CN104211138B - 一种基于碳纳米管制备膜电极及其电解去除有机污染物的方法 - Google Patents

一种基于碳纳米管制备膜电极及其电解去除有机污染物的方法 Download PDF

Info

Publication number
CN104211138B
CN104211138B CN201310208195.4A CN201310208195A CN104211138B CN 104211138 B CN104211138 B CN 104211138B CN 201310208195 A CN201310208195 A CN 201310208195A CN 104211138 B CN104211138 B CN 104211138B
Authority
CN
China
Prior art keywords
carbon nanotube
carbon
tube film
carbon nano
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310208195.4A
Other languages
English (en)
Other versions
CN104211138A (zh
Inventor
高冠道
郝振威
张秀丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201310208195.4A priority Critical patent/CN104211138B/zh
Publication of CN104211138A publication Critical patent/CN104211138A/zh
Application granted granted Critical
Publication of CN104211138B publication Critical patent/CN104211138B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种基于碳纳米管制备膜电极用于有机污染物电催化降解的方法,其基本特征在于结合滤膜和电催化技术,在过滤的同时催化降解流过膜孔的有机污染物。本发明首先预处理碳纳米管,并将其均匀分散在有机溶剂中,然后通过真空抽滤、清洗等步骤制得碳纳米管膜;然后将此碳纳米管膜装配在耦合有阴阳两极供电***的过滤式反应器中,并连接直流电源,并通过泵将污水压过膜电极。碳纳米管膜电极有大的比表面积和纳米级的空隙,污染物在流过碳纳米管间的纳米级孔隙被过滤的同时,每根碳纳米管上被加载的电场可以有效地降解有机污染物。本发明有效地提高了传质效率、充分利用了碳纳米管膜的大比表面积,最终在远低于常规的二维平行板电极的操作电压下,高效低耗地催化降解有机污染物。该技术可广泛用于染料废水、含酚废水。

Description

一种基于碳纳米管制备膜电极及其电解去除有机污染物的 方法
技术领域
本发明涉及基于碳纳米管制备膜电极的方法,并将该膜电极用于电催化降解有机污染物,是一种结合了膜过滤和电催化的环保技术。
背景技术
长期以来,针对我国种类繁多的难降解有机废水,整体上仍缺乏经济高效的治理技术,这些废水常未经处理或仅经简单处理后直接排入环境,污染了我们赖以生存的天然水体,危害了人体健康。面对这种挑战,亟待开发新材料、新技术及新工艺并用于废水处理领域中,这已成为发展国民经济保护生态环境的迫切需要。
电催化降解有机污染物已有几十年的发展历程,本身不是一项新技术。其不需外加化学氧化剂、无二次污染、设备简单、可控性好及常温常压下运行等,因此在污水处理领域备受关注。但长期以来由于受反应器传质效率、电极材料及电极副反应等限制,电催化氧化法降解有机污染物的能耗大、运行成本高,因而这一方法目前也未能发挥其应有的潜在优势和处理功效,目前亟需降低能耗才有可能大规模应用到有机废水处理领域中。为此,发展新型反应器并改善电极材料是重要的途径之一。
碳纳米管(CNT)作为一种具有高强度、大比表面积、优良的力学性能、良好的导电能力及电化学活性的新型材料,自上世纪九十年代被发现以来,其巨大的潜在应用价值得到了广泛的关注。仅2011年,全球发表与碳纳米管相关的文章24000余篇,授权专利2000余例,有关它的应用及理论研究主要集中在复合材料、特性吸附分离材料、催化剂载体、氢气存储、电池、超级电容器、电子器件、传感器和显微镜探头等领域,并已取得许多重要进展。而将碳纳米管经过适当的调控和功能化,作为新型电极应用于电解有机废水中,将有可能呈现出不同的电化学性能,自1991年发现碳纳米管之后不久,即有以碳纳米管为电极降解有机废水的报道,随后对于该技术的研究迅速升温。但是以往的研究多是将碳纳米管通过溶胶-凝胶、水热、电沉积等方法负载在基体上,如钛板上而制得,利用的均是碳纳米管的外壁性能。而且相应地,反应器也采用传统的电解池,即二维平行板电极***。显然在该***中,污染物仅仅是流过电极表面,受扩散能力的限制,其不易达到多孔碳纳米管电极内部,导致传统电解池中多孔电极的实际利用面积小、效率低。而将污染物传递到电极表面是电化学降解的前提和基础,改善传质条件对提高电化学处理效率降低能耗有明显的作用。若能让含有污染物的废水直接穿过多孔碳纳米管膜电极,而不仅仅是传统电解池中的流过电极表面,这将能缩短污染物扩散到电极表面的距离,降低电极表面静止层的液膜厚度,最终必将能大大提高传质效率和多孔碳纳米管膜的实际利用面积。因此制备碳纳米管多孔膜,将其装配于板框过滤器中,并用于电催化降解有机废水,将是该发明的努力方向。
发明内容
本发明设计制备一种基于碳纳米管的电催化膜,膜整体厚度约6~280μm,碳纳米管间的孔隙为50~100nm,比表面积约100~800m2/g(见说明书附图1)。有机污染物在碳纳米管薄膜内的停留时间0.1-10秒,远大于污染物在碳纳米管纳米级间隙内(50~100nm)扩散到碳纳米管表面的时间(2.14μs)。然后将该碳纳米管膜装配在类似于板框过滤的装置上作为阳极,并将钛环紧压在碳纳米管膜上作为接线柱连接电源,另外以多孔不锈钢板或另一个碳纳米管膜作为阴极,这样就构成了整个电极***;继而通过蠕动泵以一定的流速投加污水,含有有机污染物的废水通过碳纳米管膜的纳米级间隙,每根被加载了电场的碳纳米管均可以看作一个纳米微电极,吸附并电解有机污染物(见说明书附图2),这样高分散、大比表面积的碳纳米管膜可以有效地降解有机污染物。
碳纳米管膜的制备过程简述如下:
(1)碳纳米管的选择:多壁或单壁碳纳米管;外管径(5-50nm);灰分含量(1-10%);
表面功能团(羟基,羧基,羰基等)。
(2)预处理--煅烧:为了去除CNT中的无定形碳和其他含碳杂质,实验中先将CNT置于管式炉中煅烧,从室温开始,以1~20℃/min的速度程序升温至300~400℃,并在300~400℃下持续煅烧30~120min,然后自然冷却到室温;
(3)预处理--酸洗:为进一步去除碳纳米管上的金属氧化物及其他杂质,对煅烧之后的碳纳米管进一步进行酸化处理。具体方法是:将碳纳米管置于圆底烧瓶中,加入浓度为15%~37%的盐酸(或者35%~70%硝酸,45~98%的硫酸,或者这些酸不同比例的混合物),50~90℃下回流5~24h;加热完成之后,让样品冷却至室温,然后经真空抽滤将酸化后的碳纳米管抽滤到孔径的PTFE膜上,然后用去离子水清洗抽滤,直到滤后出水pH近中性为止;最后将清洗后的碳纳米管收集起来,放置于鼓风干燥箱中60℃下干燥保存备用。
(4)成膜:首先将碳纳米管经过超声仪均匀分散在DMSO(或DMF、NMP、乙醇、己烷、甲苯)的单一或者任意比例的混合溶剂中,然后通过真空抽滤将碳纳米管涂覆在PTFE等滤膜上,接着依次用无水乙醇、无水乙醇/水、去离子水淋洗抽滤,清洗完全后取出,并在一定的压力下压制膜1~60min,最终得到碳纳米管膜电极;密度约为0.2~10mg/cm2,厚度约6~280μm,碳纳米管间的孔隙为50~100nm,比表面积约100~800m2/g。
(5)电化学反应器的构建与应用:然后将该碳纳米管膜装配在类似于板框过滤的装置上作为阳极,并将钛环紧压在碳纳米管膜上作为接线柱连接电源,另外以多孔不锈钢板或另一个碳纳米管膜作为阴极,这样就构成了整个电极***,另外还包括橡胶圈垫片,起密封作用;钛环主要起导电作用,连接阴极和阳极与外电路,并构成回路。继而通过蠕动泵以一定的流速投加污水,每根被加载了电场的碳纳米管均可以看作一个纳米微电极,吸附并电解有机污染物。
附图说明
图1.碳纳米管膜电极的实物及SEM图
示例中是将碳纳米管经过高能超声仪均匀分散在DMSO等溶剂中,然后通过真空抽滤将碳纳米管涂覆在PTFE等滤膜上,即制得碳纳米管膜,即通常所说的“巴基纸”。膜整体厚度约50μm,碳纳米管间的孔隙为50~100nm,比表面积约100~800m2/g。
图2.碳纳米管膜电极使用示意图
然后将该碳纳米管膜装配在类似于板框过滤的装置上作为阳极,并将钛环紧压在碳纳米管膜上作为接线柱连接电源,另外以多孔不锈钢板或另一个碳纳米管膜作为阴极,这样就构成了整个电极***;继而通过蠕动泵以一定的流速投加污水,强迫含有污染物的废水通过碳纳米管膜的纳米级间隙,每根被加载了电场的碳纳米管均可以看作一个纳米微电极。
图3碳纳米管膜电极降解甲基橙的直观示意图及去除效率
为直观地观察到碳纳米管膜电极催化降解污染物的性能,我们首先选择甲基橙作为模拟污染物,进行相关实验。在不加电压下,运行20分钟后甲基橙溶液即因吸附饱和而穿透膜电极,从下图中可见出水已呈黄色;而提高电压到3V时,甲基橙已经可以几乎完全去除,出水已呈无色。
具体实施方式
实施示例1.
选5g外径为17nm的多壁碳纳米管放入管式炉中,从室温开始,以5℃/min的速度程序升温至400℃,并在400℃下持续煅烧60min,然后自然冷却到室温;然后取1g放入含有500mL37%的盐酸烧瓶中,70℃下回流24h回流24h,样品冷却至室温,然后经真空抽滤将酸化后的碳纳米管抽滤到孔径为5μm的PTFE膜上,然后用去离子水清洗抽滤,直到滤后出水pH近中性为止;取15mg酸化后的碳纳米管经超声分散在DMSO中,然后通过真空抽滤将碳纳米管涂覆在PTFE等滤膜上,接着依次用无水乙醇、无水乙醇-水(V/V=1:1)、去离子水淋洗抽滤,取出后,在一定的压力下压制15min,最终得到制备好的碳纳米管膜电极。
将该碳纳米管膜装配在类似于板框过滤的装置上作为阳极,不锈钢作为阴极;并以1mM的甲基橙(MO)为模拟污染物,10mM的硫酸钠为电解质,通过蠕动泵(流速1.5mL/min)将上述溶液打入反应器中;同时接通电源,电压2V及3V的情况下,MO的去除率分别为74%及95%。
实施示例2.
碳纳米管膜电极的制备方法同上。
并以1mM的苯酚为模拟污染物,10mM的硫酸钠为电解质,通过蠕动泵(流速1.5mL/min)将上述溶液打入反应器中;3V电压下,苯酚的去除率81%,TOC去除率69%。

Claims (7)

1.一种基于碳纳米管制备膜电极用于有机污染物电催化降解的方法,其特征如下:首先通过预处理活化碳纳米管,并均匀分散在有机溶剂中,再通过真空抽滤、清洗步骤制得碳纳米管膜,然后将此碳纳米管膜装配在耦合有阴阳两极供电***的过滤式反应器中,并连接直流电源,并通过泵将污水压过膜电极,污染物流过碳纳米管间的纳米级孔隙被过滤的同时,每根碳纳米管上被加载的电场可以有效地降解有机污染物,其中过滤式反应器的特征包括:将该碳纳米管膜装配在板框过滤的装置上作为阳极,并将钛环紧压在碳纳米管膜上作为接线柱连接电源;以多孔不锈钢板或另一个碳纳米管膜作为阴极,构成整个电极***;另外还包括橡胶圈垫片,起密封作用;钛环主要起导电作用,连接阴极和阳极与外电路,并构成回路。
2.根据权利要求1所述的方法,其预处理及优选特征如下:以多壁或单壁碳纳米管为原材料,外管径介于5~50nm,灰分质量含量介于1~10%;表面功能团含羟基,羧基,羰基其中的一种或者多种。
3.根据权利要求1所述的方法,其预处理包括煅烧,特征如下:为了去除碳纳米管中的无定形碳和其他含碳杂质,将碳纳米管置于管式炉中煅烧,从室温开始,以1~20℃/min的速度程序升温至300~400℃,并在300~400℃下持续煅烧30~120min,然后自然冷却到室温。
4.根据权利要求1所述的方法,其预处理包括酸洗,特征如下:为进一步去除碳纳米管上的金属氧化物及其他杂质,对煅烧之后的碳纳米管进一步进行酸化处理;具体特征为:将碳纳米管置于圆底烧瓶中,加入浓度为15%~37%的盐酸或者35%~70%硝酸或者45~98%的硫酸,或者这些酸不同比例的混合物,50~90℃下回流5~24h;加热完成之后,让样品冷却至室温,然后经真空抽滤将酸化后的碳纳米管抽滤到孔径的PTFE膜上,然后用去离子水清洗抽滤,直到滤后出水pH近中性为止。
5.根据权利要求1所述的方法,其制备碳纳米管膜的特征包括:首先将碳纳米管经过超声仪均匀分散在DMSO或DMF、NMP、乙醇、己烷、甲苯的单一或者任意比例的混合溶剂中,然后通过真空抽滤将碳纳米管涂覆在PTFE滤膜上,接着依次用无水乙醇、无水乙醇/水、去离子水淋洗抽滤,清洗完全后取出,并在一定的压力下压制膜1~60min,最终得到碳纳米管膜电极。
6.根据权利要求1所述的方法,得到的碳纳米管膜的特征包括:密度为0.2~10mg/cm2,厚度6~280μm,碳纳米管间的孔隙为50~100nm,比表面积100~800m2/g。
7.根据权利要求1所述的方法,蠕动泵以0.01~1.0mL/cm2-min的流速投加污水;操作电压介于1.5V~4.0V。
CN201310208195.4A 2013-05-30 2013-05-30 一种基于碳纳米管制备膜电极及其电解去除有机污染物的方法 Expired - Fee Related CN104211138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310208195.4A CN104211138B (zh) 2013-05-30 2013-05-30 一种基于碳纳米管制备膜电极及其电解去除有机污染物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310208195.4A CN104211138B (zh) 2013-05-30 2013-05-30 一种基于碳纳米管制备膜电极及其电解去除有机污染物的方法

Publications (2)

Publication Number Publication Date
CN104211138A CN104211138A (zh) 2014-12-17
CN104211138B true CN104211138B (zh) 2019-04-23

Family

ID=52093108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310208195.4A Expired - Fee Related CN104211138B (zh) 2013-05-30 2013-05-30 一种基于碳纳米管制备膜电极及其电解去除有机污染物的方法

Country Status (1)

Country Link
CN (1) CN104211138B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139907B (zh) * 2015-07-02 2017-07-14 中国原子能科学研究院 Uo2‑碳纳米管复合燃料芯块的制备工艺
EP3115099B1 (de) * 2015-07-07 2019-09-04 I3 Membrane GmbH Verfahren zur elektrofiltration und elektro-sorption mittels einer metallbeschichteten polymermembran und vorrichtung dafür
CN105948177B (zh) * 2016-05-31 2019-01-25 南京林业大学 一种高通量电化学过滤污水处理装置
CN107570111A (zh) * 2016-07-04 2018-01-12 中国科学院金属研究所 高吸附有机染料单壁碳纳米管柔性膜的制备方法和应用
DE102016125818A1 (de) * 2016-12-28 2018-06-28 I3 Membrane Gmbh Verfahren zur Separation von geladenen biologisch aktiven Substanzen aus Flüssigkeiten und deren Wiedergewinnung
CN106698682B (zh) * 2017-02-21 2020-05-22 哈尔滨工业大学 一种微生物电化学***阳极生物膜的构筑方法
CN107117690B (zh) * 2017-06-22 2021-01-22 天津碧水源膜材料有限公司 电催化氧化处理难降解污染物的装置及方法
CN108714435A (zh) * 2018-03-13 2018-10-30 军事科学院***工程研究院卫勤保障技术研究所 一种具有降解性能的碳纳米管电催化膜及其制备方法
WO2020005858A1 (en) * 2018-06-25 2020-01-02 The Regents Of The University Of California Anti-fouling and self-cleaning electrically conductive low-pressure membranes submerged in reactors for water treatment
CN110723786A (zh) * 2018-07-17 2020-01-24 湖南大学 过滤式电化学反应器及去除水体中抗生素的方法
CN109019761B (zh) * 2018-08-09 2023-11-24 东华大学 一种光电化学过滤器装置及其应用
CN109678225B (zh) * 2018-12-10 2021-11-30 沈阳化工大学 一种碳纳米管一体化电芬顿膜的制备方法及其应用
WO2020124362A1 (zh) * 2018-12-18 2020-06-25 大连理工大学 一种导电聚合物/碳纳米管复合纳滤膜的制备方法及应用
CN109834960A (zh) * 2019-02-15 2019-06-04 柔电(武汉)科技有限公司 一种碳纳米管膜及其制备方法
CN110642341B (zh) * 2019-10-22 2022-03-08 河海大学 一种用于臭氧/电过滤耦合水处理体系的膜电极及其制备方法和应用
CN111778779A (zh) * 2020-07-06 2020-10-16 上海安崎智能科技有限公司 一种晶须碳纳米管远红外纸及其制备方法
CN112551652B (zh) * 2020-12-11 2022-01-14 中国环境科学研究院 一种基于碳纳米管三维电极的地表水除氟工艺
CN114573079B (zh) * 2022-03-11 2023-01-17 东华大学 一种电化学生成硫酸根自由基去除有机微污染物的方法
CN115069269B (zh) * 2022-07-05 2024-04-09 浙江工业大学 CoMoSxOy电催化剂及其制备方法和在电活化过硫酸盐体系降解有机污染物中的应用
CN115193476A (zh) * 2022-07-14 2022-10-18 中国科学院生态环境研究中心 光电催化膜及其制备方法和应用
CN115215410B (zh) * 2022-07-18 2024-03-08 山东大学 氧化铈改性碳纳米管膜活化次氯酸钠同步去除抗生素和抗性基因的方法
CN115518524A (zh) * 2022-11-07 2022-12-27 中国科学院生态环境研究中心 电响应膜及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079557A (zh) * 2009-12-01 2011-06-01 北京化工大学 一种碳纳米管电极的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101468832A (zh) * 2007-12-25 2009-07-01 通用电气公司 电解装置、方法及包括该电解装置的洗涤设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079557A (zh) * 2009-12-01 2011-06-01 北京化工大学 一种碳纳米管电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
在聚四氟乙烯基底上层层自组装功能化多壁碳纳米管薄膜的研究;陈三娟等;《功能材料与器件学报》;20120630;第18卷(第3期);第198页第0节引言,第1.2-1.3节,第201页第3节结论

Also Published As

Publication number Publication date
CN104211138A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
CN104211138B (zh) 一种基于碳纳米管制备膜电极及其电解去除有机污染物的方法
Wu et al. Amidoxime-functionalized macroporous carbon self-refreshed electrode materials for rapid and high-capacity removal of heavy metal from water
CN104587841B (zh) 导电滤膜及其制备方法和应用
CN205856075U (zh) 一种用于水处理的电催化膜反应器
CN106179238A (zh) 一种快速吸附重金属离子的多孔纳米纤维及其制备方法
Li et al. A novel electro-cleanable PAN-ZnO nanofiber membrane with superior water flux and electrocatalytic properties for organic pollutant degradation
CN107162118A (zh) 一种适用于水源水污染物去除的阴阳极内置式陶瓷微滤膜反应器
WO2019169785A1 (zh) 一种阴极催化膜耦合无膜微生物燃料电池用于焦化废水处理***
CN107008156B (zh) 石墨烯过滤复合膜及其制备方法
CN105597565B (zh) 聚四氟乙烯电催化多孔膜及其制备方法
CN105056891A (zh) 石墨烯修饰的生物炭复合材料及其制备方法和应用
CN102179235A (zh) 一种去除染料可磁性分离的新型吸附剂的制备方法
CN103058334B (zh) 一种石墨烯薄膜电极电化学处理印染废水的方法
CN105879707B (zh) 一种具有离子截留性能的还原-氧化石墨烯修饰陶瓷膜
CN108658177A (zh) 一种适用于水中难降解有机物去除的电化学活性炭纤维毡膜反应器
Sivasubramanian et al. Capacitive deionization and electrosorption techniques with different electrodes for wastewater treatment applications
Zheng et al. A porous carbon-based electro-Fenton hollow fiber membrane with good antifouling property for microalgae harvesting
Ren et al. Thermally treated candle soot as a novel catalyst for hydrogen peroxide in-situ production enhancement in the bio-electro-Fenton system
Yu et al. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode
CN104211139B (zh) 一种阴阳两极协同降解硝基苯类污染物的“三明治”型膜电极***及方法
Xie et al. ZIF-67 derived Co/N carbon hollow fiber membrane with excellent decontamination performance
Zheng et al. Zinc oxide nanosheet decorated self-supporting hierarchical porous wood carbon electrode for efficient capacitive deionization defluorination
CN106340661A (zh) 一种三元异质结光电催化膜燃料电池***
CN109354294A (zh) 一种使用电容去离子减轻极化的膜蒸馏装置
CN102728330A (zh) 一种具有吸附性能的碳纳米材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190423