CN104261392B - A kind of preparation method of the conductive graphene paper of borate ion crosslinking - Google Patents

A kind of preparation method of the conductive graphene paper of borate ion crosslinking Download PDF

Info

Publication number
CN104261392B
CN104261392B CN201410488031.6A CN201410488031A CN104261392B CN 104261392 B CN104261392 B CN 104261392B CN 201410488031 A CN201410488031 A CN 201410488031A CN 104261392 B CN104261392 B CN 104261392B
Authority
CN
China
Prior art keywords
graphene
borate ion
preparation
crosslinking
hydrosol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410488031.6A
Other languages
Chinese (zh)
Other versions
CN104261392A (en
Inventor
徐春祥
田正山
理记涛
朱刚毅
吴靖
石增良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410488031.6A priority Critical patent/CN104261392B/en
Publication of CN104261392A publication Critical patent/CN104261392A/en
Application granted granted Critical
Publication of CN104261392B publication Critical patent/CN104261392B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses the preparation method of the conductive graphene paper of a kind of borate ion crosslinking, use the Hummers method improved to prepare graphite oxide, and the most ultrasonic stripping obtains the graphene oxide hydrosol;Then, sodium hydroxide solution regulation pH to 10~12 is added in the graphene oxide hydrosol, add boric acid, under conditions of stirring, it is heated to 80~90 DEG C, is incubated 3~5h, rear natural cooling, separate, washing, ultrasonic disperse, in deionized water, obtains the graphene paper of borate ion crosslinking finally by filtering with microporous membrane LBL self-assembly.Preparation method of the present invention is simple, easy to operate, it is not necessary to special equipment and with low cost, easily produces in batches.The graphene paper obtained has excellent electric conductivity, and this conductive graphene paper is likely to become the perfect electric conductor being applied to opto-electronic device.

Description

A kind of preparation method of the conductive graphene paper of borate ion crosslinking
Technical field
The present invention relates to graphene paper technical field, be specifically related to the system of the conductive graphene paper of a kind of borate ion crosslinking Preparation Method.
Background technology
Graphene oxide is the derivant of the Graphene with monoatomic layer thickness, is often used as preparing the forerunner of Graphene Body, and become one of current study hotspot due to the character of himself uniqueness recently.Graphene oxide has production cost Low, easy large-scale production, easily dissolve in water polar solvent, the characteristic such as fabulous processing characteristics;Have good simultaneously Mechanical performance and chemical property.The a large amount of oxygen-containing sense that covalent bond combines all is had in the face of graphene oxide and border Group, has sp2And sp3Hydbridized carbon atoms structure, can be by controlling its size, shape and sp2Hydridization region relative Ratio modulates its optico-electronic properties further, it is also possible to by covalently or non-covalently modification, graphene oxide is changed into Optical, electrical active material;It addition, graphene oxide can also mix with other functional materials or compound thus obtain and have Functional material free from worldly cares.
In order to realize the functionalized application of Graphene as early as possible, the graphene oxide thin slice of micro/nano level is utilized to build macro-scale Two-dimentional multifunctional graphite vinyl sill (such as graphene film and graphene paper etc.) cause extensively grinding of scientific worker Study carefully interest.But, the excellent properties of the Graphene that the graphene-based material of macro-scale does not the most possess micro-scale is system About its wide variety of bottleneck, the electric conductivity of the most macroscopical graphene-based material.Numerous scientific workers are in order to improve The electric conductivity of macroscopic view grapheme material has paid great efforts.At present, the preparation method of macroscopic view two-dimensional graphene sill Mainly having the most several: 1. chemical vapour deposition technique, this method is usually under the high temperature conditions with copper for substrate deposition carbon Or prepare single or multiple lift Graphene with nickel for substrate dialysis carbon, product crystal property is good, and electric conductivity is preferable, but needs Wanting special equipment, relatively costly, actual application is extremely limited.2. graphene oxide layer assembly, this type of side Method generally with the micro/nano level graphene oxide sheet prepared of Hummers method that improves as raw material, by evaporation self assembly, The method such as self assembly, lifting, spin coating that filters prepares membrane structure, it is generally required to chemical reducing agent (as hydrazine hydrate, Citric acid, vitamin, sodium borohydride etc.) redox graphene recover grapheme material electric conductivity, toxic chemical The use of reagent or electric conductivity do not reach requirement and limit further application.Furthermore it is also possible to protect at noble gas Protect the reduction of lower high-temperature hydrogenation gas, or directly heat reduction recovery electric conductivity, but high-temperature heating may damage membranaceous knot The integrity of structure.3. Graphene or graphene oxide doped assemble after modifying, and are typically needing high temperature and special equipment, Conduction property can control to adjust, but is difficult to large-scale production, and therefore actual application is similarly subjected to restriction.4. ion or Molecule crosslinking-oxidization Graphene assembles, by adding a certain amount of metal ion in the aqueous solution of graphene oxide, as Ca2+、Mg2+、Fe3+, or molecule (such as dopamine, ethylenediamine, polyimides, polyvinylpyrrolidone) etc. hands over After connection, refiltering assembling and form two-dimensional graphene sill, the mechanical performance of this material has had significant enhancing, but Electric conductivity still reaches to less than requiring.
Summary of the invention
It is an object of the present invention to provide the preparation method of the conductive graphene paper of a kind of borate ion crosslinking, to solve existing skill The deficiency of art.
The present invention is by the following technical solutions:
The preparation method of the conductive graphene paper of a kind of borate ion crosslinking, comprises the steps:
Step one, with graphite powder as carbon source, use the Hummers method improved to prepare graphite oxide, and at deionized water In ultrasonic stripping obtain the graphene oxide hydrosol;
Step 2, step one preparation the graphene oxide hydrosol in add sodium hydroxide solution regulation pH to 10~12, The mass ratio adding boric acid, boric acid and graphene oxide afterwards is 0.1~2:50, is heated to 80~90 DEG C under agitation, Insulation 3~5h, rear natural cooling, separate, washing, ultrasonic disperse, in deionized water, obtains homodisperse boric acid The redox graphene hydrosol of radical ion crosslinking;
The redox graphene hydrosol of step 3, borate ion step 2 prepared crosslinking is by microporous filter membrane mistake Filter LBL self-assembly obtains the conductive graphene paper of borate ion crosslinking, after naturally drying, under peeling off from microporous filter membrane Come.
The concentration of the graphene oxide hydrosol described in step one is 2~5mg/mL.
Described in step 2, the concentration of the redox graphene hydrosol of borate ion crosslinking is 1~5mg/mL.
Microporous filter membrane described in step 3 is mixed cellulose ester microporous membrane, a diameter of 50~80mm, and aperture is 0.22 μm Or 0.45 μm.
Beneficial effects of the present invention:
1, the present invention relates to the heating process when 80~90 DEG C and the filtering with microporous membrane process under room temperature, operated Journey is convenient and simple, is easily controlled, with low cost, it is easy to large-scale production;
2, the present invention add in graphene oxide colloidal sol sodium hydroxide solution be possible not only to regulate solution pH value be 10~ 12, and reducing agent can be served as in heating process and remove part oxygen-containing functional group;Boric acid adds shape in alkaline mixed solution The borate ion become serves as cross-linking agent, by the friendship between the oxygen-containing functional group above borate ion and graphene oxide Defect present in graphene oxide sheet is repaired in connection effect, removes oxygen-containing functional group further, strengthens electric conductivity;
3, the present invention obtains the electric conductivity of graphene paper and the conduction of the single-layer graphene of chemical vapour deposition technique production Performance is close, and electric conductivity is excellent, and this conductive graphene paper is likely to become the perfect electric conductor being applied to opto-electronic device.
To sum up, preparation method of the present invention is simple, easy to operate, it is not necessary to special equipment and with low cost, easily criticizes Amount produces.The most important thing is the single-layer graphene that the electric conductivity of graphene paper obtained produces with chemical vapour deposition technique Electric conductivity is close, and when applied voltage is 2 volts, current value reaches 30 milliamperes.This conductive graphene paper is likely to become It is applied to the perfect electric conductor of opto-electronic device.
Accompanying drawing explanation
Fig. 1 is the transmission electron microscope image of the graphene oxide amplifying 30000 times;
Fig. 2 is the transmission electron microscope image of the redox graphene of the borate ion crosslinking amplifying 50000 times;
Fig. 3 is the scanning electron microscope image of the graphene paper amplifying 1000 times;
Fig. 4 is the scanning electron microscope image on the graphene paper surface amplifying 50000 times;
Fig. 5 is the scanning electron microscope image of the tangent plane of the graphene paper amplifying 5000 times;
Fig. 6 is the scanning electron microscope image of the tangent plane of the graphene paper amplifying 50000 times;
Fig. 7 is graphene paper optical photograph image;
Fig. 8 is graphene paper conducting performance test figure.
Detailed description of the invention
Below in conjunction with embodiment and accompanying drawing the present invention done and further explain.The following example is merely to illustrate this Bright, but it is not used to limit the practical range of the present invention.
The preparation method of the conductive graphene paper of a kind of borate ion crosslinking, comprises the steps:
Step one, with the graphite powder less than or equal to 50 μm particle diameters as carbon source, use improve Hummers method prepare Graphite oxide, and the most ultrasonic stripping obtains the graphene oxide hydrosol that concentration is 2~5mg/mL.
Step 2, step one preparation the graphene oxide hydrosol in add sodium hydroxide solution regulation pH to 10~12, Afterwards by the mass ratio of boric acid and graphene oxide be 0.1~2:50 add boric acid, be heated under the conditions of electromagnetic agitation 80~90 DEG C, be incubated 3~5h, rear natural cooling, filter or centrifugation, deionized water wash for several times, ultrasonic disperse In deionized water, obtain the reduction-oxidation of the borate ion crosslinking that pure homodisperse concentration is 1~5mg/mL The Graphene hydrosol.Sodium hydroxide is possible not only to regulate the pH value of solution in mixed solution, in heating process the most also Reduction can be played, graphene oxide partial reduction.The boric acid added forms borate, boron in alkaline solution Hydrochlorate in heating process as cross-linking agent, between the oxygen-containing functional group above borate ion and graphene oxide Defect present in graphene oxide sheet is repaired in crosslinked action, removes oxygen-containing functional group further, strengthens electric conductivity.
The redox graphene hydrosol of step 3, borate ion prepared by step 2 crosslinking by a diameter of 50~ 80mm, aperture are that the mixed cellulose ester microporous membrane filter layer self assembly of 0.22 μm or 0.45 μm obtains, from After so drying, strip down from microporous filter membrane.The borate that the thickness of this conductive ink alkene paper can be filtered by control from The volume of the hydrosol of the redox graphene of son crosslinking controls.
The concrete preparation process of the step one graphene oxide hydrosol is as follows: under the conditions of ice-water bath electromagnetic agitation, by graphite Powder adds and fills in the container of sodium nitrate and the mass concentration concentrated sulfuric acid solution more than 98%, graphite powder, sodium nitrate, dense The mass ratio of sulphuric acid is 2: 1~2: 85~90, adds potassium permanganate, the mass ratio of potassium permanganate and graphite powder be 3~ 5: 1, after potassium permanganate is added completely into, remove ice-water bath, stirring reaction 1~3h under room temperature;Then at 25~40 DEG C Water-bath in continue reaction 20~40min, and add deionized water under agitation, wherein, deionized water and graphite The mass ratio of powder is 50~60: 1, and control temperature, at 90~100 DEG C, after reaction 10~30min, then uses deionized water Dilution, forms graphite oxide suspension;It is eventually adding the hydrogen peroxide that mass concentration is 30%, the potassium permanganate of reduction residual, Make graphite oxide suspension become glassy yellow, this graphite oxide suspension is filtered, obtains graphite oxide precipitate, spend Ionized water washing graphite oxide, until the pH crossing drainage of washing graphite oxide is 6~8, surpasses the most in deionized water After sound is peeled off, purified by centrifugation and obtain the graphene oxide hydrosol.
Embodiment 1
1, using graphite powder that particle diameter is 30 μm as carbon source, the Hummers method of above-mentioned improvement is utilized to prepare graphite oxide, And the most ultrasonic peel off formed homodisperse 3mg/mL the graphene oxide hydrosol, as it is shown in figure 1, The graphene oxide sheet purity obtained is higher, and substantially minority ply is together, has obvious corrugated structure.
2, take the graphene oxide hydrosol 50mL of the 3mg/mL of above-mentioned preparation, add the regulation of appropriate sodium hydroxide solution PH to 11, adds 5mg boric acid afterwards, is heated to 90 DEG C in fume hood under conditions of electromagnetic agitation, be incubated 5h, Rear natural cooling, centrifugation, deionized water wash 3 times, ultrasonic again disperse in deionized water, obtain pure all The redox graphene hydrosol of even scattered 2mg/mL borate ion crosslinking, as shown in Figure 2, it can be seen that boron The redox graphene sheet of acid ion crosslinking maintains the basic pattern of graphene oxide, but has significantly crosslinking The structure repaired.
3, the redox graphene hydrosol of the borate ion crosslinking of the above-mentioned preparation of 50mL is taken, by a diameter of 80mm, aperture are the boron that the mixed cellulose ester microporous membrane filter layer self assembly of 0.45 μm obtains a diameter of 8cm The conductive graphene paper of acid ion crosslinking, after naturally drying, strips down from microporous filter membrane.
The scanning electron microscope that the conductive graphene paper that the borate ion of preparation cross-links carries out surface and tangent plane characterizes. From Fig. 3 and Fig. 4 it can be seen that there are the structure of borate ion crosslinking repairing, Fig. 5 and Tu in the surface of whole graphene paper 6 show that graphene paper has obvious layer structure, illustrate to be easy to prepare graphene paper by simple filtration operating process.
The conductive graphene paper that the borate ion of preparation cross-links is carried out electricity performance measurement.Fig. 7 is its optical photograph, Four probe systems utilizing Semiconductor Parameter Analyzer (KEITHLEY 4200-SCS) carry out electricity performance measurement to it, As shown in Figure 8, when applied voltage is 2 volts, current value reaches 30 milliamperes, and its electric conductivity sinks close to chemical gaseous phase The single-layer graphene that area method produces.
Embodiment 2
1, using graphite powder that particle diameter is 50 μm as carbon source, the Hummers method of above-mentioned improvement is utilized to prepare graphite oxide, And the most ultrasonic peel off formed homodisperse 5mg/mL the graphene oxide hydrosol.
2, take the graphene oxide hydrosol 50mL of the 5mg/mL of above-mentioned preparation, add the regulation of appropriate sodium hydroxide solution PH to 12, adds 10mg boric acid afterwards, is heated to 90 DEG C in fume hood under conditions of electromagnetic agitation, be incubated 5h, Rear natural cooling, centrifugation, deionized water wash 3 times, ultrasonic again disperse in deionized water, obtain pure all The redox graphene hydrosol of even scattered 5mg/mL borate ion crosslinking.
3, the redox graphene hydrosol of the borate ion crosslinking of the above-mentioned preparation of 50mL is taken, by a diameter of 80mm, aperture are the boron that the mixed cellulose ester microporous membrane filter layer self assembly of 0.45 μm obtains a diameter of 8cm The conductive graphene paper of acid ion crosslinking, after naturally drying, strips down from microporous filter membrane.
Embodiment 3
1, using graphite powder that particle diameter is 30 μm as carbon source, the Hummers method of above-mentioned improvement is utilized to prepare graphite oxide, And the most ultrasonic peel off formed homodisperse 2mg/mL the graphene oxide hydrosol.
2, take the graphene oxide hydrosol 50mL of the 2mg/mL of above-mentioned preparation, add the regulation of appropriate sodium hydroxide solution PH to 10, adds 0.2mg boric acid afterwards, is heated to 80 DEG C in fume hood under conditions of electromagnetic agitation, be incubated 3h, Rear natural cooling, filters and separates, and deionized water wash 3 times ultrasonic disperses in deionized water again, obtain pure uniformly The redox graphene hydrosol of scattered 1mg/mL borate ion crosslinking.
3, the redox graphene hydrosol of the borate ion crosslinking of the above-mentioned preparation of 50mL is taken, by a diameter of 50mm, aperture are the boron that the mixed cellulose ester microporous membrane filter layer self assembly of 0.22 μm obtains a diameter of 5cm The conductive graphene paper of acid ion crosslinking, after naturally drying, strips down from microporous filter membrane.

Claims (4)

1. the preparation method of the conductive graphene paper of a borate ion crosslinking, it is characterised in that comprise the steps:
Step one, with graphite powder as carbon source, use the Hummers method improved to prepare graphite oxide, and at deionized water In ultrasonic stripping obtain the graphene oxide hydrosol;
Step 2, step one preparation the graphene oxide hydrosol in add sodium hydroxide solution regulation pH to 10~12, The mass ratio adding boric acid, boric acid and graphene oxide afterwards is 0.1~2:50, is heated to 80~90 DEG C under agitation, Insulation 3~5h, rear natural cooling, separate, washing, ultrasonic disperse, in deionized water, obtains homodisperse boric acid The redox graphene hydrosol of radical ion crosslinking;
The redox graphene hydrosol of step 3, borate ion step 2 prepared crosslinking is by microporous filter membrane mistake Filter LBL self-assembly obtains the conductive graphene paper of borate ion crosslinking, after naturally drying, under peeling off from microporous filter membrane Come.
The preparation method of the conductive graphene paper of borate ion the most according to claim 1 crosslinking, its feature exists In, the concentration of the graphene oxide hydrosol described in step one is 2~5mg/mL.
The preparation method of the conductive graphene paper of borate ion the most according to claim 1 crosslinking, its feature exists In, described in step 2, the concentration of the redox graphene hydrosol of borate ion crosslinking is 1~5mg/mL.
The preparation method of the conductive graphene paper of borate ion the most according to claim 1 crosslinking, its feature exists In, microporous filter membrane described in step 3 is mixed cellulose ester microporous membrane, a diameter of 50~80mm, and aperture is 0.22 μ M or 0.45 μm.
CN201410488031.6A 2014-09-22 2014-09-22 A kind of preparation method of the conductive graphene paper of borate ion crosslinking Active CN104261392B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410488031.6A CN104261392B (en) 2014-09-22 2014-09-22 A kind of preparation method of the conductive graphene paper of borate ion crosslinking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410488031.6A CN104261392B (en) 2014-09-22 2014-09-22 A kind of preparation method of the conductive graphene paper of borate ion crosslinking

Publications (2)

Publication Number Publication Date
CN104261392A CN104261392A (en) 2015-01-07
CN104261392B true CN104261392B (en) 2016-08-24

Family

ID=52153022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410488031.6A Active CN104261392B (en) 2014-09-22 2014-09-22 A kind of preparation method of the conductive graphene paper of borate ion crosslinking

Country Status (1)

Country Link
CN (1) CN104261392B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743549B (en) * 2015-03-18 2017-01-11 浙江大学 Non-layered cross-linked graphene oxide film as well as preparation method and application thereof
CN105047955A (en) * 2015-05-28 2015-11-11 东南大学 Preparation method of carbon paper coating for fuel cell based on layer-by-layer self-assembly technique
CN105460922B (en) * 2015-11-29 2017-10-20 福建医科大学 Partial reduction graphene oxide FRET nano-probe and preparation method thereof
CN106006615B (en) * 2016-05-25 2018-04-06 哈尔滨工业大学 A kind of graphene aerogel spontaneously dries preparation method
CN106315563B (en) * 2016-07-27 2019-02-19 中国科学院宁波材料技术与工程研究所 A kind of grapheme material of ordered structure and preparation method thereof
CN106241784B (en) * 2016-07-27 2019-03-15 中国科学院宁波材料技术与工程研究所 A kind of preparation method of the grapheme material of multilevel structure
CN108439380B (en) * 2018-06-08 2021-03-09 中国科学院城市环境研究所 Preparation method of super-elastic and super-hydrophobic pure graphene aerogel
CN111058078B (en) * 2019-12-30 2021-09-24 中国科学院青海盐湖研究所 Copper foil with graphene film coated on surface and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9550871B2 (en) * 2012-11-09 2017-01-24 Wisconsin Alumni Research Foundation Sustainable hybrid organic aerogels and methods and uses thereof
CN103483515B (en) * 2013-09-06 2015-06-10 中科院广州化学有限公司 High-ortho-position phenol-formaldehyde resin prepolymer and preparation method thereof
CN103538312B (en) * 2013-09-10 2016-05-18 浙江工业大学 A kind of alternately stratiform graphene oxide/polyvinyl alcohol dielectric material and preparation method thereof
CN103804828B (en) * 2014-02-14 2016-05-11 江南大学 A kind of composite aquogel of Adsorption of Heavy Metal Ions and preparation method

Also Published As

Publication number Publication date
CN104261392A (en) 2015-01-07

Similar Documents

Publication Publication Date Title
CN104261392B (en) A kind of preparation method of the conductive graphene paper of borate ion crosslinking
Xu et al. Fabrication of CuO pricky microspheres with tunable size by a simple solution route
KR101651932B1 (en) Method for manufacturing of conductive metal thin film using carboxylic acid
TWI664643B (en) Ferromagnetic metal nanowire dispersion and production method thereof
CN105688935B (en) A kind of preparation method of Pt/Cu Ni catalyst and its method and the application of catalytic oxidation of alcohol
KR20160071939A (en) Partially oxidized graphene and method for preparation thereof
Chang et al. Low-temperature solution-processable Ni (OH) 2 ultrathin nanosheet/N-graphene nanohybrids for high-performance supercapacitor electrodes
CN105752963A (en) Foldable electrothermal film device based on graphene
KR101572671B1 (en) Method of manufacturing of large-area graphene oxide and the large-area graphene oxide thereby
CN107163686B (en) Preparation method and application of graphene composite conductive ink
WO2016033519A1 (en) Core-shell nanostructures and related inks, films, and methods
CN107221387A (en) The preparation method of High conductivity graphene film based on transience framework
Wang et al. Rational design of LaNiO3/carbon composites as outstanding platinum‐free photocathodes in dye‐sensitized solar cells with enhanced catalysis for the triiodide reduction reaction
Qiang et al. Ultrasound-enhanced preparation and photocatalytic properties of graphene-ZnO nanorod composite
CN103762356B (en) Ni nano wire, NiO/Ni self-supported membrane and its preparation method and application
CN105585012B (en) A kind of preparation method of the 1000nm of width 100 graphene nanobelt
KR101653181B1 (en) Method for production of graphene
CN106276884A (en) A kind of method preparing mesoporous Graphene
CN104370284A (en) Preparation method of controllable high-substitution hydroxyl functionalized graphene
KR101635848B1 (en) Manufacture Method of Basic Ink Containing Carbon-nonbonding Metal Nanoparticles Metal Nanoparticles Particle-dispersed Ink
KR101720168B1 (en) Method for healing defect of conductive layer, method for forming metal-carbon compound layer, 2d nano materials, transparent electrode and method for manufacturing the same
CN108584934B (en) Sulfonic group functionalized graphene dispersion system and preparation method thereof
Blair et al. Electrically conductive thin films derived from bulk graphite and liquid–liquid interface assembly
CN109321932A (en) Graphene and the preparation method and application thereof
Gu et al. Conductivity enhancement of silver nanowire networks via simple electrolyte solution treatment and solvent washing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant