CN104362183B - 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用 - Google Patents

具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用 Download PDF

Info

Publication number
CN104362183B
CN104362183B CN201410488516.5A CN201410488516A CN104362183B CN 104362183 B CN104362183 B CN 104362183B CN 201410488516 A CN201410488516 A CN 201410488516A CN 104362183 B CN104362183 B CN 104362183B
Authority
CN
China
Prior art keywords
silicon
refractive index
film
window layer
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410488516.5A
Other languages
English (en)
Other versions
CN104362183A (zh
Inventor
倪牮
马峻
张建军
侯国付
陈新亮
张晓丹
赵颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201410488516.5A priority Critical patent/CN104362183B/zh
Publication of CN104362183A publication Critical patent/CN104362183A/zh
Application granted granted Critical
Publication of CN104362183B publication Critical patent/CN104362183B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用,所述薄膜碳含量为30‑80%,靠近本征层处采用低辉光功率密度,随着薄膜厚度的增加,辉光功率密度按照公式:P(t)=P0+A•t逐渐上升,其中P为辉光功率,P0为初始功率密度,A为线性变化速率,t为辉光时间,最终实现折射率纵向渐进式变化,折射率在400 nm波长处变化范围为2.8‑2.2;该折射率渐变特征的硅碳窗口层薄膜用于硅基薄膜太阳电池。本发明的优点是:该材料光学带隙可达2.0~3.7 eV,电导率可达0.1~5.0 Ω•cm,同时有效减少窗口层光学损失,从而显著提高太阳电池的填充因子、开路电压和短波响应,最终提高了光电转换效率。

Description

具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用
技术领域
本发明属于硅基薄膜太阳电池领域,特别涉及一种具有折射率渐变特征的硅碳窗口层薄膜及应用。
背景技术
面对全球日益严峻的能源短缺问题,太阳能电池因其具有清洁、无污染的特点日益成为解决环境问题和能源问题的重要手段之一。硅基太阳电池因其使用的半导体材料硅储量丰富、无毒并且无污染,是人们研究最多、技术最成熟的。而其中硅基薄膜太阳电池由于产业链短、制造成本低、耗能低、制造过程无污染成为未来太阳电池发展的重要方向。
p型掺杂层作为硅基薄膜电池的窗口层,与n型掺杂层共同形成硅基薄膜电池的内建电场。对p型窗口层的要求是高电导率、低激活能和宽带隙,其中高电导率、低激活能可以增强内建电场并降低p型窗口层和前电极的接触电阻,宽带隙可以减少p型窗口层的光吸收损失,提高电池在短波段的光电响应。目前,在硅基薄膜电池研究中广泛使用p型非晶硅碳(p-a-SiC:H)作为窗口层材料,通过碳与硅的合金效应使材料带隙展宽。其中,p-a-SiC:H通过碳的合金效应使其带隙达到1.8eV-2.2eV。传统硅基薄膜电池另一部分光学损失是未达到本征层就被前电极或是窗口层反射的部分,针对此问题,大部分研究机构所采用的方法是在p-a-SiC:H窗口层上覆盖一层折射率小于窗口层的透明导电薄膜(ITO),同时起到前电极和减反射的作用,但是由于p-a-SiC:H窗口层为单质结构,具有固定且唯一的折射率,当太阳光谱入射到薄膜电池时,只有具有特定波长的光才能实现理想的零反射,而光谱范围绝大部分的光学反射损失在实际电池中仍很明显,进而影响整个电池的性能。
从上面的分析看出,如何开发出具有高电导率、宽带隙,同时降低光学反射的p型窗口层材料是制备硅基薄膜太阳电池窗口层的关键点。为此,本发明提出一种折射率渐变特征的硅碳窗口层薄膜及其制备方法,有效地解决了上述的问题。
发明内容
本发明的目的是针对上述存在问题,提供一种具有折射率渐变特征的硅碳窗口层薄膜及其制备方法。该新型窗口层能够拓展短波区域的太阳电池光谱响应,有效降低由于固定折射率窗口层引起的光学反射损失,并且通过调制非晶硅碳窗口层沉积条件,实现本征层和窗口层之间的带隙匹配,提高硅基薄膜太阳电池的开路电压和填充因子,从而提高太阳电池效率。
本发明的技术方案:
一种具有折射率渐变特征的硅碳窗口层薄膜,该薄膜采用层递式沉积方法沉积硅碳薄膜,该薄膜中碳含量为30-80%,折射率在薄膜纵向渐进式变化,在400nm波长处变化范围为2.8-2.2,直至形成总厚度为20-50nm的p型硅碳窗口层材料,其折射率介于前电极和本征层折射率之间。
所述具有折射率渐变特征的硅碳窗口层薄膜的制备方法为:将在衬底上依次叠加有金属背电极、透明导电背电极、n型硅基薄膜和本征硅基薄膜的待处理样品放入高真空沉积设备中,待处理样品表面温度为100-150℃,真空度不低于10-5Pa,通入反应气体,反应气源为硅烷、硼烷、氢气和甲烷的混合气体,其中氢气占气体体积流量的百分比为98-99%,硅烷占气体体积流量的百分比为0.5-1%,硼烷占气体体积流量的百分比0.1-0.2%,甲烷占气体体积流量的百分比0.5-1%,辉光功率密度为10-50mW/cm2,硅碳窗口层的折射率通过辉光功率密度调控,首先在10-20mW/cm2功率密度下开始沉积薄膜,随着沉积薄膜厚度的增加,辉光功率密度按照公式:P(t)=P0+A·t逐渐上升至30-50mW/cm2,其中P为辉光功率密度,P0为初始功率密度,A为线性变化速率,t为辉光时间,最终形成总厚度为20-50nm的具有折射率渐变特征硅碳窗口层材料。所述沉积设备为13.56MHz-100MHz的等离子体增强化学气相沉积PECVD***、微波等离子体化学气相沉积***或电子回旋共振化学气相沉积***。
一种所述具有折射率渐变特征的硅碳窗口层薄膜的应用,用于硅基薄膜太阳电池,当采用玻璃或透明塑料为衬底时,该硅基薄膜太阳电池由玻璃或透明塑料衬底、前电极、p型折射率渐变特征的硅碳窗口层薄膜、本征吸收层、n型掺杂层和背电极依次叠加构成;当采用不锈钢或不透明塑料为衬底时,该硅基薄膜太阳电池由背电极、n型掺杂层、本征吸收层、p型折射率渐变特征的硅碳窗口层薄膜和前电极依次叠加构成。
所述本征吸收层材料为非晶硅、非晶硅锗、非晶硅氧、非晶硅碳、微晶硅或微晶硅锗;所述n型掺杂层材料为n型非晶硅、n型微晶硅、n型非晶硅氧或n型微晶硅氧。
本发明的机理分析:
在硅基薄膜太阳电池中,为了减少表面的反射率,最简单的方法是镀上一层具有低折射率的透明导电薄膜。只要单层的透明导电薄膜低于p型窗口层的折射率,这个单层薄膜就有减少表面反射率的作用。但是由于p-a-SiC:H窗口层为单质结构,具有固定且唯一的折射率,当太阳光谱入射到薄膜电池时,只有具有特定波长的光才能实现理想的零反射,这时反射率和反射光波长的关系一般成V型,色中性差。本发明提出折射率渐变特征的硅碳窗口层薄膜,通过改变硅碳薄膜的沉积条件,在靠近本征层处采用低辉光功率密度,随着沉积薄膜厚度的增加,逐渐升高辉光功率密度,由于碳原子掺入量的变化,使得硅碳薄膜的折射率在薄膜纵向变化。折射率渐变的引入解决了传统硅基薄膜太阳电池中,反射效果只能实现单一波长的限制,折射率渐变特征将V型光谱特性变为多波谷的光谱特性,从而获得更好的减反射效果,色中性好。另一方面,沉积这种具有折射率渐变特征的硅碳窗口层薄膜保持了沉积硅碳窗口层的特点,低功率条件有效减少等离子体中带电粒子对本征层表面的轰击,与传统的硅基薄膜太阳电池窗口层相比,这种具有折射率渐变特征的非晶硅碳窗口层,能够兼顾合金材料宽带隙,高电导率要求的同时,通过折射率渐变结构有效降低光学反射,因此成为硅基薄膜电池窗口层的理想选择。
本发明的有益效果是:
具有折射率渐变特征的硅碳窗口层薄膜材料,由宽带隙的硅碳材料通过合金效应使其带隙展宽至2.0-3.7eV,由受主掺杂使其纵向电导率达到0.1-5.0Ω·cm,通过折射率渐变结构有效降低光学反射率至10-40%。相对于传统p型窗口层,太阳电池所需的高电导率、宽带隙和超低光学损失特征同时获得。将该材料用于硅基薄膜太阳电池的窗口层,和传统p型窗口层材料相比,一方面可以使电池的内建电场大幅提高,进而显著提高电池的开路电压并有望使之突破传统上限;另一方面可以显著降低透明电极和窗口层引起的光学损失,提高电池的短波响应和短路电流密度,最终在不增加设备成本的前提下提高了硅基薄膜太阳电池的光电转换效率。
附图说明
图1是衬底为不锈钢的n-i-p型硅基薄膜电池结构示意图。
图2是分别采用非晶硅碳、纳米硅和折射率渐变特征的硅碳薄膜作为窗口层的n-i-p型非晶硅薄太阳电池的量子效率QE曲线对比图。
图3为分别采用非晶硅碳、纳米硅和具有折射率渐变特征的硅碳窗口层薄膜的直接反射率对比图。
图中:
1.衬底 2.金属电极 3.背电极
4.非晶n型掺杂层 5.宽带隙本征吸收层
6.折射率渐变特征的硅碳窗口层薄膜
7.ITO透明导电薄膜 8.金属电极。
具体实施方式
实施例1:
一种具有折射率渐变特征的硅碳窗口层薄膜的制备方法:
将待处理样品放入高真空等离子体增强化学气相RF-PECVD沉积设备中,反应温度100℃,反应气源为硅烷、硼烷、氢气和甲烷的混合气体,其中氢气占气体体积流量的百分比98.55%,硅烷占气体体积流量的百分比为0.75%,硼烷占气体体积流量的百分比0.1%,甲烷占气体体积流量的百分比0.6%,辉光功率密度初始为20mW/cm2,随着沉积薄膜厚度的增加,辉光功率密度按照:P(t)=20+1.15t,其中P(t)为辉光功率密度,t为沉积时间,逐渐上升至50mW/cm2,最终辉光沉积厚度为30nm,400nm波长处折射率在薄膜纵向生长方向从2.8递减至2.2的硅碳薄膜。之后再沉积透明导电前电极和金属栅电极,形成完整的n-i-p型非晶硅薄膜电池。
图1是n-i-p型非晶硅硅基薄膜太阳电池的结构示意图,该p型折射率渐变特征的硅碳窗口层薄膜用作n-i-p型非晶硅薄膜电池的窗口层,得到的太阳电池的开路电压为1.04V,短路电流达到11mA/cm2,填充因子为72%,光电转化效率为8.2%。
图2为分别采用恒定功率制备的非晶硅碳、纳米硅和具有折射率渐变特征的硅碳窗口层薄膜的n-i-p型非晶硅薄太阳电池的量子效率QE曲线对比图。图中表明:当采用新型折射率渐变特征的硅碳薄膜作为窗口层时,非晶硅电池全波段反射率更低,短波光谱响应达到65%。
值得注意的是本发明的沉积方法兼容沉积非晶硅、非晶硅锗和微晶硅等硅基薄膜的沉积工艺基础,方法简单,易于操作和实现,适合工业化生产。
实施例2
一种具有折射率渐变特征的硅碳窗口层薄膜的制备方法:
将待处理样品放入高真空微波等离子体化学气相沉积***,反应温度150℃,反应气源为硅烷、硼烷、氢气和甲烷的混合气体,其中氢气占气体体积流量的百分比98%,硅烷占气体体积流量的百分比为1%,硼烷占气体体积流量的百分比0.2%,甲烷占气体体积流量的百分比0.8%,辉光功率密度初始为10mW/cm2,随着沉积薄膜厚度的增加,辉光功率密度按照:P(t)=10+1.5t,其中P(t)为辉光功率密度,t为沉积时间,逐渐上升至40mW/cm2,最终辉光沉积厚度为30nm,400nm波长处折射率在薄膜纵向生长方向从2.8递减至2.2的硅碳薄膜。
图3为分别采用非晶硅碳、纳米硅和具有折射率渐变特征的硅碳窗口层薄膜的直接反射率对比图。图中表明:与传统的非晶硅碳、和纳米硅相比,新型折射率渐变特征的硅碳薄膜在300nm-800nm波段反射率更低,作为硅基薄膜窗口层会获得更好的减反射效果。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (5)

1.一种具有折射率渐变特征的硅碳窗口层薄膜的制备方法,其特征在于:将在衬底上依次叠加有金属背电极、透明导电背电极、n型硅基薄膜和本征硅基薄膜的待处理样品放入高真空沉积设备中,待处理样品表面温度为100-150℃,真空度不低于10-5Pa,通入反应气体,反应气源为硅烷、硼烷、氢气和甲烷的混合气体,其中氢气占气体体积流量的百分比为98-99%,硅烷占气体体积流量的百分比为0.5-1%,硼烷占气体体积流量的百分比0.1-0.2%,甲烷占气体体积流量的百分比0.5-1%,辉光功率密度为10-50mW/cm2,首先在10-20mW/cm2功率密度下开始沉积薄膜,随着沉积薄膜厚度的增加,辉光功率密度按照公式:P(t)=P0+A·t逐渐上升至30-50mW/cm2,其中P为辉光功率密度,P0为初始功率密度,A为线性变化速率,t为辉光时间,最终实现具有折射率渐变特征的p型硅碳窗口层薄膜,所述硅碳窗口层薄膜的碳含量为30-80%,折射率在薄膜纵向渐进式变化,在400nm波长处变化范围为2.2-2.8,厚度为20-50nm。
2.根据权利要求1所述的制备方法,其特征在于:所述沉积设备为13.56MHz-100MHz的等离子体增强化学气相沉积PECVD***、微波等离子体化学气相沉积***或电子回旋共振化学气相沉积***。
3.一种具有折射率渐变特征的硅碳窗口层薄膜的应用,其特征在于:将具有折射率渐变特征的硅碳窗口层薄膜用于硅基薄膜太阳电池,采用玻璃或透明塑料为衬底,该硅基薄膜太阳电池由玻璃或透明塑料衬底、前电极、p型具有折射率渐变特征的硅碳窗口层薄膜、本征吸收层、n型掺杂层和背电极依次叠加构成;所述具有折射率渐变特征的硅碳窗口层薄膜的碳含量为30-80%,折射率在薄膜纵向渐进式变化,在400nm波长处变化范围为2.2-2.8,厚度为20-50nm。
4.一种具有折射率渐变特征的硅碳窗口层薄膜的应用,其特征在于:将具有折射率渐变特征的硅碳窗口层薄膜用于硅基薄膜太阳电池,采用不锈钢或不透明塑料为衬底,该硅基薄膜太阳电池由背电极、n型掺杂层、本征吸收层、p型具有折射率渐变特征的硅碳窗口层薄膜和前电极依次叠加构成;所述具有折射率渐变特征的硅碳窗口层薄膜的碳含量为30-80%,折射率在薄膜纵向渐进式变化,在400nm波长处变化范围为2.2-2.8,厚度为20-50nm。
5.根据权利要求3或4所述的应用,其特征在于:所述本征吸收层材料为非晶硅、非晶硅锗、非晶硅氧、非晶硅碳、微晶硅或微晶硅锗;所述n型掺杂层材料为n型非晶硅、n型微晶硅、n型非晶硅氧或n型微晶硅氧。
CN201410488516.5A 2014-09-23 2014-09-23 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用 Expired - Fee Related CN104362183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410488516.5A CN104362183B (zh) 2014-09-23 2014-09-23 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410488516.5A CN104362183B (zh) 2014-09-23 2014-09-23 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用

Publications (2)

Publication Number Publication Date
CN104362183A CN104362183A (zh) 2015-02-18
CN104362183B true CN104362183B (zh) 2017-02-01

Family

ID=52529427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410488516.5A Expired - Fee Related CN104362183B (zh) 2014-09-23 2014-09-23 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用

Country Status (1)

Country Link
CN (1) CN104362183B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI658587B (zh) * 2018-01-25 2019-05-01 友達光電股份有限公司 顯示裝置之薄膜電晶體及其形成方法
CN110311018A (zh) * 2019-07-10 2019-10-08 贵州大学 一种低日照非晶硅薄膜太阳能电池窗口层的制备方法
CN113921620A (zh) * 2021-11-17 2022-01-11 南开大学 一种折射率渐变特性的减反射膜的制备方法
CN117930411A (zh) * 2024-01-23 2024-04-26 广东晟铂纳光学科技有限公司 一种红色系金属介质结构色薄膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039709A1 (en) * 2010-09-22 2012-03-29 Dow Corning Corporation Electronic article and method of forming
CN102142469A (zh) * 2010-12-01 2011-08-03 南开大学 Pi柔性衬底太阳电池用p型微晶硅碳薄膜材料及制备
CN102569481B (zh) * 2012-02-01 2014-04-02 南开大学 一种具有梯度型带隙特征的纳米硅窗口层及其制备方法

Also Published As

Publication number Publication date
CN104362183A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN101593779B (zh) 串联薄膜硅太阳能电池及其制造方法
CN102157577B (zh) 纳米硅/单晶硅异质结径向纳米线太阳电池及制备方法
CN106409957A (zh) 一种大面积超薄石墨烯/二硫化钼超晶格异质材料
CN104362183B (zh) 具有折射率渐变特征的硅碳窗口层薄膜和制备方法及应用
CN104733557B (zh) Hit太阳能电池及提高hit电池的短路电流密度的方法
CN105845747A (zh) 一种太阳能电池结构
CN110112226A (zh) 一种新型全钝化接触晶体硅太阳能电池及其制备方法
CN101882652A (zh) 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺
CN102569481B (zh) 一种具有梯度型带隙特征的纳米硅窗口层及其制备方法
CN103296145A (zh) 用于硅基薄膜太阳电池的禁带可调式光子晶体背反射器
CN102255005B (zh) 薄膜太阳电池及其制造方法
CN102157617B (zh) 一种硅基纳米线太阳电池的制备方法
CN102142469A (zh) Pi柔性衬底太阳电池用p型微晶硅碳薄膜材料及制备
CN107342331B (zh) 一种t型顶电极背反射薄膜太阳电池的生产工艺
CN103872167B (zh) 一种硅基薄膜太阳能电池及其制备方法
CN101567396A (zh) 用于太阳能电池的透明导电基板
CN103078001A (zh) 硅基薄膜叠层太阳能电池的制造方法
CN201699034U (zh) 一种硅基异质结太阳电池
CN104681654B (zh) 一种双n层结构非晶硅太阳能电池及其制备方法
CN101136443A (zh) 具有增透保护膜的柔性转移衬底太阳电池及其制备方法
CN102157594B (zh) 一种超晶格量子阱太阳电池及其制备方法
CN105280736A (zh) 一种具有双层界面带隙缓冲层的非晶硅锗薄膜太阳能电池
CN103972321B (zh) 一种纤维状硅基薄膜太阳电池及其制备方法
CN102931270B (zh) 一种弱光型非晶硅太阳能电池及其制造方法
CN202268353U (zh) 一种晶体硅太阳能电池双层减反射膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170201

Termination date: 20170923

CF01 Termination of patent right due to non-payment of annual fee