CN104128207A - 降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法 - Google Patents

降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法 Download PDF

Info

Publication number
CN104128207A
CN104128207A CN201410335610.7A CN201410335610A CN104128207A CN 104128207 A CN104128207 A CN 104128207A CN 201410335610 A CN201410335610 A CN 201410335610A CN 104128207 A CN104128207 A CN 104128207A
Authority
CN
China
Prior art keywords
pure water
volume ratio
ultra
sio
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410335610.7A
Other languages
English (en)
Other versions
CN104128207B (zh
Inventor
何池洋
余丹
魏守台
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN201410335610.7A priority Critical patent/CN104128207B/zh
Publication of CN104128207A publication Critical patent/CN104128207A/zh
Application granted granted Critical
Publication of CN104128207B publication Critical patent/CN104128207B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法,所述的方法包括以下步骤:Fe3O4纳米粒子的制备,Fe3O4SiO2磁性纳米粒子的制备,Fe3O4SiO2TiO2核壳型纳米粒子的制备和Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子的制备。本发明的印迹型催化剂对刚果红有明显的降解效果,且可以通过外部磁场轻易与溶液快速分离,实现对污染染料的环保低成本降解。实验结果表明在无光照下其催化降解速率快,催化反应的一级反应速率常数为0.09615min-1。经多次循环利用后催化能力无明显变化,对印染污水中刚果红催化降解具有良好的应用前景。

Description

降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法
技术领域
本发明涉及化学化工技术领域,尤其涉及一种降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法。
背景技术
半导体光催化因可充分利用太阳光或人工光源而成为最有前途的污染物降解技术之一。二氧化钛具有稳定、无害、廉价和高效等优点,目前是应用最广泛的半导体光催化剂。但由于TiO2主要在紫外光区才有催化活性,而紫外光在太阳光中所占比例只有3-4%,因此TiO2光催化剂对太阳光的利用率极低。为了提高TiO2在可见光区响应效率,人们尝试了贵金属沉积、金属和非金属掺杂、表面染料敏化等多种技术,一定程度改善了TiO2对可见光的敏感性。但这些TiO2催化剂选择性均不佳,不利于复杂体系中微量污染物的降解,因此如何有效提高催化剂的选择性亦是当务之急。有人通过调节溶液pH值、在TiO2表面修饰特定分子或制备双区域催化剂,试图改善TiO2的催化选择性,然而其选择性或稳定性均不能令人满意。
近年来利用分子印迹技术改善TiO2的催化选择性引起人们广泛关注。分子印迹技术可制备出对模板分子具有高特异性识别能力的分子印迹聚合物(MIP)。经MIP修饰的TiO2对目标物具有高选择吸附能力,因而可大大提高催化剂的选择性。Tang和Zhu研究组在TiO2纳米粒子表面制备了2-硝基苯酚(或4-硝基苯酚)印迹的MIP膜,大大提高了催化剂对模板分子的光降解选择性。他们还在TiO2纳米粒子表面制备了掺杂Al3+的邻苯二甲酸二乙酯印迹硅胶膜,其光降解模板分子的能力远强于其他催化剂,且稳定性好。另外,他们还利用改进液相沉积法在玻璃表面制备了印迹TiO2膜,用于水杨酸的有效光降解。然而这些催化剂都只对紫外光区有响应。
Deng等人在TiO2纳米粒子表面制备了导电型聚吡咯MIP膜。由于聚吡咯具有较好的导电性,可将TiO2的光敏感区移至可见光区,因此可用于甲基橙的可见光降解。Liu等人利用溶胶-凝胶技术在TiO2纳米管表面涂上一层印迹TiO2膜,用于9-蒽甲酸的可见光高效降解。但这些催化剂在使用时不易与反应溶液分离开来,这也是目前纳米光催化剂推广应用中急需解决的一个问题。
本发明以甲基橙为伪模板制备了Fe3O4TiO2导电型MIP核壳磁纳米粒子,实现了无光照下对刚果红的高选择性催化降解,且可轻易通过外部磁场使得催化剂与溶液快速分离,可多次循环利用。
发明内容
本发明以甲基橙为伪模板制备了Fe3O4TiO2导电型MIP核壳磁纳米粒子,实现了无光照下对刚果红的高选择性催化降解,且可轻易通过外部磁场使得催化剂与溶液快速分离,可多次循环利用。
本发明采用如下技术方案:
本发明的降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法的具体步骤如下:
1Fe3O4纳米粒子的制备
1.1将超纯水置于三颈烧瓶中,持续通氮气30min除氧;
1.2往超纯水中加入无水FeCl3,无水FeCl3与超纯水的重量体积比为4-7:160g/ml,机械搅拌下再加入FeCl2·4H2O,无水FeCl3与FeCl2·4H2O的重量比为4-7:2-4;
1.3水浴锅升温至80℃,保持温度,逐滴滴加浓氨水,浓氨水加入量与超纯水的体积比为1:8,滴加完毕后于80℃下反应30min;
1.4反应液在外加磁场下静置分离,纳米粒子经无水乙醇和超纯水先后洗涤4次后,于干燥箱中烘干备用;
2Fe3O4SiO2磁性纳米粒子的制备
2.1将步骤1制备的Fe3O4纳米粒子置于无水乙醇和超纯水混合液中,超声处理15min,Fe3O4纳米粒子与无水乙醇和超纯水混合液的摩尔体积比为0.2-1:195g/ml;
2.2超声完毕后向溶液中加入四乙氧基硅烷和浓氨水,四乙氧基硅烷与无水乙醇和超纯水混合液的体积比为0.5-1:195,浓氨水与无水乙醇和超纯水混合液的体积比为3-8:195,水浴40℃下机械搅拌反应24h;
2.3反应液在外加磁场下静置分离,纳米粒子经无水乙醇和超纯水先后洗涤4次,60℃条件下过夜真空干燥;
3Fe3O4SiO2TiO2核壳型纳米粒子的制备
3.1将步骤2制备的Fe3O4SiO2分散于异丙醇中,Fe3O4SiO2与异丙醇的重量体积比为0.3-0.5:50g/ml,然后超声分散15min;
3.2再往分散液中加入超纯水和异丙醇混合后,超纯水与分散液的体积比为40-60:50,异丙醇与分散液的体积比为100-200:50,超声处理30min,得到混合液;
3.3再往混合液中加入异丙氧基钛,异丙氧基钛与混合液的体积比为3-4:250,然后于25℃下连续超声处理3h;
3.4反应液在外加磁场中静置分离,纳米粒子经乙醇洗涤3次后,于60℃下真空干燥过夜;
3.5将干燥所得纳米粒子研磨完全,转移到小坩埚中,放入马弗炉,于500℃条件下煅烧3h,得到有催化活性的Fe3O4SiO2TiO2核壳型纳米粒子。
4Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子的制备
4.1取甲基橙和吡咯溶解于甲醇和纯净水的混合溶液中,甲基橙与甲醇和纯净水的混合溶液的重量体积比为0.03-0.05:10g/ml,吡咯与甲醇和纯净水的混合溶液的体积比为0.03-0.04:10,在黑暗条件下,通氮气除氧30min,密封,作为预组装溶液;
4.2将步骤3制备的Fe3O4SiO2TiO2纳米粒子分散在HCl溶液中,Fe3O4SiO2TiO2纳米粒子与HCl溶液的重量体积比为0.5-0.7:100g/ml,超声处理30min,通氮气除氧20min,接着加入上述预组装溶液,预组装溶液与含有Fe3O4SiO2TiO2纳米粒子的HCl溶液的体积比为8-12:100,然后于0℃下持续电动搅拌,20分钟之后,逐滴加入含FeCl3的HCl溶液,FeCl3与Fe3O4SiO2TiO2纳米粒子的重量比为0.2-0.3:0.5-0.7,HCl溶液与预组装溶液的体积比为1-3:10,然后于0℃在黑暗条件下反应4h,期间用氮气气球保护;
4.3于外加磁场下静置分离,得到的纳米粒子经pH=1的HCL溶液洗涤两次,每次持续3h,再用浓度为1%,pH=8的氨水溶液洗涤3次,每次持续1h,再用蒸馏水洗涤除去残留的氨水溶液,洗涤3次,将最后所得产物于70℃干燥过夜,得到Fe3O4SiO2TiO2MIP印迹纳米粒子催化剂,密封后置于干燥器中保存。
步骤1.2中,优选无水FeCl3与超纯水的重量体积比为5.6785:160g/ml,无水FeCl3与FeCl2·4H2O的重量比为5.6785:3.4449。
步骤2.1中,无水乙醇和超纯水混合液中,无水乙醇和超纯水的体积比为155:40。
步骤2.1中,优选Fe3O4纳米粒子与无水乙醇和超纯水混合液的摩尔体积比为0.5:195g/ml。
步骤2.2中,优选四乙氧基硅烷与无水乙醇和超纯水混合液的体积比为0.7:195,浓氨水与无水乙醇和超纯水混合液的体积比为5:195。
步骤3.1中,优选Fe3O4SiO2与异丙醇的重量体积比为0.4016:50g/ml。
步骤3.2中,优选超纯水与分散液的体积比为50:50,异丙醇与分散液的体积比为150:50。
步骤3.3中,优选异丙氧基钛与混合液的体积比为3.698:250。
步骤4.1中,甲基橙与甲醇和纯净水的混合溶液的重量体积比优选为0.0404:10g/ml,吡咯与甲醇和纯净水的混合溶液的体积比优选为0.0346:10,甲醇和纯净水的混合溶液中,甲醇与纯净水的体积比为1:1。
步骤4.2中,Fe3O4SiO2TiO2纳米粒子与HCl溶液的重量体积比优选为0.6012:100g/ml,HCl溶液的pH=2,预组装溶液与含有Fe3O4SiO2TiO2纳米粒子的HCl溶液的体积比优选为10:100,FeCl3与Fe3O4SiO2TiO2纳米粒子的重量比优选为0.27:0.6012,HCl溶液与预组装溶液的体积比优选为2:10。
本发明的积极效果如下:
本发明成功的制备出以甲基橙为伪模板的印迹磁性催化剂,从而解决了以刚果红为模板制备催化剂过程中模板分子极易降解,无法得到目标催化剂的问题。
本发明的印迹型催化剂对刚果红有明显的降解效果,且可以通过外部磁场轻易与溶液快速分离,实现对污染染料的环保低成本降解。实验结果表明在无光照下其催化降解速率快,催化反应的一级反应速率常数为0.09615min-1。经多次循环利用后催化能力无明显变化,对印染污水中刚果红催化降解具有良好的应用前景。
附图说明
图1是本发明实施例1制备的Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子的热失重分析图。
图2是本发明实施例1制备的Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子降解刚果红的吸光度比值-刚果红降解时间的关系曲线图。
图3是本发明实施例1制备的Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子对刚果红催化降解动力学曲线和一级反应拟合曲线图。
图4是本发明实施例1制备的Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子对甲基橙的吸附图。
具体实施方式
下面的实施例是对本发明的进一步详细描述。
实施例1
Fe3O4纳米粒子的制备
(1)量取160mL超纯水于250mL三颈烧瓶中,持续通氮气30min除氧;
(2)加入5.6785g无水FeCl3,机械搅拌下再加入3.4449gFeCl2·4H2O;
(3)水浴锅升温至80℃,保持温度,逐滴滴加20ml浓氨水,滴加完毕后于80℃下反应30min;
(4)反应液在外加磁场下静置分离,纳米粒子经无水乙醇和超纯水先后洗涤4次后,于干燥箱中烘干备用。
Fe3O4SiO2磁性纳米粒子的制备
(1)上述Fe3O4纳米粒子(0.5g)置于155mL无水乙醇和40mL超纯水混合液中,超声处理15min;
(2)超声完毕后向溶液中加入0.7mL四乙氧基硅烷和5mL浓氨水,水浴40℃下机械搅拌反应24h;
(3)反应液在外加磁场下静置分离,纳米粒子经无水乙醇和超纯水先后洗涤4次,60℃条件下过夜真空干燥。
Fe3O4SiO2TiO2核壳型纳米粒子的制备
(1)称取0.4016g Fe3O4SiO2分散于50mL异丙醇中,超声处理15min。预分散;
(2)分散液转移至锥形烧瓶中,再加入50mL超纯水和150mL异丙醇混合后,超声处理30min;
(3)再加入异丙氧基钛3.698mL,于25℃下连续超声处理3h;
(4)反应液在外加磁场中静置分离,纳米粒子经乙醇洗涤3次后,于60℃下真空干燥过夜
(5)将干燥所得纳米粒子研磨完全,转移到小坩埚中,放入马弗炉,于500℃条件下煅烧3h(无定形二氧化钛转化为具有光催化活性二氧化钛),得到有催化活性的Fe3O4SiO2TiO2核壳型纳米粒子。
Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子的制备
(1)取0.0404g甲基橙和34.6μL吡咯溶解于10mL甲醇和纯净水的混合溶液中(1:1,v/v),在黑暗条件下,通氮气除氧30min,密封,作为预组装溶液;
(2)称取0.6012g Fe3O4SiO2TiO2纳米粒子分散在100mLHCl溶液(pH=2)中,超声处理30min,通氮气除氧20min,接着加入上述预组装溶液,于0℃下持续电动搅拌,大约20分钟之后,逐滴加入含0.2700g FeCl3的2ml HCl溶液(pH=1,已除氧),于0℃在黑暗条件下反应4h,期间用氮气气球保护;
(3)于外加磁场下静置分离,得到的纳米粒子经100mL HCL溶液(pH=1)洗涤两次,每次持续3h,再用100mL氨水溶液(1%,pH=8)洗涤3次,每次持续1h。再用蒸馏水洗涤除去残留的氨水溶液,洗涤3次,将最后所得产物于70℃干燥过夜,得到Fe3O4SiO2TiO2MIP印迹纳米粒子,密封后置于干燥器中保存备用。
Fe3O4SiO2TiO2NIP核壳型非印迹纳米粒子的制备(作为对比)
(1)取34.6μL吡咯溶解于10mL甲醇和纯净水的混合溶液中(1:1,v/v),在黑暗条件下,通氮气除氧30min,密封,作为预组装溶液;
(2)称取0.8928g Fe3O4SiO2TiO2纳米粒子分散在100mLHCl溶液(pH=2)中,超声处理30min,通氮气除氧20min,接着加入上述预组装溶液,于0℃下持续电动搅拌,大约20分钟之后,逐滴加入含0.2695g FeCl3的2ml HCl溶液(pH=1,已除氧),于0℃在黑暗条件下反应4h,期间用氮气气球保护;
(3)于外加磁场下静置分离,得到的纳米粒子经100mL HCL溶液(pH=1)洗涤两次,每次持续3h,再用100mL氨水溶液(1%,pH=8)洗涤3次,每次持续1h。再用蒸馏水洗涤除去残留的氨水溶液,洗涤3次,将最后所得产物于70℃干燥过夜,得到Fe3O4SiO2TiO2NIP印迹纳米粒子,密封后置于干燥器中保存备用。
图1是本发明制备的Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子的热失重分析图,从图1可以看出在500℃左右,印迹材料有明显失重(约4%),说明磁性粒子表面有印迹聚合物生成。
印迹材料对刚果红的催化降解实验
准确称取0.0250g的刚果红颗粒,加入250mL水配置成100mg/L的刚果红母液,暗处保存备用;用刚果红母液配制30mg/L的刚果红溶液30ml。称取30mg MIP-PPY/TiO2纳米复合粒子分散于上述刚果红溶液中,在25℃下黑暗中恒温振荡一定时间(5,10,15,20,25min)后,经外部磁场和0.22um滤头过滤分离,分离液经分光光度计测定吸光度,从而绘制出印迹和非印迹材料对刚果红的降解曲线(吸光度比值-刚果红降解时间的关系曲线)
以初始浓度为30mg/L刚果红溶液为模拟污染物,对其光催化降解以考察其催化活性;吸光度比值-刚果红降解时间的关系曲线如图2所示,动力学曲线和一级反应拟合曲线如图3所示,结果表明在无光照条件下,印迹材料对刚果红有很好催化降解效果,明显优于非印迹材料。所制备的催化剂光催化降解刚果红符合一级反应动力学方程,且印迹材料的一级反应速率常数为0.09615min-1,远大于一般文献值(0.0154min-1)。
印迹材料对甲基橙的静态吸附实验
(1)用甲基橙贮备液分别配置2mg/L,4mg/L,6mg/L,8mg/L,10mg/L,15mg/L,20mg/L的甲基橙溶液50ml,暗处保存备用。
(2)取20mg MIP-PPY/TiO2/NIP-PPY/TIO2复合纳米粒子分别与上述4mL储存液在室温下避光恒温振荡5h后,经外部磁场分离,分离后的澄清液通过分光光度法测得平衡液中甲基橙的浓度,从而计算出磁性粒子对甲基橙的吸附量,绘制印迹或非印迹材料对甲基橙的吸附曲线。
吸附曲线如图4所示。结果表明,随着浓度的增大,印迹和非印迹粒子对甲基橙的吸附量逐渐增大。相对而言,印迹粒子的吸附能力比非印迹粒子的吸附能力更大。结果与预期基本一致,说明纳米材料的印迹效果是明显的。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

1.降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法,其特征在于:所述方法的具体步骤如下:
1Fe3O4纳米粒子的制备
1.1将超纯水置于三颈烧瓶中,持续通氮气30min除氧;
1.2往超纯水中加入无水FeCl3,无水FeCl3与超纯水的重量体积比为4-7:160g/ml,机械搅拌下再加入FeCl2·4H2O,无水FeCl3与FeCl2·4H2O的重量比为4-7:2-4;
1.3水浴锅升温至80℃,保持温度,逐滴滴加浓氨水,浓氨水加入量与超纯水的体积比为1:8,滴加完毕后于80℃下反应30min;
1.4反应液在外加磁场下静置分离,纳米粒子经无水乙醇和超纯水先后洗涤4次后,于干燥箱中烘干备用;
2Fe3O4SiO2磁性纳米粒子的制备
2.1将步骤1制备的Fe3O4纳米粒子置于无水乙醇和超纯水混合液中,超声处理15min,Fe3O4纳米粒子与无水乙醇和超纯水混合液的摩尔体积比为0.2-1:195g/ml;
2.2超声完毕后向溶液中加入四乙氧基硅烷和浓氨水,四乙氧基硅烷与无水乙醇和超纯水混合液的体积比为0.5-1:195,浓氨水与无水乙醇和超纯水混合液的体积比为3-8:195,水浴40℃下机械搅拌反应24h;
2.3反应液在外加磁场下静置分离,纳米粒子经无水乙醇和超纯水先后洗涤4次,60℃条件下过夜真空干燥;
3Fe3O4SiO2TiO2核壳型纳米粒子的制备
3.1将步骤2制备的Fe3O4SiO2分散于异丙醇中,Fe3O4SiO2与异丙醇的重量体积比为0.3-0.5:50g/ml,然后超声分散15min;
3.2再往分散液中加入超纯水和异丙醇混合后,超纯水与分散液的体积比为40-60:50,异丙醇与分散液的体积比为100-200:50,超声处理30min,得到混合液;
3.3再往混合液中加入异丙氧基钛,异丙氧基钛与混合液的体积比为3-4:250,然后于25℃下连续超声处理3h;
3.4反应液在外加磁场中静置分离,纳米粒子经乙醇洗涤3次后,于60℃下真空干燥过夜;
3.5将干燥所得纳米粒子研磨完全,转移到小坩埚中,放入马弗炉,于500℃条件下煅烧3h,得到有催化活性的Fe3O4SiO2TiO2核壳型纳米粒子;
4Fe3O4SiO2TiO2MIP核壳型印迹纳米粒子的制备
4.1取甲基橙和吡咯溶解于甲醇和纯净水的混合溶液中,甲基橙与甲醇和纯净水的混合溶液的重量体积比为0.03-0.05:10g/ml,吡咯与甲醇和纯净水的混合溶液的体积比为0.03-0.04:10,在黑暗条件下,通氮气除氧30min,密封,作为预组装溶液;
4.2将步骤3制备的Fe3O4SiO2TiO2纳米粒子分散在HCl溶液中,Fe3O4SiO2TiO2纳米粒子与HCl溶液的重量体积比为0.5-0.7:100g/ml,超声处理30min,通氮气除氧20min,接着加入上述预组装溶液,预组装溶液与含有Fe3O4SiO2TiO2纳米粒子的HCl溶液的体积比为8-12:100,然后于0℃下持续电动搅拌,20分钟之后,逐滴加入含FeCl3的HCl溶液,FeCl3与Fe3O4SiO2TiO2纳米粒子的重量比为0.2-0.3:0.5-0.7,HCl溶液与预组装溶液的体积比为1-3:10,然后于0℃在黑暗条件下反应4h,期间用氮气保护;
4.3于外加磁场下静置分离,得到的纳米粒子经pH=1的HCL溶液洗涤两次,每次持续3h,再用浓度为1%,pH=8的氨水溶液洗涤3次,每次持续1h,再用蒸馏水洗涤除去残留的氨水溶液,洗涤3次,将最后所得产物于70℃干燥过夜,得到Fe3O4SiO2TiO2MIP印迹纳米粒子催化剂,密封后置于干燥器中保存。
2.如权利要求1所述的制备方法,其特征在于:步骤1.2中,无水FeCl3与超纯水的重量体积比为5.6785:160g/ml,无水FeCl3与FeCl2·4H2O的重量比为5.6785:3.4449。
3.如权利要求1所述的制备方法,其特征在于:步骤2.1中,无水乙醇和超纯水混合液中,无水乙醇和超纯水的体积比为155:40。
4.如权利要求1所述的制备方法,其特征在于:步骤2.1中,Fe3O4纳米粒子与无水乙醇和超纯水混合液的摩尔体积比为0.5:195g/ml。
5.如权利要求1所述的制备方法,其特征在于:步骤2.2中,四乙氧基硅烷与无水乙醇和超纯水混合液的体积比为0.7:195,浓氨水与无水乙醇和超纯水混合液的体积比为5:195。
6.如权利要求1所述的制备方法,其特征在于:步骤3.1中,Fe3O4SiO2与异丙醇的重量体积比为0.4016:50g/ml。
7.如权利要求1所述的制备方法,其特征在于:步骤3.2中,超纯水与分散液的体积比为50:50,异丙醇与分散液的体积比为150:50。
8.如权利要求1所述的制备方法,其特征在于:步骤3.3中,异丙氧基钛与混合液的体积比为3.698:250。
9.如权利要求1所述的制备方法,其特征在于:步骤4.1中,甲基橙与甲醇和纯净水的混合溶液的重量体积比为0.0404:10g/ml,吡咯与甲醇和纯净水的混合溶液的体积比为0.0346:10,甲醇和纯净水的混合溶液中,甲醇与纯净水的体积比为1:1。
10.如权利要求1所述的制备方法,其特征在于:步骤4.2中,Fe3O4SiO2TiO2纳米粒子与HCl溶液的重量体积比为0.6012:100g/ml,HCl溶液的pH=2,预组装溶液与含有Fe3O4SiO2TiO2纳米粒子的HCl溶液的体积比为10:100,FeCl3与Fe3O4SiO2TiO2纳米粒子的重量比为0.27:0.6012,HCl溶液与预组装溶液的体积比为2:10。
CN201410335610.7A 2014-07-15 2014-07-15 降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法 Expired - Fee Related CN104128207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410335610.7A CN104128207B (zh) 2014-07-15 2014-07-15 降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410335610.7A CN104128207B (zh) 2014-07-15 2014-07-15 降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN104128207A true CN104128207A (zh) 2014-11-05
CN104128207B CN104128207B (zh) 2016-02-10

Family

ID=51801206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410335610.7A Expired - Fee Related CN104128207B (zh) 2014-07-15 2014-07-15 降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN104128207B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056926A (zh) * 2015-07-24 2015-11-18 武汉纺织大学 一种新型TiO2/WO3包覆的磁性纳米复合粒子及其制备方法和用途
CN106140163A (zh) * 2016-06-24 2016-11-23 许昌学院 一种介孔二氧化钛磁性纳米材料的制备方法
CN106589263A (zh) * 2016-12-02 2017-04-26 佛山科学技术学院 一种磁性双酚a分子印迹聚合物的制备方法
CN106645363A (zh) * 2016-11-22 2017-05-10 信阳师范学院 一种痕量快速检测灭蝇胺的分子印迹电化学传感器及其制备方法与应用
CN109721761A (zh) * 2018-12-29 2019-05-07 北方民族大学 四环素分子印迹材料及其制备方法
CN110921786A (zh) * 2019-11-23 2020-03-27 同济大学 一种去除邻苯二甲酸酯类的光电催化阳极材料及处理方法
CN115770575A (zh) * 2022-11-18 2023-03-10 深圳技术大学 一种磁性接触电催化剂的使用与回收方法及其制备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102162A2 (en) * 2003-03-21 2004-11-25 The Regents Of The University Of California Inorganic oxides comprising multiple surface-bound functional groups
CN101596456A (zh) * 2009-07-06 2009-12-09 中北大学 具有核壳结构的TiO2/SiO2/Fe3O4纳米颗粒及其制造方法
CN102357363A (zh) * 2011-07-23 2012-02-22 上海海事大学 磁载纳米Fe3O4/SiO2/TiO2可见光催化剂及其制备方法
CN102527350A (zh) * 2011-12-20 2012-07-04 南京医科大学 双酚a伪模板分子印迹搅拌棒及其制备方法
CN103120962A (zh) * 2012-12-10 2013-05-29 江苏大学 分子印迹聚合物改性二氧化钛复合光催化剂的制备方法及其应用
CN103611520A (zh) * 2013-12-06 2014-03-05 江南大学 一种在可见光下具有高催化降解活性的分子印迹-掺杂TiO2的制法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102162A2 (en) * 2003-03-21 2004-11-25 The Regents Of The University Of California Inorganic oxides comprising multiple surface-bound functional groups
WO2004102162A3 (en) * 2003-03-21 2005-12-29 Univ California Inorganic oxides comprising multiple surface-bound functional groups
CN101596456A (zh) * 2009-07-06 2009-12-09 中北大学 具有核壳结构的TiO2/SiO2/Fe3O4纳米颗粒及其制造方法
CN102357363A (zh) * 2011-07-23 2012-02-22 上海海事大学 磁载纳米Fe3O4/SiO2/TiO2可见光催化剂及其制备方法
CN102527350A (zh) * 2011-12-20 2012-07-04 南京医科大学 双酚a伪模板分子印迹搅拌棒及其制备方法
CN103120962A (zh) * 2012-12-10 2013-05-29 江苏大学 分子印迹聚合物改性二氧化钛复合光催化剂的制备方法及其应用
CN103611520A (zh) * 2013-12-06 2014-03-05 江南大学 一种在可见光下具有高催化降解活性的分子印迹-掺杂TiO2的制法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056926A (zh) * 2015-07-24 2015-11-18 武汉纺织大学 一种新型TiO2/WO3包覆的磁性纳米复合粒子及其制备方法和用途
CN106140163A (zh) * 2016-06-24 2016-11-23 许昌学院 一种介孔二氧化钛磁性纳米材料的制备方法
CN106645363A (zh) * 2016-11-22 2017-05-10 信阳师范学院 一种痕量快速检测灭蝇胺的分子印迹电化学传感器及其制备方法与应用
CN106645363B (zh) * 2016-11-22 2019-05-31 信阳师范学院 一种痕量快速检测灭蝇胺的分子印迹电化学传感器及其制备方法与应用
CN106589263A (zh) * 2016-12-02 2017-04-26 佛山科学技术学院 一种磁性双酚a分子印迹聚合物的制备方法
CN109721761A (zh) * 2018-12-29 2019-05-07 北方民族大学 四环素分子印迹材料及其制备方法
CN110921786A (zh) * 2019-11-23 2020-03-27 同济大学 一种去除邻苯二甲酸酯类的光电催化阳极材料及处理方法
CN110921786B (zh) * 2019-11-23 2021-11-09 同济大学 一种去除邻苯二甲酸酯类的光电催化阳极材料及处理方法
CN115770575A (zh) * 2022-11-18 2023-03-10 深圳技术大学 一种磁性接触电催化剂的使用与回收方法及其制备
CN115770575B (zh) * 2022-11-18 2024-02-23 深圳技术大学 一种磁性接触电催化剂的使用与回收方法及其制备

Also Published As

Publication number Publication date
CN104128207B (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
CN104128207B (zh) 降解刚果红的核壳型伪模板印迹磁纳米催化剂的制备方法
Mortazavi-Derazkola et al. Fabrication and characterization of Fe3O4@ SiO2@ TiO2@ Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution
He et al. A visible light-driven titanium dioxide photocatalyst codoped with lanthanum and iodine: an application in the degradation of oxalic acid
Wu Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation
Li et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO− TiO2 nanocomposites
Li et al. Photocatalytic oxidation using a new catalyst TiO2 microsphere for water and wastewater treatment
Prado et al. Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation
Wang et al. Gold nanoparticle incorporation into porous titania networks using an agarose gel templating technique for photocatalytic applications
Zhang et al. Influence of semiconductor/insulator/semiconductor structure on the photo-catalytic activity of Fe3O4/SiO2/polythiophene core/shell submicron composite
Rodrigues et al. Photocatalytic degradation using ZnO for the treatment of RB 19 and RB 21 dyes in industrial effluents and mathematical modeling of the process
Yuan et al. Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions
Li et al. Enhanced photocatalytic activity and stability of alumina supported hematite for azo-dye degradation in aerated aqueous suspension
Arikal et al. Photocatalytic degradation of azo and anthraquinone dye using TiO2/MgO nanocomposite immobilized chitosan hydrogels
Lin et al. Photocatalytic microreactors based on nano TiO2-containing clay colloidosomes
Kozlova et al. Enhancement of the O2 or H2 photoproduction rate in a Ce3+/Ce4+–TiO2 system by the TiO2 surface and structure modification
CN102671662B (zh) 易回收重复使用的高效可见光催化剂的制备及应用
CN109012663B (zh) 一种纳米银/碳复合光催化材料及其制备方法和应用
Tiwari et al. Facile synthesis and characterization of Ag (NP)/TiO2 nanocomposite: Photocatalytic efficiency of catalyst for oxidative removal of Alizarin Yellow
Mihaly et al. NiO–silica based nanostructured materials obtained by microemulsion assisted sol–gel procedure
Xia et al. Visible light assisted heterojunction composite of AgI and CDs doped ZIF-8 metal-organic framework for photocatalytic degradation of organic dye
Prakash et al. Effect of erbium on the photocatalytic activity of TiO2/Ag nanocomposites under visible light irradiation
Qamar Photodegradation of acridine orange catalyzed by nanostructured titanium dioxide modified with platinum and silver metals
CN103803634A (zh) 一种介孔氧化锌微球光催化剂的制备方法
Latha et al. Novel, Facile and Swift Technique for synthesis of CeO 2 nanocubes immobilized on zeolite for removal of CR and MO dye
Santiago et al. TiO 2-based (Fe 3 O 4, SiO 2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160210

Termination date: 20210715