close on the investigation equipment in seabed, because marine bottom is influenceed by environmental factor smaller, sit base pressure force snesor In seat bottom pressure meter can accurately measure the SEA LEVEL VARIATION of monitoring point, therefore accurate termination can be measured by sitting base pressure force snesor The depth of water.Similarly, the acquisition modes of second pressure sum are identical with the acquisition modes of first pressure sum.
First determining unit 13, for determining the difference of first pressure sum and initial pressure respectively, the first numerical value is obtained, The difference of second pressure sum and termination pressure is determined, obtains second value.
Second determining unit 14, for determining the difference of second value and the first numerical value, obtain third value.
3rd acquiring unit 15, for the reference density of sea water and acceleration of gravity parameter phase for determining third value with transferring Multiply the ratio of result, obtain vertical displacement.
3rd determining unit 16, for determining the difference of the initial depth of water and vertical displacement, obtain the depth of water terminated at the depth of water.
The method provided by the invention for determining the depth of water is simple and easily realizes, passes through the initial depth of water and initial time and end Only vertical displacement is subtracted each other in the time, is eliminated it is determined that during the depth of water caused by the environmental factors such as wave, tide and ocean current Error, directly obtain depth of the measuring instrument relative to mean sea level.Due in determination depth of water method provided by the invention Error is change not over time and changed, therefore the error is foreseeable.
Fig. 4 is refer to, it illustrates a kind of another structure for the system for determining the depth of water provided in an embodiment of the present invention to show It is intended to, on the basis of Fig. 3, can also includes:First estimates unit 17, second estimates unit 18 and the 3rd and estimate unit 19. Wherein:
First estimates unit 17, the time span for being measured according to measuring instrument be far smaller than density of sea water change when Between scaling relation, obtain the first discreet value of the third value according to the following equation:
Wherein, Δ g (z) is the function of the depth of water, and Δ ρ (t, z) is the function of ocean temperature, salinity and density.
Because marine bottom ocean current is weaker, seawater flows very slow, therefore can consider that sitting base pressure force snesor keeps In a fixed depth of water., can when the time span of measuring instrument measurement is far smaller than the time scale of density of sea water change Third value is estimated with being estimated first in unit, to obtain the first discreet value of third value.
Second estimates unit 18, for according to vertical displacement delta h (t) scope and the Δ g (z) and Δ ρ (t, z) Variation relation, and the first discreet value of the third value, obtain second discreet value according to the following equation:
3rd estimates unit 19, for determining the discreet value of the vertical displacement.
In addition the 3rd estimate unit and can also use structural representation as shown in Figure 5, can include:5th computing unit 231st, the 6th computing unit 232 and the 4th determining unit 233.Wherein:
First computing unit 231, the inverse of the expression formula multiplied result for determining density of sea water and acceleration of gravity.
Second computing unit 232, for numerical value reciprocal to be carried out into first order Taylor expansion.
The formula being calculated in the first computing unit 231 is deployed using Taylor expansion formula, and it is entered Row first approximation, the 3rd discreet value is obtained according to first approximation.
4th determining unit 233, the discreet value of the vertical displacement is determined according to the 3rd discreet value and following formula:
It is provided in an embodiment of the present invention determine the depth of water system, using linear perturbation theory carry out theory deduction, predictor error, directly Connect to obtain the depth of water relative to mean sea level, reduce influence of the environmental factor to calculating.Error caused by the wherein initial depth of water For an offset error, change that will not be in calculating process over time and change.When the initial depth of water is to timing, above method Error be mainly derived from the change that density of sea water caused by displacement of the measuring instrument in vertical direction and gravity accelerate, according to Above-mentioned theory analysis understands the error of vertical displacement not over 4%, and the error does not change with time and changed.
Finally, it is to be noted that, herein, such as first and second or the like relational terms be used merely to by One entity or operation make a distinction with another entity or operation, and not necessarily require or imply these entities or operation Between any this actual relation or order be present.Moreover, term " comprising ", "comprising" or its any other variant meaning Covering including for nonexcludability, so that process, method, article or equipment including a series of elements not only include that A little key elements, but also the other element including being not expressly set out, or also include for this process, method, article or The intrinsic key element of equipment.In the absence of more restrictions, the key element limited by sentence "including a ...", is not arranged Except other identical element in the process including the key element, method, article or equipment being also present.
The foregoing description of the disclosed embodiments, those skilled in the art are enable to realize or using the present invention.To this A variety of modifications of a little embodiments will be apparent for a person skilled in the art, and generic principles defined herein can Without departing from the spirit or scope of the present invention, to realize in other embodiments.Therefore, the present invention will not be limited The embodiments shown herein is formed on, and is to fit to consistent with principles disclosed herein and features of novelty most wide Scope.

Claims (10)

  1. A kind of 1. method for determining the depth of water, it is characterised in that methods described includes:
    Obtain the initial depth of water;
    Obtain respectively the first pressure sum of pressure caused by initial time sea table atmospheric pressure and seabed above unit area seawater, Measuring instrument is drawn in the initial pressure of the initial water depths, end time sea table atmospheric pressure and seabed above unit area seawater The second pressure sum and measuring instrument of the pressure risen are terminating the termination pressure at the depth of water;
    Determine the difference of the first pressure sum and the initial pressure respectively, obtain the first numerical value, the second pressure it With the difference with the termination pressure, second value is obtained;
    The difference of the second value and first numerical value is determined, obtains third value;
    The reference density of sea water and the ratio of acceleration of gravity parameter multiplied result for determining the third value and transferring, obtain and hang down Straight displacement;
    The initial depth of water and the difference of the vertical displacement are determined, obtains the depth of water terminated at the depth of water.
  2. 2. according to the method for claim 1, it is characterised in that determine the difference of the second value and first numerical value Value, obtains the third value according to the following equation:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>-</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>D</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Wherein ,-D (t) is the depth of water, and ρ (t, z) is density of sea water, and g (z) is acceleration of gravity, D (t0) it is the initial time depth of water, h (t0) depth of water where initial time measuring instrument.
  3. 3. according to the method for claim 2, it is characterised in that layer is far smaller than according to the time span that measuring instrument measures The time scale relation of density of sea water change, obtains the first discreet value of the third value according to the following equation:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Wherein, Δ g (z) is the function of the depth of water, and Δ ρ (t, z) is the function of ocean temperature, salinity and density, and Δ h (t) is t Measuring instrument relative to initial time vertical displacement.
  4. 4. according to the method for claim 3, it is characterised in that according to vertical displacement delta h (t) scope and the Δ g (z) with Δ ρ (t, z) variation relation, and the first discreet value of the third value, second is obtained according to the following equation and is estimated Value:
    <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
  5. 5. according to the method for claim 4, it is characterised in that according to obtaining second discreet value and following formula Vertical displacement:
    <mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>.</mo> </mrow>
  6. 6. according to the method for claim 5, it is characterised in that include after obtaining the vertical displacement:
    The 3rd discreet value is obtained, the 3rd discreet value is used for the discreet value for determining the vertical displacement.
  7. 7. according to the method for claim 6, it is characterised in that acquisition the 3rd discreet value includes:
    Determine the inverse of the density of sea water and the expression formula multiplied result of the acceleration of gravity;
    By the progress first order Taylor expansion reciprocal, the 3rd discreet value reciprocal is obtained according to the following equation:
    <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>g</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>.</mo> </mrow>
  8. 8. a kind of system for determining the depth of water, it is characterised in that the system includes:
    First acquisition unit, for obtaining the initial depth of water;
    Second acquisition unit, for obtaining initial time sea table atmospheric pressure and pressure caused by the above unit area seawater of seabed respectively The first pressure sum of power, measuring instrument the initial water depths initial pressure, end time sea table atmospheric pressure and seabed The second pressure sum of pressure caused by above unit area seawater and measuring instrument are terminating the termination pressure at the depth of water;
    First determining unit, for determining the difference of the first pressure sum and the initial pressure respectively, obtain the first number Value, the difference of the second pressure sum and the termination pressure is determined, obtain second value;
    Second determining unit, for determining the difference of the second value and first numerical value, obtain third value;
    4th acquiring unit, for determining that the third value is multiplied with the reference density of sea water and acceleration of gravity parameter transferred As a result ratio, vertical displacement is obtained;
    3rd determining unit, for determining the initial depth of water and the difference of the vertical displacement, obtain at the termination depth of water The depth of water.
  9. 9. system according to claim 8, it is characterised in that the system also includes:
    First estimates unit, and the time scale that the time span measured according to measuring instrument is far smaller than density of sea water change is closed System, obtains the first discreet value of the third value according to the following equation:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Wherein, Δ g (z) be the depth of water function, the function of Δ ρ (t, z) position ocean temperature, salinity and density, h (t0) for it is initial when The depth of water where carving measuring instrument, Δ h (t) are vertical displacement of the t measuring instrument relative to initial time;
    Second estimates unit, is closed for the change according to vertical displacement delta h (t) scope and the Δ g (z) and Δ ρ (t, z) System, and the first discreet value of the third value, obtain second discreet value according to the following equation:
    <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;ap;</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>z</mi> <mo>&amp;ap;</mo> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    3rd estimates unit, for determining the discreet value of the vertical displacement.
  10. 10. system according to claim 9, it is characterised in that the described 3rd, which estimates unit, includes:
    First computing unit, the inverse of the expression formula multiplied result for determining density of sea water and acceleration of gravity;
    Second computing unit, for by it is described it is reciprocal carry out first order Taylor expansion, obtain described reciprocal the according to the following equation Three discreet values:
    <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>g</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>g</mi> <mn>0</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mrow> <mo>(</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> <msup> <msub> <mi>g</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mi>O</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;Delta;&amp;rho;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>&amp;Delta;g</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;rho;</mi> <mn>0</mn> </msub> <msub> <mi>g</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    4th determining unit, determine that the discreet value of the vertical displacement is according to the 3rd discreet value and following formula:
CN201410713468.5A 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water Expired - Fee Related CN104457901B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410713468.5A CN104457901B (en) 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410713468.5A CN104457901B (en) 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water

Publications (2)

Publication Number Publication Date
CN104457901A CN104457901A (en) 2015-03-25
CN104457901B true CN104457901B (en) 2018-01-05

Family

ID=52904326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410713468.5A Expired - Fee Related CN104457901B (en) 2014-11-28 2014-11-28 A kind of method and system for determining the depth of water

Country Status (1)

Country Link
CN (1) CN104457901B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043361B (en) * 2015-06-23 2018-01-05 中国环境科学研究院 Water depth measuring instrument for the environment flow evaluation method of zoobenthos protection target
CN105627997A (en) * 2015-12-23 2016-06-01 国家***第一海洋研究所 Multi-angle remote sensing water depth decision fusion inversion method
CN105651263B (en) * 2015-12-23 2018-02-23 国家***第一海洋研究所 Shallow water depth multi-source remote sensing merges inversion method
CN106403908B (en) * 2016-08-29 2019-10-08 上海交通大学 Prediction of water depth method and system based on time series
CN106959143A (en) * 2017-03-22 2017-07-18 中国科学院上海微***与信息技术研究所 A kind of self adaptation high-precision pressure formula water level monitoring warning device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102435255A (en) * 2011-11-22 2012-05-02 三一电气有限责任公司 Real-time detection device of water level of ocean water and method thereof
CN102486392A (en) * 2010-12-01 2012-06-06 乌兰察布新奥气化采煤技术有限公司 Water level monitoring device and water level monitoring method
CN103196516A (en) * 2013-03-28 2013-07-10 惠州Tcl移动通信有限公司 Method and device for detecting water depth of mobile terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2911838B2 (en) * 1996-11-08 1999-06-23 株式会社カイジョー Pressure wave gauge
BRPI0600797B1 (en) * 2006-03-03 2018-03-20 Petroleo Brasileiro S.A. - Petrobras WAVES AND TIDES MONITORING AND RECORD SYSTEM
JP2008096303A (en) * 2006-10-12 2008-04-24 Yokogawa Electric Corp Immersion type water gauge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486392A (en) * 2010-12-01 2012-06-06 乌兰察布新奥气化采煤技术有限公司 Water level monitoring device and water level monitoring method
CN102435255A (en) * 2011-11-22 2012-05-02 三一电气有限责任公司 Real-time detection device of water level of ocean water and method thereof
CN103196516A (en) * 2013-03-28 2013-07-10 惠州Tcl移动通信有限公司 Method and device for detecting water depth of mobile terminal

Also Published As

Publication number Publication date
CN104457901A (en) 2015-03-25

Similar Documents

Publication Publication Date Title
CN104457901B (en) A kind of method and system for determining the depth of water
Lorke et al. Breathing sediments: The control of diffusive transport across the sediment—water interface by periodic boundary‐layer turbulence
Cole et al. Multiple approaches to estimating air‐water gas exchange in small lakes
Rutgersson et al. Enhanced air–sea CO2 transfer due to water-side convection
Puleo et al. Near bed cross-shore velocity profiles, bed shear stress and friction on the foreshore of a microtidal beach
Lemckert et al. Physical properties of turbulent benthic boundary layers generated by internal waves
Lucas et al. Measuring turbulent dissipation using a tethered ADCP
RU2349910C1 (en) Method of sea water testing for saltiness and density
Bishop et al. Divergent eddy heat fluxes in the Kuroshio Extension at 144–148 E. Part I: Mean structure
Holtappels et al. Estimating turbulent diffusion in a benthic boundary layer
Inoue et al. Comparison of three different methods for assessing in situ friction velocity: A case study from Loch Etive, Scotland
Valipour et al. Parameterization of bottom mixed layer and logarithmic layer heights in central Lake Erie
Randelhoff et al. Effects of a shallow pycnocline and surface meltwater on sea ice–ocean drag and turbulent heat flux
Giddings et al. Using depth-normalized coordinates to examine mass transport residual circulation in estuaries with large tidal amplitude relative to the mean depth
Bricker et al. Bed drag coefficient variability under wind waves in a tidal estuary
Simpson et al. Internal seiche modes and bottom boundary‐layer dissipation in a temperate lake from acoustic measurements
Lozovatsky et al. Tides and mixing in the northwestern East China Sea, Part II: Near-bottom turbulence
Lien et al. Measurement of turbulent kinetic energy dissipation rate with a Lagrangian float
CN109073672A (en) The measurement value correcting method of speed through water instrument and speed through water instrument
Tokoro et al. High gas‐transfer velocity in coastal regions with high energy‐dissipation rates
MacIntyre et al. Turbulence in the upper mixed layer under light winds: Implications for fluxes of climate-warming trace gases
Staalstrøm et al. Propagation and dissipation of internal tides in the Oslofjord
Elshorbagy et al. Temperature–salinity modeling for Ruwais coastal area in United Arab Emirates
Liu et al. Improved dissipation rate estimation method based on time-varying glide parameter analysis of underwater gliders
Arnott et al. Friction dominated exchange in a Florida estuary

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20170821

Address after: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219

Applicant after: Nanjing University of Information Science and Technology

Applicant after: Second Institute of Oceanography, State Oceanic Administration

Address before: 210044 Nanjing Ning Road, Jiangsu, No. six, No. 219

Applicant before: Nanjing University of Information Science and Technology

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180105

Termination date: 20191128

CF01 Termination of patent right due to non-payment of annual fee