CN104294160A - 一种高硬度高韧性低碳马氏体不锈钢及其制造方法 - Google Patents

一种高硬度高韧性低碳马氏体不锈钢及其制造方法 Download PDF

Info

Publication number
CN104294160A
CN104294160A CN201410453624.9A CN201410453624A CN104294160A CN 104294160 A CN104294160 A CN 104294160A CN 201410453624 A CN201410453624 A CN 201410453624A CN 104294160 A CN104294160 A CN 104294160A
Authority
CN
China
Prior art keywords
stainless steel
martensite stainless
hardness
steel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410453624.9A
Other languages
English (en)
Inventor
秦斌
张鑫
江来珠
郑皓宇
陈龙夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baosteel Stainless Steel Co Ltd
Original Assignee
Baosteel Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baosteel Stainless Steel Co Ltd filed Critical Baosteel Stainless Steel Co Ltd
Priority to CN201410453624.9A priority Critical patent/CN104294160A/zh
Publication of CN104294160A publication Critical patent/CN104294160A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种高硬度高韧性低碳马氏体不锈钢及其制造方法,其化学成分的重量百分比为:C:0.05~0.15%,Si≤1.0%,Mn≤1.2%,P≤0.04%,S≤0.01%,Cr:11.0~13.0%,N:0.01~0.10%,0.10%≤C+N≤0.20%,V+Ti+Nb≤0.05%,其余为Fe和不可避免的杂质。其采用冶炼、铸造、退火、加热至880~1000℃保温5~30min,然后以不小于30℃/s的速度快速冷却至马氏体和奥氏体两相区,使奥氏体的体积百分数达到10%~20%,再加热至350~500℃保温10~30min,冷却至室温获得高硬度高韧性低碳马氏体不锈钢,其洛氏硬度为30~40HRC,夏比V型缺口冲击功大于30J,力学性能稳定,完全可以满足自行车、摩托车刹车盘用钢的要求。

Description

一种高硬度高韧性低碳马氏体不锈钢及其制造方法
技术领域
本发明涉及金属材料及其加工方法,具体涉及一种高硬度高韧性低碳马氏体不锈钢及其制造方法。
背景技术
马氏体不锈钢是铬系不锈钢,广泛应用于刀剪、量具、水轮机叶片等等对强韧性和耐腐蚀有一定要求的领域。其中,低碳马氏体不锈钢可以用于自行车、摩托车刹车盘制造,要求同时具有高硬度和高韧性。然而,高强度和高韧性始终是马氏体钢的一对性能矛盾,马氏体钢主要通过添加碳元素来提高热处理后的硬度,但是碳含量提高会降低韧性,因此,通常情况下低碳马氏体很难同时获得高硬度(洛氏硬度30~40HRC)和高韧性(夏比V型缺口冲击功大于30J)。为此,人们做了很多的研究工作,并取得了一些进展。
传统马氏体不锈钢,如20Cr13在淬火+回火热处理后使用,回火的目的是为了消除淬火应力并获得稳定的组织,但是马氏体不锈钢在回火时经常不可避免出现回火脆性。由于脆性方面的问题限制了传统马氏体不锈钢的使用。
中国专利CN101684540B中提出一种高Mn含量的马氏体不锈钢,通过Mn、N的强化作用提高钢的强度和硬度,这种钢只需淬火热处理就能得到良好的强韧性和耐腐蚀性能。但是淬火马氏体在加热过程上很容易软化,用作盘式制动器时会影响使用效果。
中国专利CN1697889A通过C、N提高淬火硬度,加入Mo、Ti、Nb、V、Zr来提高耐回火软化性,为了防止δ铁素体的出现,在钢种加入了Ni,该中国专利中还要求加入Nb、V、Zr、Ta和Hf等元素,其目的是细化晶粒提高淬火韧性。但无疑此发明钢的制造成本是非常高的。
同样,中国专利CN1354272A也在钢中加入钼、铌、钒等元素,一方面增高抗回火软化性能,另一方面提高耐腐蚀性能。另外此中国专利还要求加入B、Ca、Mg、La等来提高钢的热加工性能。但是,大量贵金属的加入极大的提高了生产成本,并增加了制造难度。
发明内容
本发明的目的在于提供一种高硬度高韧性低碳马氏体不锈钢及其制造方法,制造出具有高硬度(洛氏硬度30~40HRC)和高韧性(夏比V型缺口冲击功大于30J)的低成本马氏体不锈钢。
为达到上述目的,本发明主要采用如下技术方案:
一种高硬度高韧性低碳马氏体不锈钢,其化学成分重量百分比为:C:0.05~0.15%,Si≤1.0%,Mn≤1.2%,P≤0.04%,S≤0.01%,Cr:11.0~13.0%,N:0.01~0.10%,0.10%≤C+N≤0.20%,V+Ti+Nb≤0.05%,其余为Fe和不可避免的杂质。
进一步,所述马氏体不锈钢中奥氏体的体积百分数达到10%~20%。
又,所述马氏体不锈钢的洛氏硬度为30~40HRC,夏比V型缺口冲击功大于30J。
在本发明所述高硬度高韧性低碳马氏体不锈钢的成分设计中:
碳:碳以过固溶的形式存在于马氏体组织中,碳的含量直接关系至淬火后马氏体的强度高低,必须保证钢中的碳含量不低于0.05%。碳以间隙原子的形式存在于钢中,在淬火后的再加热过程中可以通过相间扩散完成再分配,稳定残余奥氏体组织,这样使材料具有高硬度的同时还具有良好的韧性,但是过高的碳含量可增加脆性。为了达到预期的效果,要求碳含量为0.05~0.15%,并且与氮元素配合使用。
硅:主要作为脱氧剂加入到钢中的,起着固溶强化作用。在提高抗高温氧化性能方面,硅也有明显的作用。但是,钢中硅含量高,其延展性变差。因此,从提高铁素体不锈钢的可加工性考虑,硅含量应该不大于1.0%。
锰:锰既是脱氧元素又是固溶强化元素,能显著提高钢的强度。但,锰含量过高不利于退火软化,其含量不大于1.2%。
磷:磷是有害元素,因此,根据生产控制水平尽量地降低,本发明中磷≤0.04%。
硫:硫也是一种有害元素,形成的硫化物不仅会产生热脆而且会降低耐蚀性,通常硫的含量控制在低于0.01%,以避免硫的有害作用。
铬:是提高不锈钢耐蚀性的元素,但,铬是强铁素体形成元素,含量高时会使低碳马氏体钢奥氏体化困难,也会使成本提高,铬含量控制在11~13%。
氮:与碳一样是奥氏体化元素、可以以间隙原子形式存在,具有固溶强化作用。氮以固溶形式存在于钢中时可以显著提高耐蚀性,其作用约为铬的20倍。马氏体不锈钢在生产过程中会经历高温铁素体-奥氏体-铁素体+碳化物的组织变化过程,氮在高温铁素体中的固溶量低于0.10%,若含量超过0.10%时会导致气孔缺陷产生。因此,氮含量控制为0.01~0.10%。
碳和氮的配合使用,可以共同提高淬火硬度。与单元素的作用相比,碳和氮配合使用时有明显的优势,一方面氮具有抑制碳化物析出的作用,另一方面加入氮后可以减少碳含量即可取得相同硬度,因此较低的碳含量可以使碳的析出温度降低、析出量减少,最终使材料在得到高硬度的同时具有更好的韧性、耐蚀性。为了取得稳定的高硬度(30~40HRC),要求0.10%≤C+N≤0.20%,过高的C+N会使材料的硬度过高、韧性变差。
钒、钛、铌:都是强碳、氮化物元素,在热加工或热处理过程中都极易与间隙元素形成碳、氮化物,使其原子失去在相间扩散再分配的能力,这对于本发明钢是不利的。本发明是利用碳、氮在两相区的再分配来稳定奥氏体相,最终取得高韧性的,因此必须严格控制强碳、氮化物形成元素的含量,控制V+Ti+Nb≤0.05%。
本发明的高硬度高韧性低碳马氏体不锈钢的制造方法,包括如下步骤:
(1)冶炼、铸造
按下述成分冶炼、铸造成铸坯,低碳马氏体不锈钢的化学成分重量百分比为:C:0.05~0.15%,Si≤1.0%,Mn≤1.2%,P≤0.04%,S≤0.01%,Cr:11.0~13.0%,N:0.01~0.10%,0.10%≤C+N≤0.20%,V+Ti+Nb≤0.05%,其余为Fe和不可避免的杂质;
(2)将上述铸坯轧制成热轧钢板或钢带,并进行退火;
(3)退火后,加热至880~1000℃保温5~30min,然后以不小于30℃/s的速度快速冷却至马氏体和奥氏体两相区,使奥氏体的体积百分数达到10~20%,再加热至350~500℃保温10~30min,冷却至室温获得高硬度高韧性低碳马氏体不锈钢,所获得的高强度高韧性低碳马氏体不锈钢的洛氏硬度为30~40HRC,夏比V型缺口冲击功大于30J。
本发明上述制造方法中工艺条件的影响:
(1)将上述成分的钢坯或连铸坯热轧制成热轧钢板或钢带,并采用常规的方法进行退火,退火后的组织为铁素体+碳化物,具有较低的硬度和较高的延伸性能,适合冲裁、剪切、压延等加工。
(2)将退火后的钢带加热至880~1000℃保温5~30min,主要为了保证钢能够完全奥氏体化,碳、氮化物充分固溶。
(3)然后以不小于30℃/s的速度快速冷却至马氏体和奥氏体两相区,即将温度冷却至马氏体转变开始温度(Ms)与终了温度(Mf)之间,获得马氏体和奥氏体双相组织,Ms温度的计算方法为:Ms(℃)=539-430×[C+N]-30×[Mn]-12×[Cr]-5.0×[Si],其中[C]、[Si]、[Mn]、[Cr]、[N]分别为C、Si、Mn、Cr、N在马氏体不锈钢中的重量百分比;Mf温度的计算方法为:Mf(℃)=Ms-250。
在加热保温后的冷却过程中碳氮化物会因过饱和而有析出的倾向,因此必须保证有较高的冷却速度,试验表明冷却速度不小于30℃/s可以避免碳氮化物在冷却过程中析出而保证较高的热处理硬度值。为了保证较高的冷却速度可以采用风冷、气冷、油冷和其他的方式。
(4)再加热至350~500℃保温10~30min,使碳、氮间隙原子从马氏体组织中通过扩散进入奥氏体组织中,使未完成马氏体转变的奥氏体组织稳定性增加,以至于在后续的冷却过程中能够稳定至室温,这有助于提高本发明钢的韧性。
(5)空冷至室温,得到马氏体+奥氏体复相组织,奥氏体的体积百分数为10~20%。若奥氏体组织比例太少对于韧性的贡献不明显;若奥氏体组织比例过高,从马氏体中扩散过来的碳含量不足以稳定奥氏体,在后续的冷却过程中奥氏体有可能重新被淬火生成马氏体,对提高材料韧性是不利的。这种稳定的组织一方面具有高硬度和高韧性,另一方面由于已经在350~500℃在保温过,内应力很少、力学性能相当稳定。
本发明的有益效果:
1.本发明通过碳和氮的配合使用,使得本发明钢在低碳的情况下,同时具有较高的硬度和韧性。
2.本发明控制V+Ti+Nb≤0.05%,大大降低了碳、氮化物的生成量,使碳、氮在马氏体和奥氏体两相区的扩散再分配来稳定奥氏体相,最终在获得高硬度的同时取得高韧性。
3.本发明制造方法中,退火后,加热奥氏体化以后控制冷却中止温度介于Ms与Mf温度之间,获得马氏体加残余奥氏体两相为主的组织,在随后的再次升温及保温过程中马氏体中的碳、氮向奥氏体中扩散富集,奥氏体中的碳、氮含量增加促使其稳定性增强,经过这种热处理后获得马氏体加残留奥氏体的显微组织,使得本发明在得到高硬度的同时获得了高韧性。在此过程中再加热的温度和时间应相配合,最终目的是使碳完成相间的重新分配,使奥氏体的稳定性增加,在随后的冷却过程中保留下来,从而提高热处理后的韧性。
4.本发明的成分设计与制造工艺相结合制得的钢板洛氏硬度为30~40HRC,夏比V型缺口冲击功大于30J,力学性能稳定,完全可以满足自行车、摩托车刹车盘用钢的要求。
具体实施方式
下面结合具体实施例对本发明的技术方案进一步详细描述。
本发明实施例1~5及对比例1~2的化学成分参见表1,具体制造工艺参数如表2所示,经检测,实施例1~5获得的高强度高韧性低碳马氏体不锈钢的性能如表3所示。
表1         单位:重量百分比
编号 C Si Mn P S Cr N C+N V+Ti+Nb
实施例1 0.05 0.33 0.59 0.02 0.004 12.3 0.05 0.10 0.02
实施例2 0.08 0.53 1.20 0.02 0.006 11.2 0.04 0.12 0.01
实施例3 0.10 0.27 0.78 0.03 0.002 11.8 0.09 0.19 0.01
实施例4 0.13 0.39 0.31 0.01 0.003 12.8 0.04 0.17 ≤0.01
实施例5 0.15 0.41 0.52 0.02 0.003 11.7 0.01 0.16 0.02
对比例1 0.13 0.42 0.35 0.02 0.001 11.5 0.03 0.16 0.02
对比例2 0.15 0.32 0.56 0.02 0.001 12.6 0.07 0.22 ≤0.01
由表1~3可见,碳和氮是保证本发明钢热处理后硬度的主要元素,实施例1中C+N=0.10%,热处理后硬度为30HRC,可见保证C+N≥0.10%才能确保硬度达到30HRC以上。
表2列出的加热温度符合880~1000℃的要求,加热温度应与时间相配合,最终目的是完全奥氏体化。若加热温度较低、材料厚度较大时应将保温时间适当延长,反之也然。
对比例1的化学成分与实施例4相近,但热处理时未采用本发明的淬火+再加热成分配合工艺,而采用传统的920℃淬火+250℃回火热处理,结果热处理后硬度达到40HRC,但是,夏比V型缺口冲击功仅为13J,远低于30J,可见,对于符合本发明成分的钢还需采用规定的热处理方法才能得到符合要求的性能。
对比例2中C+N为0.22%,超过了C+N≤0.20%的要求,结果经过880℃淬火+500℃再加热成分配分后硬度达到43HRC,夏比V型缺口冲击功为26J,前者超过了洛氏硬度介于30~40HRC之间的要求,后者冲击功低于30J。所以,本发明的化学成分,特别是C+N的含量必须符合本发明的要求才能得到符合要求的性能。
综上所述,本发明所制备的高硬度高韧性低碳马氏体不锈钢中奥氏体的体积百分数达到10%~20%,洛氏硬度介于30~40HRC之间,冲击功大于30J,同时具有高硬度和高韧性,能够满足自行车、摩托车刹车盘用钢的要求,也可以用于其他对硬度和韧性有要求的领域。
需要说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的范围,其均应涵盖在本发明的权利要求范围中。

Claims (4)

1.一种高硬度高韧性低碳马氏体不锈钢,其化学成分重量百分比为:C:0.05~0.15%,Si≤1.0%,Mn≤1.2%,P≤0.04%,S≤0.01%,Cr:11.0~13.0%,N:0.01~0.10%,0.10%≤C+N≤0.20%,V+Ti+Nb≤0.05%,其余为Fe和不可避免的杂质。
2.如权利要求1所述的高硬度高韧性低碳马氏体不锈钢,其特征是,所述马氏体不锈钢中奥氏体的体积百分数达到10%~20%。
3.如权利要求1或2所述的高硬度高韧性低碳马氏体不锈钢,其特征是,所述马氏体不锈钢的洛氏硬度为30~40HRC,夏比V型缺口冲击功大于30J。
4.一种高硬度高韧性低碳马氏体不锈钢的制造方法,包括如下步骤:
1)冶炼、铸造
按下述成分冶炼、铸造成铸坯,低碳马氏体不锈钢的化学成分重量百分比为:C:0.05~0.15%,Si≤1.0%,Mn≤1.2%,P≤0.04%,S≤0.01%,Cr:11.0~13.0%,N:0.01~0.10,0.10%≤C+N≤0.20%,V+Ti+Nb≤0.05%,其余为Fe和不可避免的杂质;
2)将上述铸坯轧制成热轧钢板或钢带,并进行退火;
3)退火后,加热至880~1000℃,保温5~30min,然后以不小于30℃/s的速度快速冷却至马氏体和奥氏体两相区,使奥氏体的体积百分数达到10%~20%,再加热至350~500℃保温10~30min,冷却至室温获得马氏体不锈钢,所述马氏体不锈钢的洛氏硬度为30~40HRC,夏比V型缺口冲击功大于30J。
CN201410453624.9A 2014-09-09 2014-09-09 一种高硬度高韧性低碳马氏体不锈钢及其制造方法 Pending CN104294160A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410453624.9A CN104294160A (zh) 2014-09-09 2014-09-09 一种高硬度高韧性低碳马氏体不锈钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410453624.9A CN104294160A (zh) 2014-09-09 2014-09-09 一种高硬度高韧性低碳马氏体不锈钢及其制造方法

Publications (1)

Publication Number Publication Date
CN104294160A true CN104294160A (zh) 2015-01-21

Family

ID=52314106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410453624.9A Pending CN104294160A (zh) 2014-09-09 2014-09-09 一种高硬度高韧性低碳马氏体不锈钢及其制造方法

Country Status (1)

Country Link
CN (1) CN104294160A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711482A (zh) * 2015-03-26 2015-06-17 宝钢不锈钢有限公司 一种控氮马氏体不锈钢及其制造方法
CN105821330A (zh) * 2016-05-09 2016-08-03 山东泰山钢铁集团有限公司 一种马氏体不锈钢及冶炼工艺
CN106480377A (zh) * 2016-10-09 2017-03-08 宝钢不锈钢有限公司 具有优良力学性能和抗氧化性能的马氏体不锈钢及其制造方法
CN108642391A (zh) * 2018-06-07 2018-10-12 成都先进金属材料产业技术研究院有限公司 马氏体不锈钢及其制备方法
CN109280862A (zh) * 2018-12-03 2019-01-29 常熟理工学院 一种汽车刹车盘用高耐磨不锈钢及其制造方法
CN110656293A (zh) * 2019-11-01 2020-01-07 育材堂(苏州)材料科技有限公司 含Mo高硬度不锈钢、热处理工艺及成形构件
CN111575464A (zh) * 2020-05-29 2020-08-25 青岛丰东热处理有限公司 一种改善奥氏体不锈钢表面硬化层的方法
WO2020195915A1 (ja) * 2019-03-28 2020-10-01 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品
CN112575261A (zh) * 2020-12-09 2021-03-30 广东省科学院材料与加工研究所 一种复合变质马氏体合金铸钢及其制备方法
CN113510340A (zh) * 2021-08-10 2021-10-19 哈尔滨电气动力装备有限公司 马氏体沉淀硬化不锈钢材料的焊接及焊后热处理工艺方法
CN113966405A (zh) * 2019-06-05 2022-01-21 山特维克材料技术公司 马氏体不锈钢合金
CN114395740A (zh) * 2022-01-07 2022-04-26 山西太钢不锈钢股份有限公司 一种铌单稳定型低铬马氏体不锈钢及其制备方法
CN115491609A (zh) * 2022-10-12 2022-12-20 福建青拓特钢技术研究有限公司 一种用于刹车盘的低碳马氏体不锈钢及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073743A (ja) * 2001-08-31 2003-03-12 Kawasaki Steel Corp 打ち抜き性に優れた低炭素マルテンサイト系ステンレス熱延鋼板の製造方法
JP2004292859A (ja) * 2003-03-26 2004-10-21 Jfe Steel Kk 打ち抜き加工性に優れたマルテンサイト系ステンレス鋼板の製造方法およびディスクブレーキ用マルテンサイト系ステンレス鋼板
CN103534377A (zh) * 2011-05-16 2014-01-22 新日铁住金不锈钢株式会社 自行车的盘形制动转子用马氏体系不锈钢板及其制造方法
CN103614649A (zh) * 2013-12-06 2014-03-05 东北大学 一种高强韧性高强塑性马氏体不锈钢及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073743A (ja) * 2001-08-31 2003-03-12 Kawasaki Steel Corp 打ち抜き性に優れた低炭素マルテンサイト系ステンレス熱延鋼板の製造方法
JP2004292859A (ja) * 2003-03-26 2004-10-21 Jfe Steel Kk 打ち抜き加工性に優れたマルテンサイト系ステンレス鋼板の製造方法およびディスクブレーキ用マルテンサイト系ステンレス鋼板
CN103534377A (zh) * 2011-05-16 2014-01-22 新日铁住金不锈钢株式会社 自行车的盘形制动转子用马氏体系不锈钢板及其制造方法
CN103614649A (zh) * 2013-12-06 2014-03-05 东北大学 一种高强韧性高强塑性马氏体不锈钢及其制备方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711482A (zh) * 2015-03-26 2015-06-17 宝钢不锈钢有限公司 一种控氮马氏体不锈钢及其制造方法
CN105821330A (zh) * 2016-05-09 2016-08-03 山东泰山钢铁集团有限公司 一种马氏体不锈钢及冶炼工艺
CN106480377A (zh) * 2016-10-09 2017-03-08 宝钢不锈钢有限公司 具有优良力学性能和抗氧化性能的马氏体不锈钢及其制造方法
CN108642391A (zh) * 2018-06-07 2018-10-12 成都先进金属材料产业技术研究院有限公司 马氏体不锈钢及其制备方法
CN109280862A (zh) * 2018-12-03 2019-01-29 常熟理工学院 一种汽车刹车盘用高耐磨不锈钢及其制造方法
WO2020195915A1 (ja) * 2019-03-28 2020-10-01 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品
JP7179966B2 (ja) 2019-03-28 2022-11-29 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品
JPWO2020195915A1 (ja) * 2019-03-28 2021-12-23 日鉄ステンレス株式会社 自動車ブレーキディスクローター用フェライト系ステンレス鋼板、自動車ブレーキディスクローター及び自動車ブレーキディスクローター用ホットスタンプ加工品
CN113966405A (zh) * 2019-06-05 2022-01-21 山特维克材料技术公司 马氏体不锈钢合金
CN110656293A (zh) * 2019-11-01 2020-01-07 育材堂(苏州)材料科技有限公司 含Mo高硬度不锈钢、热处理工艺及成形构件
CN111575464B (zh) * 2020-05-29 2022-04-08 青岛丰东热处理有限公司 一种改善奥氏体不锈钢表面硬化层的方法
CN111575464A (zh) * 2020-05-29 2020-08-25 青岛丰东热处理有限公司 一种改善奥氏体不锈钢表面硬化层的方法
CN112575261A (zh) * 2020-12-09 2021-03-30 广东省科学院材料与加工研究所 一种复合变质马氏体合金铸钢及其制备方法
CN112575261B (zh) * 2020-12-09 2022-02-01 广东省科学院新材料研究所 一种复合变质马氏体合金铸钢
CN113510340B (zh) * 2021-08-10 2022-06-14 哈尔滨电气动力装备有限公司 马氏体沉淀硬化不锈钢材料的焊接及焊后热处理工艺方法
CN113510340A (zh) * 2021-08-10 2021-10-19 哈尔滨电气动力装备有限公司 马氏体沉淀硬化不锈钢材料的焊接及焊后热处理工艺方法
CN114395740A (zh) * 2022-01-07 2022-04-26 山西太钢不锈钢股份有限公司 一种铌单稳定型低铬马氏体不锈钢及其制备方法
CN115491609A (zh) * 2022-10-12 2022-12-20 福建青拓特钢技术研究有限公司 一种用于刹车盘的低碳马氏体不锈钢及其制造方法
CN115491609B (zh) * 2022-10-12 2024-03-15 福建青拓特钢技术研究有限公司 一种用于刹车盘的低碳马氏体不锈钢及其制造方法

Similar Documents

Publication Publication Date Title
CN104294160A (zh) 一种高硬度高韧性低碳马氏体不锈钢及其制造方法
CN103014554B (zh) 一种低屈强比高韧性钢板及其制造方法
CN104789863B (zh) 具有良好抗应变时效性能的x80管线钢、管线管及其制造方法
CN101613831B (zh) 非调质高硬度热轧钢及其制造方法和应用
CN104711482A (zh) 一种控氮马氏体不锈钢及其制造方法
CN109628836A (zh) 一种高强度建筑结构用抗震耐火钢及其制备方法
CN103233183A (zh) 一种屈服强度960MPa级超高强度钢板及其制造方法
CN109652733B (zh) 一种690MPa级特厚钢板及其制造方法
WO2011061812A1 (ja) 高靱性耐摩耗鋼およびその製造方法
CN102965568B (zh) 相变韧化低合金钢板及其制备方法
CN104498821B (zh) 汽车用中锰高强钢及其生产方法
CN106811698A (zh) 一种基于组织精细控制的高强钢板及其制造方法
KR101696094B1 (ko) 고 경도 강판 및 그 제조방법
CN102477518A (zh) 一种汽轮机叶片用钢及其制造方法
CN103255341A (zh) 一种高强度高韧性热轧耐磨钢及其制造方法
CN101649420A (zh) 一种高强度高韧性低屈强比钢、钢板及其制造方法
CN101603149A (zh) 一种低合金高速钢
CN103710638A (zh) 一种马氏体不锈钢及其制造方法
CN105112782A (zh) 一种热轧态船用低温铁素体lt-fh40钢板及其生产方法
CN109182669B (zh) 高硬度高韧性易焊接预硬化塑料模具钢及其制备方法
CN102644024B (zh) 一种低合金低屈强比海洋工程结构用钢及其生产方法
CN108315650A (zh) 一种马氏体不锈钢及其制造方法
CN109750222B (zh) 一种高性能马氏体不锈钢及其高平面度板制造方法
CN106480377A (zh) 具有优良力学性能和抗氧化性能的马氏体不锈钢及其制造方法
CN114517254A (zh) 一种船舶用耐低温球扁钢及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150121