CN104371279B - 含石墨烯的复合材料及其制备方法和应用 - Google Patents

含石墨烯的复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN104371279B
CN104371279B CN201410640645.1A CN201410640645A CN104371279B CN 104371279 B CN104371279 B CN 104371279B CN 201410640645 A CN201410640645 A CN 201410640645A CN 104371279 B CN104371279 B CN 104371279B
Authority
CN
China
Prior art keywords
graphene
composite
functional material
poly
conductive channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410640645.1A
Other languages
English (en)
Other versions
CN104371279A (zh
Inventor
周超
陈思浩
楼建中
陈志昌
徐刚
杨春宇
朱同贺
王继虎
邢晨晨
包鸣
包一鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN201410640645.1A priority Critical patent/CN104371279B/zh
Priority to US15/526,427 priority patent/US10351677B2/en
Priority to PCT/CN2014/001167 priority patent/WO2016090523A1/zh
Publication of CN104371279A publication Critical patent/CN104371279A/zh
Application granted granted Critical
Publication of CN104371279B publication Critical patent/CN104371279B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/04Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C09D127/08Homopolymers or copolymers of vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D187/00Coating compositions based on unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C09D187/005Block or graft polymers not provided for in groups C09D101/00 - C09D185/04
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/34Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/43Chemical oxidative coupling reactions, e.g. with FeCl3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/77Post-treatment grafting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/96Applications coating of particles
    • C08G2261/964Applications coating of particles coating of inorganic particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/103Adjustable resistors adjustable by mechanical pressure or force by using means responding to magnetic or electric fields, e.g. by addition of magnetisable or piezoelectric particles to the resistive material, or by an electromagnetic actuator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种含石墨烯的复合材料及其制备方法和应用,所述含石墨烯的复合材料,其组分包括具有双导电通道的复合功能材料和聚合物基体。具有双导电通道的复合功能材料,为磺化石墨烯表面接枝导电聚合物聚3,4‑(乙撑二氧噻吩),其结构通式如式1所示。具有双导电通道的复合功能材料和含石墨烯的复合材料,可以用于制备压阻响应材料或者是抗静电、电磁屏蔽材料等,具有优异压阻响应和压阻重复性以及电磁屏蔽效应;本发明操作简单易行,可以大规模生产,其压阻性能优异,具有非常灵敏的压阻响应,渗阈值仅为0.5Wt%;不仅可以维持聚合物原有的性能,更能够形成一种不稳定的导电网络体系,有利于提高压阻响应的灵敏性。

Description

含石墨烯的复合材料及其制备方法和应用
技术领域
本发明涉及一种含石墨烯的复合材料及其制备方法和应用。
背景技术
石墨烯(Graphene)是由单层碳原子构成的具有六边形蜂窝状结构的二维晶体。理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。石墨烯中碳-碳键长约为0.143nm,每个晶格内有三个σ键,链接十分牢固,形成了稳定的六边形状。单层石墨烯厚度仅为0.35nm,约为头发丝直径的二十万分之一。
到目前为止,石墨烯被发现具有许多新奇而独特的物理现象,例如无质量的狄拉克费米子、量子霍尔效应、室温磁效应以及在室温下自旋依赖的输运。更重要的是,独特结构的石墨烯具有多重的优异性能,较小的质量密度(2.2g/cm3),极大的比表面积(~2630m2/g),极高的本征迁移率(>104cm2/Vs超过商用硅片10倍)而电阻率只约10-6Ω.cm,为目前世界上电阻率最小的材料、突出的导热性能(3000W/m-1K-1,是金刚石的3倍)和力学性能(杨氏模量高达1.0TPa,是钢的100多倍),石墨烯中电子的运动速度超过了在其他金属单体或是半导体中的运动速度,能够达到光速的1/300。石墨是矿物质中最软的,其莫氏硬度只有1~2级,但被分离成一个碳原子厚度的石墨烯后,性能则发生突变,其硬度比莫氏硬度10级的金刚石还高,高达130GPa的强度,却又拥有很好的韧性,可任意弯曲。并且几近透明,在很宽的波段内光吸收只有2.3%。因其室温导电速度最快、力学强度最大、导热能力最强等性能,石墨烯在纳米电子器件、光电子器件、传感器、超级电容器、能量存储、燃料电池集成电路、晶体管、场效应管等方面具有重要潜在应用。
可通过溶融共混、溶液共混、也可通过溶液插层等方法将有机分子引入石墨的片层之间,然后原位生长制备石墨烯/高分子材料复合材料。由于石墨烯具有高强度、高导电性、高透光性、高硬度、高阻隔性、室温量子霍尔效应等一系列优异的性能,而且其原料(石墨、烃类等)充足,价格低廉。因此具有很广泛的用途。将石墨烯作为添加相应用于高分子材料之中制备复合材料是目前制备高性能、多功能、智能化复合材料研究的重点。而高分子材料中直接添加石墨烯,其性能往往达不到实际生产期望的要求,所以需对其进行进一步的功能化改性和结构设计才能达到功能化和智能化的目标。
多功能、智能化聚合物复合材料中,压力-电阻响应复合材料的制备技术中,多用炭黑、碳纳米管、和普通的石墨烯作为填料。但存在一系列的问题,如:以炭黑为填料的压阻复合材料低敏感度、高填充量、重复性不佳;以碳纳米管为填料的压阻复合材料虽然具有较高的压阻敏感度以及较低的填充量,但是这种优异的压阻特性很难在循环测试中得到理想的重复。也有用石墨烯作为填料,并且用烷基化来改善导电填料和聚合物基体间的结合从而达到压阻响应的目的。这只是简单地解决了界面的结合问题,但是没有从根本和源头解决界面的结合和压阻响应的问题。因此,我们我们先将石墨烯表面进行磺化接枝,然后再采用原位聚合的方法通过氢键结合上聚3,4-(乙撑二氧噻吩),从而制备得到一种石墨烯-导电聚合物的复合材料。此种材料可单独作为压阻材料,也可和聚合物复合形成压阻材料。
目前,研究石墨烯高分子多功能、智能化复合材料主要有以下几种:申请日为:2012.05.10,申请号为:201210144498.X,公开号为:CN 102173145 A,公开日期为:2012.09.19,专利名称为:“一种表面改性石墨烯聚合物基压阻复合材料及其制备方法”,以烷基化石墨烯作为填料,和硅橡胶复合制备一种压阻响应材料。
申请日为:2011.12.15,申请号为:201110419526.X,授权公告号为:CN102558772B,授权日期为:2013.03.06,专利名称为:“一种聚3,4-(乙撑二氧噻吩)/磺化石墨烯复合水凝胶及其制备方法”,以聚3,4-(乙撑二氧噻吩)、聚苯乙烯磺酸钠、磺化石墨烯作为单组份,然后混合形成复合水凝胶,用以改善电性能和力学强度。
申请日为:2014.02.18,申请号为:201410055227.6,申请公布号为:CN103824615A,申请公布日期为:2014.05.28,专利名称为:“气相聚合聚3,4-乙撑二氧噻吩和石墨烯叠层柔性透明电极的方法”,以聚3,4-(乙撑二氧噻吩)薄膜和石墨烯薄膜通过叠层的方式制备复合薄膜,用以提高导电率和柔软性。
以上的研究仍然没有能给同时解决界面结合性的问题和提升导电率、机械强度、柔性等问题。
发明内容
本发明的目的在于提供一种含石墨烯的复合材料及其制备方法和应用,以克服现有技术存在的缺陷。
本发明首先涉及一种具有双导电通道的复合功能材料,为磺化石墨烯表面接枝导电聚合物聚3,4-(乙撑二氧噻吩),其结构通式如式1所示:
其中:为聚合度,n=100~8000的整数。
磺化石墨烯和聚3,4-(乙撑二氧噻吩)的质量比为1:1~1:100,优选的,磺化石墨烯和聚3,4-(乙撑二氧噻吩)的质量比为1:3~1:10;
所述磺化石墨烯是石墨烯经过4-苯胺磺酸及其衍生物接枝而得到的,接枝率为1%~80%;
所述磺化石墨烯的制备方法,可参见Guixia Zhao.et al.Sulfonated Graphenefor PersistentAromatic Pollutant Management.Adv.Mater.2011,23,3959-3963.文献报道的方法,推荐的方法,包括如下步骤:
(1)将羧基化石墨烯分散在水中,得到1~10mg/ml的羧基化石墨烯溶液A;
(2)将4-苯胺磺酸溶解在水中,得到10~20mg/ml的溶液B;
(3)将溶液A与溶液B按体积比为2:3~2:5的比例混合,滴加1-3滴二月桂酸二丁基锡作为催化剂,并在90~95℃加热回流反应8~10小时,降低体系温度至85~90℃,接着向反应体系中加入水合肼,恒温反应2~3小时,得到磺化石墨烯;
所述水合肼的加入量为1ml/1g~2ml/1g羧基化石墨烯;
催化剂的重量用量为溶液A与溶液B总体积的0.1~0.3%;
式1所示的化合物,可单独成型,作为具有双导电通道的复合功能材料;
本发明还涉及一种含石墨烯的复合材料,其组分包括所述具有双导电通道的复合功能材料与聚合物基体;
优选的,所述含石墨烯的复合材料中,所述具有双导电通道的复合功能材料与所述聚合物基体的重量比为0.1:100~20:100,优选的,聚合物基体的重量比为1:100~10:100;
所述聚合物基体选自聚烯烃类聚合物、聚酯类聚合物、橡胶类聚合物或聚甲醛、聚砜、聚乳酸;
所述聚烯烃类聚合物优选聚乙烯、聚丙烯、聚苯乙烯或聚偏二氯乙烯等;
所述聚酯类聚合物优选聚对苯二甲酸乙二醇酯或聚碳酸酯等聚酯类聚合物
所述橡胶类聚合物优选硅橡胶;
所述的具有双导电通道的复合功能材料的制备方法,包括如下步骤:
(1)将所述的磺化石墨烯溶解在水中,得到浓度为1~20mg/ml的磺化石墨烯溶液;
(2)然后加入3,4-(乙撑二氧噻吩);
3,4-(乙撑二氧噻吩与磺化石墨烯的质量比为1:1~100:1,优选的为3:1~10:1;
再加入重量浓度为5~30%的过硫酸钠(Na2S2O8)溶液,过硫酸钠的重量用量为磺化石墨烯的10~60%;然后在室温下反应4-8小时,然后从反应产物中收集聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料浓缩,得到聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料,即为具有双导电通道的复合功能材料浆料;
所述的收集方法,如蒸发浓缩等;
将浆料直接固化成型的步骤,即可得到聚3,4-(乙撑二氧噻吩)-石墨烯复合功能材料,即所述的具有双导电通道的复合功能材料;
术语“固化”方法如下:
将上述复合功能材料浆料装入成型的模具中,然后放入真空干燥箱中40-80℃氛围下干燥12-24h,最后获得所述的含石墨烯的复合功能材料。
或者:
包括如下步骤:
将所述的浆料与聚合物基体共混,包括溶融共混或者是溶液共混,然后通过溶剂挥发固化工艺或者外加固化剂等固化工艺处理得到的共混体系,最后获得所述含石墨烯的复合材料。
或者:
还包括如下步骤:
将所述的浆料涂布于聚合物基材、金属基材、无机材料基材或织物基材等的表面,然后在真空环境中固化成型,固化温度为40-80℃,形成功能复合膜,涂布厚度0.1um~10mm,涂布功能膜A和聚合物膜B的组成结构可以是B-A,B-A-B,A-B-A等形式组装,获得所述含石墨烯的复合材料。
所述的具有双导电通道的复合功能材料,可以用于制备压阻响应材料或者是抗静电、电磁屏蔽材料等,试验证明,其具有优异压阻响应和压阻重复性以及电磁屏蔽效应;
本发明操作简单易行,可以大规模的生产磺化石墨烯。由于表面接枝上了磺酸基团,可以有效的降低石墨烯的表面能,使石墨烯可以较高浓度的分散在去离子水中;另一方面也为和下一步的导电聚合物接枝提供了官能基团,进一步加强石墨烯和聚合物的结合性和相容性;从而制备出双导电通道的复合功能材料。
由于双导电通道的存在,复合功能材料的压阻性能格外优异;纯导电聚合物-功能化石墨烯-聚合物复合功能材料具有非常灵敏的压阻响应,而导电聚合物-功能化石墨烯-聚合物复合功能材料中渗阈值仅为0.5Wt%;低于经过同样表面改性的碳纳米管复合材料渗阈值1.2Wt%以及石墨烯复合材料渗阈值0.7Wt%。较低的添加量不仅可以维持聚合物原有的性能,更能够形成一种不稳定的导电网络体系,有利于提高压阻响应的灵敏性。
由于聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料可以单独固化成型,也可和其他材料结合形成电阻响应的功能材料,有非常广泛的应用领域。
由于石墨烯巨大的比表面积以及接枝上的聚3,4-(乙撑二氧噻吩)两者之间的协同同作用,使最重的复合功能材料具有优异的压阻重复性。同样条件下碳纳米管或者单纯的石墨烯复合材料内部的导电网络搭建完全跟不上外力的变化,优异的压阻性能自然是无法重复展现。
本发明所提供的制备方法,工艺简单,操作方便,不需要大型加工设备,有利于实现大规模、低成本生产此种复合功能材料。
附图说明
图1磺化石墨烯透镜照片。
图2聚3,4-(乙撑二氧噻吩-石墨烯复合功能材料红外光谱图。
图3聚3,4-(乙撑二氧噻吩-石墨烯复合材料SEM。
图4实施例4-6导电聚合物-石墨烯-聚合物复合功能材料电阻率和功能组分含量曲线。
图5实施例4中导电聚合物-石墨烯-聚合物复合功能材料电阻在压力作用下的变化趋势。
具体实施方式
以下通过具体实施例对本发明进行更详细的说明。实施例仅是对本发明的一种说明,而不构成对本发明的限制。实施例是实际应用例子,对于本领域的专业技术人员很容易掌握并验证。如果在本发明的基础上做出某种改变,那么其实质并不超出本发明的范围。
实施例1
1)磺化石墨烯的制备
将羧基化石墨烯分散在去离子水中,超声分散2小时,制备得到10mg/ml的羧基化石墨烯溶液,以便后续使用;
将4-苯胺磺酸溶解在去离子水中,制备得到20mg/ml的溶液,以便后续使用;
将上述得到的两种溶液按体积比2:3混合,滴加1-3滴二月桂酸二丁基锡作为催化剂,并在95℃加热回流反应10小时,降低体系温度至90℃,接着向混合反应体系中加入水合肼,恒温反应2小时,其中,水合肼的加入量与羧基化石墨烯的比例为1.0ml:0.8g。最后得到磺化石墨烯,并对其进行了结构形貌和表面基团的表针分析,结果如图1,图1可以看出磺化石墨烯是很薄的片层结构;接枝率为40%;
2)导电聚合物-功能化石墨烯复合材料制备
首先称取步骤1)得到的磺化石墨烯100mg溶解在100ml的去离子水中,得到浓度为1mg/ml的磺化石墨烯溶液;之后向溶液中加入5g 3,4-(乙撑二氧噻吩)单体,再加入一定量的过硫酸钠(Na2S2O8)溶液作为引发剂;然后将上述混合溶液在室温下反应4小时,旋转蒸馏,浓缩,最终得到聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料,其红外图谱见图2。磺化石墨烯和聚3,4-(乙撑二氧噻吩)的质量比为3:1;n=400;
图2中1190cm-1处为磺酸基团的特征峰,1228cm-1处为C-O-C的伸缩振动峰,此处主要是3,4-(乙撑二氧噻吩)中的C-O-C结构,1540cm-1处为C-N面内弯曲的特征峰,1720cm-1附近为酯基中C=O的伸缩振动峰。
同时也对此种复合材料的表面形貌进行了表征,如图3所示。此浆料可直接固化成型得到聚3,4-(乙撑二氧噻吩)-石墨烯复合功能材料,也可与其他聚合物结合制备复合功能材料。
实施例2
1)磺化石墨烯的制备
首先称取一定量的羧基化石墨烯分散在去离子水中,超声分散4小时,制备得到10mg/ml的羧基化石墨烯溶液,以便后续使用;其次称取一定量的4-苯胺磺酸衍生物R-1溶解在去离子水中(可加热助溶解),制备得到20mg/ml的溶液,以便后续使用;最后取上述得到的两种溶液按体积比2:3混合,滴加1-3滴二月桂酸二丁基锡作为催化剂,并在95℃加热回流反应10小时,降低体系温度至90℃,接着向混合反应体系中加入一定量的水合肼,恒温反应2小时。得到磺化石墨烯,其中所述水合肼的加入量与羧基化石墨烯的比例为1.2ml:1g。接枝率为60%;
2)导电聚合物-功能化石墨烯复合材料制备
首先称取步骤1)得到的磺化石墨烯300mg溶解在100ml去离子水中,得到浓度为3mg/ml的磺化石墨烯溶液;之后向溶液中加入50g 3,4-(乙撑二氧噻吩)单体,再加入一定量的过硫酸钠(Na2S2O8)溶液;然后将上述混合溶液在室温下反应6小时,旋转蒸馏,浓缩,最终得到聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料。此浆料可直接固化成型得到聚3,4-(乙撑二氧噻吩)-石墨烯复合功能材料,也可与其他聚合物结合制备复合功能材料。磺化石墨烯和聚3,4-(乙撑二氧噻吩)的质量比为6:1;n=1000。
实施例3
1)磺化石墨烯的制备
首先称取一定量的羧基化石墨烯分散在去离子水中,超声分散6小时,制备得到10mg/ml的羧基化石墨烯溶液,以便后续使用;其次称取一定量的4-苯胺磺酸衍生物R-2溶解在去离子水中(可加热助溶解),制备得到20mg/ml的溶液,以便后续使用;最后取上述得到的两种溶液按体积比2:3混合,滴加1-3滴二月桂酸二丁基锡作为催化剂,并在95℃加热回流反应10小时,降低体系温度至90℃,接着向混合反应体系中加入一定量的水合肼,恒温反应2小时。得到磺化石墨烯,其中所述水合肼的加入量与羧基化石墨烯的比例为1.5ml:1g。接枝率为75%;
2)导电聚合物-功能化石墨烯复合材料制备
首先称取步骤1)得到的磺化石墨烯500mg溶解在100ml去离子水中,得到浓度为5mg/ml的磺化石墨烯溶液;之后向溶液中加入100g 3,4-(乙撑二氧噻吩)单体,再加入一定量的过硫酸钠(Na2S2O8)溶液;然后将上述混合溶液在室温下反应8小时,旋转蒸馏,浓缩,最终得到聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料。此浆料可直接固化成型得到聚3,4-(乙撑二氧噻吩)-石墨烯复合功能材料,也可与其他聚合物结合制备复合功能材料。磺化石墨烯和聚3,4-(乙撑二氧噻吩)的质量比为10:1;n=6000。
实施例4
导电聚合物-石墨烯-聚合物复合材料制备
取上述实施例1中制备得到的浓缩复合浆料1g与聚氨酯共混100g(溶液共混)制备功能复合材料,其中固含量质量比为0.1:100;经干燥固化处理,最终制备得到导电聚合物-功能化石墨烯-聚合物复合功能材料;然后结合实施例5、6对功能填料的含量与导电性能之间的关系也做了系列分析,如图4所示,此外也研究了此种复合功能材料对压力的响应程度,结果如图5所示。
结果表明,当聚3,4-(乙撑二氧噻吩)-石墨烯复合功能填料的固含量增加时,复合材料体积电阻急剧下降,当固含量质量比为0.5%时,达到渗阈值,并且当填料含量继续增加时,电阻变化趋于平缓;此外,图5中随着压力增加,电阻率变化值逐渐增大,并且趋向于线性变化。这说明制备得到的功能复合材料具有很好的电性能和压阻响应特性,可应用于传感材料领域和电磁屏蔽领域。
实施例5
导电聚合物-石墨烯-聚合物复合材料制备
取上述实施例2中制备得到的浓缩复合浆料10g与天然橡胶共混100g(直接共混)制备功能复合材料,其中固含量质量比为1:100;经干燥固化处理,最终制备得到导电聚合物-功能化石墨烯-聚合物复合功能材料。
实施例6
导电聚合物-石墨烯-聚合物复合材料制备
取上述实施例3中制备得到的浓缩复合浆料20g与聚苯乙烯共混100g(熔融共混)制备功能复合材料,其中固含量质量比为2:100;经干燥固化处理,最终制备得到导电聚合物-功能化石墨烯-聚合物复合功能材料;
实施例7
导电聚合物-石墨烯-聚合物复合材料制备
取上述实施例3中制备得到的浓缩复合浆料1g,将复合浆料涂布于聚合物基材的表面形成功能复合膜(不限于聚合物基材,也可以是金属基材、无机材料基材、织物基材等),此实施例选用聚碳酸酯作为基材,涂布厚度(0.1um~10mm),也可根据实际需求而定(不限于上述厚度),涂布功能膜A和聚合物膜B的组装结构可以是B-A,B-A-B,A-B-A等形式组装,经干燥固化处理,最终得到导电聚合物-功能化石墨烯-聚合物复合功能材料。

Claims (11)

1.具有双导电通道的复合功能材料,其特征在于,为磺化石墨烯表面接枝导电聚合物聚3,4-(乙撑二氧噻吩),其结构通式如式1所示:
其中:n为聚合度,n=100~8000的整数。
2.根据权利要求1所述的具有双导电通道的复合功能材料,其特征在于,磺化石墨烯和聚3,4-(乙撑二氧噻吩)的质量比为1:1~1:100。
3.根据权利要求2所述的具有双导电通道的复合功能材料,其特征在于,磺化石墨烯和聚3,4-(乙撑二氧噻吩)的质量比为1:3~1:10。
4.一种含石墨烯的复合材料,其特征在于,其组分包括权利要求1~3任一项所述具有双导电通道的复合功能材料和聚合物基体。
5.根据权利要求4所述的含石墨烯的复合材料,其特征在于,所述含石墨烯的复合材料中,所述具有双导电通道的复合功能材料与所述聚合物基体的重量比为0.1:100~20:100。
6.根据权利要求4所述的含石墨烯的复合材料,其特征在于,具有双导电通道的复合功能材料与聚合物基体的重量比为1:100~10:100。
7.根据权利要求4所述的含石墨烯的复合材料,其特征在于,所述聚合物基体选自聚烯烃类聚合物、聚酯类聚合物、橡胶类聚合物或聚甲醛、聚砜。
8.根据权利要求7所述的含石墨烯的复合材料,其特征在于,所述聚烯烃类聚合物为聚乙烯、聚丙烯或聚苯乙烯;
所述聚酯类聚合物为聚对苯二甲酸乙二醇酯;
所述橡胶类聚合物为硅橡胶。
9.根据权利要求1~3任一项所述的具有双导电通道的复合功能材料的制备方法,其特征在于,包括如下步骤:
(1)将所述的磺化石墨烯溶解在水中,得到浓度为1~20mg/ml的磺化石墨烯溶液;
(2)然后加入3,4-(乙撑二氧噻吩);
再加入重量浓度为5~30%的过硫酸钠(Na2S2O8)溶液,过硫酸钠的重量用量为磺化石墨烯的10~60%;然后在室温下反应4-8小时,然后从反应产物中收集聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料浓缩,得到聚3,4-(乙撑二氧噻吩)-石墨烯复合浆料,即为具有双导电通道的复合功能材料浆料;
将浆料直接固化成型,即可得到聚3,4-(乙撑二氧噻吩)-石墨烯复合功能材料,即所述的具有双导电通道的复合功能材料。
10.根据权利要求9所述的方法,其特征在于,3,4-(乙撑二氧噻吩)与磺化石墨烯的质量比为1:1~100:1。
11.根据权利要求1~3任一项所述的具有双导电通道的复合功能材料或权利要求4~8任一项所述的含石墨烯的复合材料的应用,其特征在于,用于制备压阻响应材料或者抗静电或电磁屏蔽材料。
CN201410640645.1A 2014-11-13 2014-11-13 含石墨烯的复合材料及其制备方法和应用 Active CN104371279B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410640645.1A CN104371279B (zh) 2014-11-13 2014-11-13 含石墨烯的复合材料及其制备方法和应用
US15/526,427 US10351677B2 (en) 2014-11-13 2014-12-23 Graphene-containing composite material, preparation method and use thereof
PCT/CN2014/001167 WO2016090523A1 (zh) 2014-11-13 2014-12-23 含石墨烯的复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410640645.1A CN104371279B (zh) 2014-11-13 2014-11-13 含石墨烯的复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104371279A CN104371279A (zh) 2015-02-25
CN104371279B true CN104371279B (zh) 2017-10-20

Family

ID=52550488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410640645.1A Active CN104371279B (zh) 2014-11-13 2014-11-13 含石墨烯的复合材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US10351677B2 (zh)
CN (1) CN104371279B (zh)
WO (1) WO2016090523A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104893538B (zh) * 2015-06-04 2017-03-15 栾万强 水性抗静电涂料、其制备方法与应用
CN105507558B (zh) * 2015-08-24 2018-05-22 国网山东省电力公司临沂供电公司 一种抗静电pvc塑料地板
CN106916515B (zh) * 2017-04-27 2019-06-21 上海工程技术大学 一种功能型粉末涂料及其制备方法
CN108376740B (zh) * 2018-01-18 2022-03-29 上海集成电路研发中心有限公司 复合沟道晶体管及其制备方法
GB201813857D0 (en) * 2018-08-24 2018-10-10 Lussey David Composite Materials
CN109526191B (zh) * 2018-10-15 2020-07-10 华中科技大学 一种石墨烯基电磁屏蔽复合材料
CN110903754A (zh) * 2019-11-08 2020-03-24 上海翰飞新材料科技有限公司 一种防雾聚氨酯丙烯酸酯涂料及其制备和使用方法
EP4065511A4 (en) * 2019-11-29 2024-05-01 Melbourne Inst Tech WATER-REDISPERSIBLE GRAPHEN POWDER
CN111204750B (zh) * 2020-01-22 2022-02-11 上海应用技术大学 一种改性石墨烯及其制备方法与应用
CN111542213A (zh) * 2020-05-11 2020-08-14 向怀珍 一种锰锌铁氧体-石墨烯复合电磁屏蔽材料及其制法
CN111592745A (zh) * 2020-06-29 2020-08-28 江西伟普科技有限公司 一种碳/聚合物基电磁屏蔽材料及其制备方法
CN114316491B (zh) * 2022-01-11 2022-12-06 上海工程技术大学 一种柔性电子传感器材料及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745528B2 (en) * 2006-10-06 2010-06-29 The Trustees Of Princeton University Functional graphene-rubber nanocomposites
WO2009143405A2 (en) * 2008-05-22 2009-11-26 The University Of North Carolina At Chapel Hill Synthesis of graphene sheets and nanoparticle composites comprising same
US8287699B2 (en) * 2009-07-27 2012-10-16 Nanotek Instruments, Inc. Production of chemically functionalized nano graphene materials
CN101728534B (zh) * 2009-12-24 2011-11-30 华东理工大学 聚有机多硫化物/磺化石墨烯导电复合材料的制备方法
CN102321379B (zh) * 2011-07-13 2013-08-07 青岛科技大学 导电性石墨烯/聚合物复合材料
CN102558772B (zh) * 2011-12-15 2013-03-06 河海大学 一种聚3,4-(乙撑二氧噻吩)/磺化石墨烯复合水凝胶及其制备方法
CN102585174B (zh) * 2012-01-09 2014-03-19 南京大学 石墨烯/聚(3,4-乙烯二氧噻吩)复合物纳米材料的制法
JP2013216766A (ja) * 2012-04-06 2013-10-24 Nagoya Univ 導電性組成物
US9424505B2 (en) * 2012-05-25 2016-08-23 Indian Institute Of Technology Madras Luminescent graphene patterns
CN102723209B (zh) * 2012-05-25 2015-02-18 上海第二工业大学 一种石墨烯纳米片/导电聚合物纳米线复合材料的制备方法
CN102702520A (zh) * 2012-06-08 2012-10-03 武汉工程大学 磺化石墨烯/聚吡咯复合材料的制备方法
CN103242513A (zh) * 2013-05-15 2013-08-14 复旦大学 一种共轭聚合物/氧化石墨烯复合材料的制备方法
TWI530965B (zh) * 2013-05-20 2016-04-21 Graphene transparent conductive film
CN103289063A (zh) * 2013-06-14 2013-09-11 电子科技大学 一种制造聚噻吩基氧化石墨烯还原复合材料的方法
CN103594481B (zh) * 2013-11-08 2016-10-12 武汉工程大学 基于磺化石墨烯/聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)复合材料的存储器件及其制备方法
CN104119595B (zh) * 2014-06-30 2016-08-24 上海工程技术大学 含有取向排列的磁性氧化石墨烯片的聚合物及其制备方法
CN104934146A (zh) * 2015-06-26 2015-09-23 深圳市华星光电技术有限公司 石墨烯/pedot:pss混合溶液的制备方法及基板的制备方法

Also Published As

Publication number Publication date
CN104371279A (zh) 2015-02-25
US10351677B2 (en) 2019-07-16
WO2016090523A1 (zh) 2016-06-16
US20180291157A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
CN104371279B (zh) 含石墨烯的复合材料及其制备方法和应用
Zhu et al. Ag-Doped PEDOT: PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%
Gao et al. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading
Kwon et al. Anisotropy-driven high thermal conductivity in stretchable poly (vinyl alcohol)/hexagonal boron nitride nanohybrid films
Cui et al. Enhanced thermal conductivity of bioinspired nanofibrillated cellulose hybrid films based on graphene sheets and nanodiamonds
Zheng et al. Kirigami-inspired highly stretchable nanoscale devices using multidimensional deformation of monolayer MoS2
Du et al. Enhancing the heat transfer efficiency in graphene–epoxy nanocomposites using a magnesium oxide–graphene hybrid structure
Zhou et al. Improving electrical conductivity in polycarbonate nanocomposites using highly conductive PEDOT/PSS coated MWCNTs
Chu et al. Cellulose nanofiber/graphene nanoplatelet/MXene nanocomposites for enhanced electromagnetic shielding and high in-plane thermal conductivity
CN104616717B (zh) 一种石墨烯薄膜和金属纳米结构复合的导电材料及制备方法
Nasir et al. Polymer/graphite nanocomposites: Physical features, fabrication and current relevance
Xu et al. Facile fabrication of multifunctional poly (ethylene-co-octene)/carbon nanotube foams based on tunable conductive network
Qadir et al. Representative 2D-material-based nanocomposites and their emerging applications: a review
CN105502311B (zh) 二硫属化合物的剥离、功能化修饰以及智能复合凝胶的制备方法
Zhang et al. Intrinsically stretchable conductors and interconnects for electronic applications
Matsushita et al. Macroscopically aligned graphite films prepared from iodine-doped stretchable polyacetylene films using morphology-retaining carbonization
Hu et al. Multidimensional ternary hybrids with synergistically enhanced electrical performance for conductive nanocomposites and prosthetic electronic skin
Liu et al. Hyperbolic graphene framework with optimum efficiency for conductive composites
Zhu et al. Nacre-like composite films with a conductive interconnected network consisting of graphene oxide, polyvinyl alcohol and single-walled carbon nanotubes
CN108864622B (zh) 一种聚合物基介电复合材料的制备方法
Chen et al. Heterogeneous surface orientation of solution-deposited gold films enables retention of conductivity with high strain—a new strategy for stretchable electronics
Cho et al. Graphene–carbon–metal composite film for a flexible heat sink
Yan et al. MXene/CNTs/aramid aerogels for electromagnetic interference shielding and joule heating
Wang et al. Mechanically robust nacre-mimetic framework constructed polypyrrole-doped graphene/nanofiber nanocomposites with improved thermal electrical properties
Palaporn et al. Flexible thermoelectric paper and its thermoelectric generator from bacterial cellulose/Ag2Se nanocomposites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant