CN104318005A - 一种基于Virtools的多元数据融合虚拟试验显示*** - Google Patents

一种基于Virtools的多元数据融合虚拟试验显示*** Download PDF

Info

Publication number
CN104318005A
CN104318005A CN201410557273.6A CN201410557273A CN104318005A CN 104318005 A CN104318005 A CN 104318005A CN 201410557273 A CN201410557273 A CN 201410557273A CN 104318005 A CN104318005 A CN 104318005A
Authority
CN
China
Prior art keywords
data
model
test
finite element
modal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410557273.6A
Other languages
English (en)
Other versions
CN104318005B (zh
Inventor
蔡晶琦
王悦
吴迪
郭爱民
王月
肖凯
苏玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Launch Vehicle Technology CALT
Original Assignee
China Academy of Launch Vehicle Technology CALT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Launch Vehicle Technology CALT filed Critical China Academy of Launch Vehicle Technology CALT
Priority to CN201410557273.6A priority Critical patent/CN104318005B/zh
Publication of CN104318005A publication Critical patent/CN104318005A/zh
Application granted granted Critical
Publication of CN104318005B publication Critical patent/CN104318005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于Virtools的多元数据融合虚拟试验显示***,该***包含数据接口及处理模块,混合建模及综合模块,可视化融合显示模块,模型修正模块,采用有限元计算(虚拟试验)和实物试验的方式分别对所有子结构进行计算或试验验证,根据实物试验结果数据修正有限元模型(虚拟试验模型),同时,利用虚拟试验预示的试验趋势指导实物试验,完善实物验证试验方案,最后根据由虚拟试验模型和实物试验数据构建的混合模型进行复杂***的综合试验环境叠加显示,并在叠加显示模块中采用LOD管理技术,提高Virtools中物理场数据叠加显示的效率。

Description

一种基于Virtools的多元数据融合虚拟试验显示***
技术领域
本发明涉及一种基于Virtools的多元数据融合虚拟试验显示***,属于计算机仿真技术领域。
背景技术
随着当代大型结构和复杂结构(如火箭、海上石油平台、大型建筑、大跨度桥梁等)在工程中广泛应用,结构建模技术的要求越来越高,同时,难度也不断提高。结构的大型化决定了对结构整体进行传统的有限元分析计算的效率低下,要求采取子结构综合建模技术。与此同时,由于工程中某些重要部件存在大量试验数据,如何有效利用这些试验数据将其与***中的其他部件综合起来,实现***的混合建模,建立***的动力学模型,使其应用于***的模态分析、动态响应分析以及各种耦合分析。其工作是非常具有理论价值和实际意义的。
虚拟仿真技术是近期发展起来的一门广泛应用于工程分析的有效工具,它能帮助技术人员深入理解研究对象物理性质(如结构的应力应变、流速、压力等),再现各种物理特征(如结构振型、流场流线等)。同时,经过适当数据处理,也可用于实物试验数据的可视化。能同时实现虚实混合建模和模型修正的***还没看到公开的文献。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种基于Virtools的多元数据融合虚拟试验显示***,该显示***主要针对混合建模***中理论模型与试验模型在Virtools虚拟现实环境中的叠加显示技术,将混合建模***平台计算得到的理论模型数据和虚拟试验数据,在Virtools虚拟现实环境中动态显示,模拟物体实际情况,进而达到***方案和产品性能的优化设计,即可以实现“虚实融合”、“以虚预示”的试验验证模式,对实际设计工作起到指导性作用。
本发明的上述目的主要是通过如下技术方案予以实现:
一种基于Virtools的多元数据融合虚拟试验显示***,包含数据接口及处理模块,混合建模及综合模块,可视化融合显示模块,模型修正模块,其中:
数据接口及处理模块:接收外部输入的有限元数据及试验数据并按照设定的数据格式进行存储,所述有限元数据包括有限元模型数据、有限元模态数据和有限元模型分析结果数据;所述试验数据包括试验模型数据、试验频响函数数据和试验模态结果数据;
混合建模及综合模块:调用数据接口及处理模块中的有限元数据及试验数据,采用所述有限元数据进行建模得到理论模型,采用所述试验数据进行建模得到试验模型,将所述理论模型与试验模型进行综合建模,得到混合有限元模型;
可视化融合显示模块:将混合建模及综合模块中得到的混合有限元模型进行显示;
模型修正模块:根据混合有限元模型的模态数据与外部输入的试验数据计算模态置信准则矩阵,即MAC矩阵,之后进行相关性分析,若满足置信度要求,则判断所述混合有限元模型为可靠模型,若不满足置信度要求,则对所述混合有限元模型进行修正,直至模型满足置信度要求。
在上述基于Virtools的多元数据融合虚拟试验显示***中,混合建模及综合模块建立整体有限元模型的具体方法如下:
(1)、将有限元数据离散化,得到有限元节点数据、有限元单元数据、有限元边界条件数据、模态振型数据、模态参数及单元约束数据,并将所述有限元节点数据、有限元单元数据、有限元边界条件数据、模态振型数据、模态参数及单元约束数据存储为设定的格式,即得到理论模型的模态数据,完成理论模型的建模;
(2)、将试验数据离散化,得到试验节点数据、线框单元数据、频响函数点数据和试验模态数据,并将所述试验节点数据、线框单元数据、频响函数点数据和试验模态数据存储为设定的格式,即得到试验模型的模态数据,完成试验模型的建模;所述步骤(1)与步骤(2)中所述设定的格式为相同格式;
(3)、将步骤(1)中理论模型的模态数据和步骤(2)中的试验模型的模态数据均转化为频响函数,并将理论模型的频响函数与试验模型的频响函数进行综合,得到混合有限元模型的频响函数,再将所述混合有限元模型的频响函数进行模态识别,得到混合有限元模型模态数据,完成混合有限元模型的建模。
在上述基于Virtools的多元数据融合虚拟试验显示***中,步骤(3)中将理论模型的模态数据和试验模型的模态数据转化为频响函数Hij的具体方法如下:
将模态数据通过如下公式计算得到中间响应量{X}:
其中:N为总模态数,j为自由度数,为结构的第r阶模态,kr为第r阶模态刚度,ξr为第r阶模态阻尼,Ωr为第r阶固有频率,w为激励点位移;F为激振力;为书写方便,令λr=w/Ωr;假定只在结构的j点作用有激振力Fj,那么:
F={0 0...Fj 0...0}T
式中,向量的第j个元素,任一点i处的响应Xi将是:
式中,向量的第i个元素,于是可得:
Hij即为i,j之间的频响函数,表示在j点作用单位力时,在i点所引起的响应。
在上述基于Virtools的多元数据融合虚拟试验显示***中,步骤(3)中采用固定界面模态综合法或自由界面模态综合法将理论模型的频响函数与试验模型的频响函数进行综合,得到混合模型的频响函数,再将所述混合模型频响函数通过多项式拟合法(Levy)方法进行模态识别,得到混合模型模态数据,完成混合有限元模型的建模。
在上述基于Virtools的多元数据融合虚拟试验显示***中,模型修正模块根据混合有限元模型的模态数据与外部输入的与混合有限元模型对应的试验数据计算模态置信准则矩阵,即MAC矩阵,之后进行相关性分析,若满足置信度要求,则判断所述混合有限元模型为可靠模型,若不满足置信度要求,则对所述混合有限元模型进行修正,直至模型满足置信度要求的具体实现过程如下:
(1)、采用振型匹配的方法根据混合有限元模型的模态数据与外部输入的模态试验数据计算混合有限元模型的各阶模态与实物试验结果之间各阶模态的相关性,得到模态置信准则MAC矩阵,所述MAC矩阵的行为试验振型,列为理论振型;
(2)、提取MAC矩阵第1列最大值{MACmax}1以及所述最大值{MACmax}1在第1列中的行的位置i1,则i1即是与第一阶试验模态匹配的有限元模态阶数,得到第一组匹配对:{1,i1},提取MAC矩阵第2列最大值{MACmax}2以及所述最大值{MACmax}2在第2列中的行的位置i2,则i2即是与第二阶试验模态匹配的有限元模态阶数,得到第二组匹配对:{2,i2},……,依次类推,得到第n组匹配对:{n,in},所述n为MAC矩阵的总列数;
(3)、判断所述n组匹配对{1,i1}……{n,in}对应的n个{MACmax}1……最大值{MACmax}n是否满足置信度要求,即是否达到设定的置信度,若满足置信度要求,则判断所述整体有限元模型为可靠模型,否则进入步骤(4);
(4)、改变整体有限元模型的初始参数,重新得到n组匹配对{1,i1}……{n,in}对应的n个最大值{MACmax}1……最大值{MACmax}n,返回步骤(3),直至n组匹配对{1,i1}……{n,in}对应的n个最大值{MACmax}1……最大值{MACmax}n满足置信度要求。
在上述基于Virtools的多元数据融合虚拟试验显示***中,可视化融合显示模块通过LOD管理技术将混合建模及综合模块中得到的整体有限元模型进行显示。
本发明与现有技术相比具有如下有益效果:
(1)、本发明显示***由数据接口及处理模块,混合建模及综合模块,可视化融合显示模块和模型修正模块组成,采用混合建模方法,将试验模型与有限元模型进行综合建模,通过与试验数据进行对比,对理论模型进行修正,得到可靠的整体有限元模型,用于指导和优化实际试验过程;
(2)、本发明基于虚拟仿真环境,把有限元分析的理论模型(虚拟试验模型)与实物试验模型结合起来,即可实现概念上的“虚实融合”,利用虚拟试验预示的试验趋势指导实物试验,完善实物验证试验方案,最后根据由虚拟试验模型和实物试验数据构建的混合模型进行复杂***的综合试验验证,进而达到***方案和产品性能的优化设计,即可以实现“虚实融合”、“以虚预示”的试验验证模式;
(3)、本发明采用的多元数据显示方法,优于现有单纯的基于虚拟显示环境的多物理场可视化***,可以对多元数据的实物与虚拟试验环境进行叠加显示处理;
(4)、本发明中叠加显示模块可以采用LOD管理技术,显著提高了在Virtools中物理场数据叠加显示的效率;模型修正模块中采用振型匹配及相关性分析等方法,大大提高了综合建模的可靠性;
(5)、本发明通过混合建模理论研究和混合建模环境开发,将有限元虚拟试验的混合建模技术与基于Virtools的显示方法相融合,构建混合建模的综合试验建模工具平台,实现基于混合模型的综合试验验证;
(6)、本发明针对虚拟、现实试验的模型混合建模及模型修正技术,可实现模型对模拟试验环境的修正、突破对虚拟环境显示的单一性功能。
附图说明
图1为本发明多元数据融合显示***结构图;
图2为本发明多元数据融合显示***工作原理示意图;
图3为本发明多元数据融合显示***中混合建模与综合模块工作过程图;
图4为本发明多元数据融合显示***中基于Virtools虚拟现实环境叠加显示LOD算法流程图;
图5为本发明多元数据融合显示***中模型修正模块工作原理图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
如图1所示为本发明虚拟试验显示***结构图,由图可知本发明多元数据融合虚拟试验显示***,包含数据接口及处理模块,混合建模及综合模块,可视化融合显示模块和模型修正模块。
如图2所示为本发明虚拟试验显示***工作原理示意图,通过数据接口及处理模块接收外部输入的有限元数据及试验数据并按照设定的数据格式进行存储,在混合建模及综合模块调用数据接口及处理模块中的有限元数据及试验数据,建立理论模型和试验模型,将所述理论模型与试验模型进行综合建模,得到整体有限元模型,将所述模型在可视化融合显示模块进行显示,在模型修正模块中,根据混合有限元模型的模态数据与外部输入的试验数据计算模态置信准则矩阵,即MAC矩阵,之后进行相关性分析,若满足置信度要求,则判断所述混合有限元模型为可靠模型,若不满足置信度要求,则对所述混合有限元模型进行修正,直至模型满足置信度要求。
如图3所示为本发明虚拟试验显示***中混合建模与综合模块工作过程图,混合建模及综合模块调用数据接口及处理模块中的有限元数据及试验数据,采用所述有限元数据进行建模得到理论模型,采用所述试验数据进行建模得到试验模型,将所述理论模型与试验模型进行综合建模,得到混合有限元模型。
混合建模及综合模块建立整体有限元模型的具体实现方法如下:
(1)、将有限元数据离散化,得到有限元节点数据、有限元单元数据、有限元边界条件数据、模态振型数据、模态参数及单元约束数据,并将所述有限元节点数据、有限元单元数据、有限元边界条件数据、模态振型数据、模态参数及单元约束数据存储为设定的格式,即得到理论模型的模态数据,完成理论模型的建模;
(2)、将试验数据离散化,得到试验节点数据、线框单元数据、频响函数点数据和试验模态数据,并将所述试验节点数据、线框单元数据、频响函数点数据和试验模态数据存储为设定的格式,即得到试验模型的模态数据,完成试验模型的建模;所述步骤(1)与步骤(2)中所述设定的格式为相同格式;
(3)、将步骤(1)中理论模型的模态数据和步骤(2)中的试验模型的模态数据均转化为频响函数,并将理论模型的频响函数与试验模型的频响函数采用固定界面模态综合法或自由界面模态综合法进行综合,得到混合有限元模型的频响函数,再将混合有限元模型的频响函数通过多项式拟合法(Levy)方法进行模态识别,得到混合有限元模型模态数据,完成混合有限元模型的建模。
其中将理论模型的模态数据转化为频响函数的方法与将试验模型的模态数据转化为频响函数的方法相同,转化为频响函数Hij的具体方法如下:
将模态数据通过如下公式计算得到中间响应量{X}:
其中:N为总模态数,j为自由度数,为结构的第r阶模态,kr为第r阶模态刚度,ξr为第r阶模态阻尼,Ωr为第r阶固有频率,w为激励点位移;F为激振力;为书写方便,令λr=w/Ωr;假定只在结构的j点作用有激振力Fj,那么:
F={0 0...Fj 0...0}T
式中,向量的第j个元素,任一点i处的响应Xi将是:
式中,向量的第i个元素,于是可得:
Hij即为i,j之间的频响函数,表示在j点作用单位力时,在i点所引起的响应。
可视化融合显示模块将混合建模及综合模块中得到的整体有限元模型进行显示。可视化融合显示模块可以通过LOD管理技术进行显示,将网络模型进行简化,实现基于Virtools虚拟现实环境的叠加显示。
在前期的基于Virtools虚拟现实环境叠加显示***中,由于大模型数据量大,给图形的存储、绘制和渲染带来了很大的难度,在实际使用中显示效率不高,影响了数据叠加显示的直观性,实时性。因此为了节省***资源、加快模型的处理速度,可以在Virtools虚拟现实环境叠加显示LOD管理技术。
如图4所示为本发明***中基于Virtools虚拟现实环境叠加显示LOD算法流程图,LOD算法的基本流程为Step1:读入网格模型TM,若网格不都为三角形则将网格转换成三角形网格;Step2:遍历每个顶点vi,计算以vi为起点的所有边的折叠代价,取折叠代价最小的边作为以vi为起点的折叠边;Step3:随机选择d个候选折叠边,取出d个候选折叠边中折叠代价最小的边ei,判断ei的合法性;若合法进行边折叠并执行Step5,非法则执行Step4;Step4:折叠代价加上一个阀值C,判断是否大于代价上限;若是执行Step7,反之执行Step3;Step5:更新以新顶点为起点的边的折叠代价;Step6:重复执行步骤Step3,直到折叠边的列表为空;Step7:根据用户要求绘制网格模型,结束。
在可视化融合显示模块中使用LOD算法,应用基于视点的LOD显示管理技术;数据处理和显示效率高效,确保一般规模模型在Virtools中达到24帧/秒以上。模块中具有是否打开使用LOD管理技术设置,便于小模型显示;模块具有是否采用LOD显示模式设置,可手动设置简化比率,提高叠加显示效率。
如图5所示为本发明虚拟试验显示***中模型修正模块工作原理图。模型修正模块:根据混合有限元模型的模态数据与外部输入的试验数据计算模态置信准则矩阵,即MAC矩阵,之后进行相关性分析,若满足置信度要求,则判断所述混合有限元模型为可靠模型,若不满足置信度要求,则对所述混合有限元模型进行修正,直至模型满足置信度要求,得到可靠的整体有限元模型,用于指导和优化实际试验过程。
模型修正模块采用基于模态参数灵敏度分析的模型修正方法,具体的实现过程如下:
步骤(一)、采用振型匹配的方法根据整体有限元模型的模态数据与外部输入的模态试验数据计算有限元模型的各阶模态与实物试验结果之间各阶模态的相关性,得到模态置信准则MAC矩阵,所述MAC矩阵的行为试验振型,列为理论振型;
步骤(二)、提取MAC矩阵第1列最大值{MACmax}1以及所述最大值{MACmax}1在第1列中的行的位置i1,则i1即是与第一阶试验模态匹配的有限元模态阶数,得到第一组匹配对:{1,i1},提取MAC矩阵第2列最大值{MACmax}2以及所述最大值{MACmax}2在第2列中的行的位置i2,则i2即是与第二阶试验模态匹配的有限元模态阶数,得到第二组匹配对:{2,i2},……,依次类推,得到第n组匹配对:{n,in},所述n为MAC矩阵的总列数;
步骤(三)、判断所述n组匹配对{1,i1}……{n,in}对应的n个{MACmax}1……最大值{MACmax}n是否满足置信度要求,即是否达到设定的置信度,若满足置信度要求,则判断所述整体有限元模型为可靠模型,否则进入步骤(4);
步骤(四)、改变整体有限元模型的初始参数,重新得到n组匹配对{1,i1}……{n,in}对应的n个最大值{MACmax}1……最大值{MACmax}n,返回步骤(3),直至n组匹配对{1,i1}……{n,in}对应的n个最大值{MACmax}1……最大值{MACmax}n满足置信度要求。
上述改变整体有限元模型的初始参数后,重新在混合建模及综合模块中更新建立的理论模型,将更新后的理论模型与试验模型进行综合建模,即将更新后的理论模型的模态数据和试验模型的模态数据均转化为频响函数,并将更新后的理论模型的频响函数与试验模型的频响函数采用固定界面模态综合法或自由界面模态综合法进行综合,得到混合有限元模型的频响函数,再将混合有限元模型的频响函数通过多项式拟合法(Levy)方法进行模态识别,得到混合有限元模型模态数据。之后再将混合有限元模型的模态数据代入上述步骤(一)、步骤(二)中,重新得到n组匹配对{1,i1}……{n,in}对应的n个最大值{MACmax}1……最大值{MACmax}n
本发明采用有限元计算(虚拟试验)和实物试验的方式分别进行计算或试验验证,根据实物试验结果数据修正有限元模型(虚拟试验模型),同时,利用虚拟试验预示的试验趋势指导实物试验,完善实物验证试验方案,最后根据由虚拟试验模型和实物试验数据构建的混合模型进行复杂***的综合试验验证,进而达到***方案和产品性能的优化设计,既可以实现“虚实融合”、“以虚预示”的试验验证模式。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (6)

1.一种基于Virtools的多元数据融合虚拟试验显示***,其特征在于:包含数据接口及处理模块,混合建模及综合模块,可视化融合显示模块,模型修正模块,其中:
数据接口及处理模块:接收外部输入的有限元数据及试验数据并按照设定的数据格式进行存储,所述有限元数据包括有限元模型数据、有限元模态数据和有限元模型分析结果数据;所述试验数据包括试验模型数据、试验频响函数数据和试验模态结果数据;
混合建模及综合模块:调用数据接口及处理模块中的有限元数据及试验数据,采用所述有限元数据进行建模得到理论模型,采用所述试验数据进行建模得到试验模型,将所述理论模型与试验模型进行综合建模,得到混合有限元模型;
可视化融合显示模块:将混合建模及综合模块中得到的混合有限元模型进行显示;
模型修正模块:根据混合有限元模型的模态数据与外部输入的试验数据计算模态置信准则矩阵,即MAC矩阵,之后进行相关性分析,若满足置信度要求,则判断所述混合有限元模型为可靠模型,若不满足置信度要求,则对所述混合有限元模型进行修正,直至模型满足置信度要求。
2.根据权利要求1所述的一种基于Virtools的多元数据融合虚拟试验显示***,其特征在于:所述混合建模及综合模块建立整体有限元模型的具体方法如下:
(1)、将有限元数据离散化,得到有限元节点数据、有限元单元数据、有限元边界条件数据、模态振型数据、模态参数及单元约束数据,并将所述有限元节点数据、有限元单元数据、有限元边界条件数据、模态振型数据、模态参数及单元约束数据存储为设定的格式,即得到理论模型的模态数据,完成理论模型的建模;
(2)、将试验数据离散化,得到试验节点数据、线框单元数据、频响函数点数据和试验模态数据,并将所述试验节点数据、线框单元数据、频响函数点数据和试验模态数据存储为设定的格式,即得到试验模型的模态数据,完成试验模型的建模;所述步骤(1)与步骤(2)中所述设定的格式为相同格式;
(3)、将步骤(1)中理论模型的模态数据和步骤(2)中的试验模型的模态数据均转化为频响函数,并将理论模型的频响函数与试验模型的频响函数进行综合,得到混合有限元模型的频响函数,再将所述混合有限元模型的频响函数进行模态识别,得到混合有限元模型模态数据,完成混合有限元模型的建模。
3.根据权利要求2所述的一种基于Virtools的多元数据融合虚拟试验显示***,其特征在于:所述步骤(3)中将理论模型的模态数据和试验模型的模态数据转化为频响函数Hij的具体方法如下:
将模态数据通过如下公式计算得到中间响应量{X}:
其中:N为总模态数,j为自由度数,为结构的第r阶模态,kr为第r阶模态刚度,ξr为第r阶模态阻尼,Ωr为第r阶固有频率,w为激励点位移;F为激振力;为书写方便,令λr=w/Ωr;假定只在结构的j点作用有激振力Fj,那么:
F={0 0 ... Fj 0 ... 0}T
式中,向量的第j个元素,任一点i处的响应Xi将是:
式中,向量的第i个元素,于是可得:
Hij即为i,j之间的频响函数,表示在j点作用单位力时,在i点所引起的响应。
4.根据权利要求2所述的一种基于Virtools的多元数据融合虚拟试验显示***,其特征在于:所述步骤(3)中采用固定界面模态综合法或自由界面模态综合法将理论模型的频响函数与试验模型的频响函数进行综合,得到混合模型的频响函数,再将所述混合模型频响函数通过多项式拟合法(Levy)方法进行模态识别,得到混合模型模态数据,完成混合有限元模型的建模。
5.根据权利要求1所述的一种基于Virtools的多元数据融合虚拟试验显示***,其特征在于:所述模型修正模块根据混合有限元模型的模态数据与外部输入的与混合有限元模型对应的试验数据计算模态置信准则矩阵,即MAC矩阵,之后进行相关性分析,若满足置信度要求,则判断所述混合有限元模型为可靠模型,若不满足置信度要求,则对所述混合有限元模型进行修正,直至模型满足置信度要求的具体实现过程如下:
(1)、采用振型匹配的方法根据混合有限元模型的模态数据与外部输入的模态试验数据计算混合有限元模型的各阶模态与实物试验结果之间各阶模态的相关性,得到模态置信准则MAC矩阵,所述MAC矩阵的行为试验振型,列为理论振型;
(2)、提取MAC矩阵第1列最大值{MACmax}1以及所述最大值{MACmax}1在第1列中的行的位置i1,则i1即是与第一阶试验模态匹配的有限元模态阶数,得到第一组匹配对:{1,i1},提取MAC矩阵第2列最大值{MACmax}2以及所述最大值{MACmax}2在第2列中的行的位置i2,则i2即是与第二阶试验模态匹配的有限元模态阶数,得到第二组匹配对:{2,i2},……,依次类推,得到第n组匹配对:{n,in},所述n为MAC矩阵的总列数;
(3)、判断所述n组匹配对{1,i1}……{n,in}对应的n个{MACmax}1……最大值{MACmax}n是否满足置信度要求,即是否达到设定的置信度,若满足置信度要求,则判断所述整体有限元模型为可靠模型,否则进入步骤(4);
(4)、改变整体有限元模型的初始参数,重新得到n组匹配对{1,i1}……{n,in}对应的n个最大值{MACmax}1……最大值{MACmax}n,返回步骤(3),直至n组匹配对{1,i1}……{n,in}对应的n个最大值{MACmax}1……最大值{MACmax}n满足置信度要求。
6.根据权利要求1所述的一种基于Virtools的多元数据融合虚拟试验显示***,其特征在于:所述可视化融合显示模块通过LOD管理技术将混合建模及综合模块中得到的整体有限元模型进行显示。
CN201410557273.6A 2014-10-20 2014-10-20 一种基于Virtools的多元数据融合虚拟试验显示*** Active CN104318005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410557273.6A CN104318005B (zh) 2014-10-20 2014-10-20 一种基于Virtools的多元数据融合虚拟试验显示***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410557273.6A CN104318005B (zh) 2014-10-20 2014-10-20 一种基于Virtools的多元数据融合虚拟试验显示***

Publications (2)

Publication Number Publication Date
CN104318005A true CN104318005A (zh) 2015-01-28
CN104318005B CN104318005B (zh) 2017-12-19

Family

ID=52373236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410557273.6A Active CN104318005B (zh) 2014-10-20 2014-10-20 一种基于Virtools的多元数据融合虚拟试验显示***

Country Status (1)

Country Link
CN (1) CN104318005B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491266A (zh) * 2018-11-28 2019-03-19 北京宇航***工程研究所 一种基于多体虚拟样机的运载火箭飞行仿真方法
CN110081928A (zh) * 2019-04-08 2019-08-02 北京强度环境研究所 一种油气支承试验装置的状态监测***
CN110222428A (zh) * 2019-06-10 2019-09-10 哈尔滨工程大学 一种面向***级封装sip器件的可靠性分析***及方法
CN113378265A (zh) * 2021-05-31 2021-09-10 中铁二院工程集团有限责任公司 基于多体动力学的桥梁动力性能的评估方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794338A (zh) * 2010-03-22 2010-08-04 南京航空航天大学 基于结构模态试验的矩阵型动力学模型修正方法
CN103593518A (zh) * 2013-10-31 2014-02-19 中国运载火箭技术研究院 一种基于模态试验数据的飞行器模型修正***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794338A (zh) * 2010-03-22 2010-08-04 南京航空航天大学 基于结构模态试验的矩阵型动力学模型修正方法
CN103593518A (zh) * 2013-10-31 2014-02-19 中国运载火箭技术研究院 一种基于模态试验数据的飞行器模型修正***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
应祖光,邱吉宝: "基于固定界面与自由界面子结构模态的混成模态综合方法及其应用", 《计算力学学报》 *
陈泽天: "基于HOOPS的混合建模可视化研究与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491266A (zh) * 2018-11-28 2019-03-19 北京宇航***工程研究所 一种基于多体虚拟样机的运载火箭飞行仿真方法
CN109491266B (zh) * 2018-11-28 2022-04-12 北京宇航***工程研究所 一种基于多体虚拟样机的运载火箭飞行仿真方法
CN110081928A (zh) * 2019-04-08 2019-08-02 北京强度环境研究所 一种油气支承试验装置的状态监测***
CN110081928B (zh) * 2019-04-08 2021-09-03 北京强度环境研究所 一种油气支承试验装置的状态监测***
CN110222428A (zh) * 2019-06-10 2019-09-10 哈尔滨工程大学 一种面向***级封装sip器件的可靠性分析***及方法
CN113378265A (zh) * 2021-05-31 2021-09-10 中铁二院工程集团有限责任公司 基于多体动力学的桥梁动力性能的评估方法

Also Published As

Publication number Publication date
CN104318005B (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
Bazilevs et al. Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods
Kalkan et al. Adaptive modal combination procedure for nonlinear static analysis of building structures
Lee et al. Outrigger placement in tall buildings using topology optimization
US9789651B2 (en) Method for structure preserving topology optimization of lattice structures for additive manufacturing
Mian et al. Numerical investigation of structural geometric nonlinearity effect in high-aspect-ratio wing using CFD/CSD coupled approach
Ke et al. A new methodology for analysis of equivalent static wind loads on super-large cooling towers
CN102968542B (zh) 应用ansys软件进行输电铁塔结构分析的方法
CN104318005A (zh) 一种基于Virtools的多元数据融合虚拟试验显示***
CN102866637B (zh) 一种基于二次降阶的带操纵面机翼非定常气动力模拟方法
Liang et al. Constructing simplified models for dynamic analysis of monopile-supported offshore wind turbines
CN104281730B (zh) 一种大转动变形的板壳结构动响应的有限元分析方法
CN106897527A (zh) 一种车辆悬架台架耐久载荷分析方法及装置
CN103488812A (zh) 卫星在轨微振动仿真建模修正方法
CN103413185B (zh) 一种采煤机摇臂振动传感器优化布置方法
CN108536912A (zh) 一种输电塔结构力学分析及其App制作的方法
CN105787170A (zh) 一种基于全因子试验的组合簧片式空间可展结构优化设计方法
CN104317985A (zh) 一种基于界带有限元和拉格朗日坐标的流体仿真方法
Peng et al. Numerical investigation of the effects of structural geometric and material nonlinearities on limit-cycle oscillation of a cropped delta wing
CN102867078A (zh) 一种基于三维cad平台的机械产品拆卸工艺快速规划方法
Yang et al. Hybrid simulation of a zipper‐braced steel frame under earthquake excitation
CN106599441A (zh) 一种自立式通信塔抗倒塌安全性评估方法
CN111027261B (zh) 一种用于研究结构风激励响应的混合模拟试验方法
CN108090283A (zh) 一种列车动载下隧道—车辆耦合振动的有限元分析方法
Revuz Numerical simulation of the wind flow around a tall building and its dynamic response to wind excitation
CN103226643B (zh) 基于曲线斜拉桥专用分析程序的分析方法及***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant