CN104124447B - 一种新型Co(OH)F锂离子电池负极材料及其制备方法 - Google Patents

一种新型Co(OH)F锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
CN104124447B
CN104124447B CN201410306176.XA CN201410306176A CN104124447B CN 104124447 B CN104124447 B CN 104124447B CN 201410306176 A CN201410306176 A CN 201410306176A CN 104124447 B CN104124447 B CN 104124447B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
negative material
preparation
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410306176.XA
Other languages
English (en)
Other versions
CN104124447A (zh
Inventor
倪世兵
吕小虎
杨学林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Jiadingsheng Technology Co ltd
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201410306176.XA priority Critical patent/CN104124447B/zh
Publication of CN104124447A publication Critical patent/CN104124447A/zh
Application granted granted Critical
Publication of CN104124447B publication Critical patent/CN104124447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种新型锂离子电池负极材料,该负极材料为杆状,杆长度为1-5μm,直径为100nm-1μm。所述的杆状Co(OH)F锂离子电池负极材料的制备方法,是以乙酸钴、氟化钠和六次甲基四胺或葡萄糖为基础原料,在水热条件下发生化学反应,得到杆状Co(OH)F锂离子电池负极材料。该负极材料合成方法简单,易于操作;所得样品为微杆状,长度1~5μm,直径100nm~1μm;所制备材料容量较高,在锂离子电池中有潜在应用价值。

Description

一种新型Co(OH)F锂离子电池负极材料及其制备方法
技术领域
本发明涉及一种新型锂离子电池负极材料的制备方法,特别涉及一种杆状Co(OH)F锂离子电池负极材料的制备方法,属于电化学新型材料领域。
背景技术
锂离子电池具有工作电压高,比容量高,比功率大,充放电电位曲线平稳,循环寿命长,无记忆效应,自放电小,环境友好等优点,是继镍镉电池、镍氢电池之后的第三代小型蓄电池,因而广泛应用于笔记本电脑,手机等移动便携设备。此外,锂离子电池也被视为是未来电动交通工具的理想动力源。未来锂离子电池的研究方向主要集中在研发高比能量、高功率锂离子电池,而其关键在于设计并制备出高容量、倍率性能优越的电极材料。目前,正极材料一般是含锂过渡族金属氧化物(LiCoO2,LiFePO4,LiMn2O4,LiN1-y-zMnyCozOz等),现有正极材料的特点是充放电电位较高,循环性能较稳定,但比容量偏低。传统的石墨负极材料理论容量较低,且密度较低,体积比容量低。另外其嵌锂电位较低容易导致安全问题。因而研发新型高容量、高性能负极材料成为了提高锂离子电池容量的有效途径。钴基复合材料在锂离子电池的发展中一直起着重要的作用,例如钴酸锂作为锂离子电池正极材料促进了锂离子电池的发展,在很长一段时间内成为了主要的正极材料的。而其它种类的钴基复合材料,如LiCoPO4,LiCoPO4F,LiCoSO4F,LiCoSO4OH,CoCO3和Co2SnO4等也表现出较好的电化学性能。因此,发展简单方法制备具有特殊形貌和结构的新型钴基复合材料并研究其电化学性能具有重要的意义。到目前为止,关于Co(OH)F材料的电化学性能研究尚未见报道。基于以上背景,本专利发明一种制备杆状Co(OH)F材料的新方法,以其作为锂离子电池负极显示了明显了充、放电平台,表明其在锂离子电池中有潜在的应用价值。
发明内容
本发明的目的在于以乙酸钴、氟化钠和六次甲基四胺或葡萄糖为原料,通过水热法制备杆状锂离子电池负极材料Co(OH)F。其原理就是利用水热条件下的高温、高压环境促进溶液中化学反应过程,从而制备结晶性能良好的杆状Co(OH)F。
本发明所涉及的Co(OH)F合成原料为乙酸钴、氟化钠和六次甲基四胺。材料制备过程中,先将乙酸钴、氟化钠和六次甲基四胺按一定比例称取,放置于烧杯中加蒸馏水搅拌均匀,然后转移至水热反应釜中于120℃~180℃反应12~48小时。将反应产物离心、烘干、收集。
本发明所涉及的Co(OH)F负极材料及制备方法具有以下几个显著的特点:
(1)本发明利用六次甲基四胺在水热条件下缓慢释放氨根离子为溶液提供碱性环境,促进化学反应发生。
(2)合成方法简单,易于操作。
(3)所得样品为微杆状,长度1~5μm,直径100nm~1μm。
(4)所制备材料容量较高,在锂离子电池中有潜在应用。
附图说明:
图1实施例1所制备样品的XRD图谱。
图2实施例1所制备样品的SEM图。
图3实施例1所制备样品的首次充、放电曲线(a)和循环性能图(b)。
图4实施例2所制备样品的XRD图谱。
图5实施例2所制备样品的SEM图谱。
图6实施例3所制备样品的XRD图谱。
具体实施方式:
实施例1
将乙酸钴、氟化钠和六次甲基四胺按摩尔比为1:1:5称取,放置于烧杯中加蒸馏水搅拌均匀,转移至水热斧中在120℃下反应24小时,将反应产物用酒精、蒸馏水离心清洗,转移至培养皿中烘干可得样品。结果表明,所制备的样品经XRD图谱分析,位于20.9°,32.3°,33.5°,34.7°,35.6°,38.8°,39.9°,43.6°,51.9°,52.8°,56.9°,59.1°和61.6o处的衍射峰与正交晶系Co(OH)F的(110),(310),(201),(400),(111),(211),(410),(311),(221),(420),(511),(002)和(601)晶面对应,与XRD卡片JCPDS,no.50-0827一致。所制备的样品经SEM表征,如图2(a)所示,由大量微杆组成,其长度分布为1~5μm。由图2(b)可见,微杆的直径分布为100nm~1μm之间。如图3为所制备的杆状锂离子电池负极材料Co(OH)F的首次充、放电曲线及循环性能,其首次充、放电比容量分别为661.1、992mAh/g,40次循环之后充、放电容量分别为330.1、332.8mAh/g,表明其在锂离子电池中有潜在的应用价值。
实施例2
将乙酸钴、氟化钠和葡萄糖按摩尔比1:1;1称取,放置于烧杯中加蒸馏水搅拌均匀,转移至水热斧中于120℃反应24小时,将反应产物用酒精、蒸馏水离心清洗,转移至培养皿中烘干可得样品。经XRD图谱分析表明,如图4所示,所得样品主要成分仍为正交晶系的Co(OH)F(JCPDS,no.50-0827),位于23°和46.7°处的衍射峰表明所制备样品含有少量钴的碳氧化合物杂质。所制备的样品经SEM表征,如图5(a)所示,由大量不规则颗粒组成。由图5(b)可见,颗粒的平均尺寸约500nm。
实施例3
将乙酸钴和氟化钠按1:1称取,放置于烧杯中加蒸馏水搅拌均匀,转移至水热斧中于120℃反应24小时,将反应产物用酒精、蒸馏水离心清洗,转移至培养皿中烘干可得样品。经XRD图谱分析表明,如图6所示,所得样品为NaCoF4和NaCoF3的混合物。

Claims (2)

1.一种Co(OH)F锂离子电池负极材料的制备方法,其特征在于:将乙酸钴、氟化钠和六次甲基四胺按摩尔比为1:1:5称取,放置于烧杯中加蒸馏水搅拌均匀,转移至水热釜中在120℃下反应24小时,将反应产物用酒精、蒸馏水离心清洗,转移至培养皿中烘干可得杆状Co(OH)F锂离子电池负极材料,杆长度为1-5μm,直径为100nm-1μm。
2.一种Co(OH)F锂离子电池负极材料的制备方法,其特征在于:将乙酸钴、氟化钠和葡萄糖按摩尔比1:1:1称取,放置于烧杯中加蒸馏水搅拌均匀,转移至水热斧中于120℃反应24小时,将反应产物用酒精、蒸馏水离心清洗,转移至培养皿中烘干可得颗粒状Co(OH)F锂离子电池负极材料,颗粒的平均尺寸为500nm。
CN201410306176.XA 2014-07-01 2014-07-01 一种新型Co(OH)F锂离子电池负极材料及其制备方法 Active CN104124447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410306176.XA CN104124447B (zh) 2014-07-01 2014-07-01 一种新型Co(OH)F锂离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410306176.XA CN104124447B (zh) 2014-07-01 2014-07-01 一种新型Co(OH)F锂离子电池负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104124447A CN104124447A (zh) 2014-10-29
CN104124447B true CN104124447B (zh) 2016-03-16

Family

ID=51769784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410306176.XA Active CN104124447B (zh) 2014-07-01 2014-07-01 一种新型Co(OH)F锂离子电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104124447B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993105B (zh) * 2015-05-27 2018-05-08 三峡大学 一种锌基复合材料氟化氢氧化锌及其制备方法和应用
CN107265518B (zh) * 2017-07-04 2019-03-29 北京科技大学 一种具有六角星结构的锂离子电池负极材料Co(OH)F及制备方法
CN108467068B (zh) * 2018-03-26 2020-08-04 宁夏大学 Cox(OH)yM的制备方法及其用途
CN110354875B (zh) * 2019-05-24 2021-05-07 深圳欧赛技术有限公司 负载在泡沫镍表面钇磷共掺杂的Co(OH)F及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556941A (zh) * 2012-01-05 2012-07-11 浙江大学 一种四氧化三钴纳米线阵列、其制备方法以及作为锂离子电池负极的用途
CN103543184A (zh) * 2013-10-18 2014-01-29 浙江大学 一种基于四氧化三钴纳米针的气敏传感器及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556941A (zh) * 2012-01-05 2012-07-11 浙江大学 一种四氧化三钴纳米线阵列、其制备方法以及作为锂离子电池负极的用途
CN103543184A (zh) * 2013-10-18 2014-01-29 浙江大学 一种基于四氧化三钴纳米针的气敏传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
0.11H2O and Their Electrochemical Properties".《The Journal of Physical Chemistry C》.2013,第117卷第20465-20473页. *
Liping Zhu 等."Porous CoO Nanostructure Arrays Converted from Rhombic Co(OH)F and Needle-like Co(CO3)0.5(OH)&#8226 *

Also Published As

Publication number Publication date
CN104124447A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
CN104009235B (zh) 一种多孔硅/石墨烯复合材料的制备方法
CN107275606B (zh) 一种碳包覆尖晶石锰酸锂纳米复合材料及制备方法与应用
CN102208614B (zh) 一种锂离子电池负极材料碳包覆三氧化二铁的制备方法
CN104779394A (zh) 一种水系锂(钠)离子电池混合负极材料
CN103474641A (zh) 一种锂离子电池负极材料Li3VO4及其制备方法
CN101221853A (zh) 一种半固态或全固态水系超级电容器
CN104868119A (zh) 无粘结剂Li3VO4/C锂离子电池负极材料及其制备方法
CN104993105A (zh) 一种锌基复合材料氟化氢氧化锌及其制备方法和应用
CN104795564B (zh) 一种水溶液二次电池的正极材料、极片、二次电池和用途
CN104795555A (zh) 一种水溶液钠离子电池及其正极材料、制备方法和用途
CN104124447B (zh) 一种新型Co(OH)F锂离子电池负极材料及其制备方法
CN103219495B (zh) 一种锌锑合金-碳复合负极材料的制备方法
CN104852029A (zh) 一种无粘结剂和导电剂的锂离子电池负极材料及制备方法
CN104993131B (zh) 一种锂离子电池负极材料NiS/Ni及其制备方法
CN102867946B (zh) 二次电池用负极活性材料、制备方法及其二次电池
CN109004233A (zh) 一种负载层状双金属氢氧化物的金属锂负极复合铜箔集流体的制备方法及应用
CN105810916B (zh) 一种SnO2/石墨烯/SnO2锂离子电池负极材料的制备方法
CN104934585A (zh) 一种钒基化合物Zn3V3O8及其制备方法和应用
KR102042098B1 (ko) 해수 전지
Luo et al. Cl− Doping Strategy to Boost the Lithium Storage Performance of Lithium Titanium Phosphate
CN112242570A (zh) 碳材料和离子型溴化物的混合物的应用以及水系锌-溴双离子电池
CN106784756B (zh) 一种用于电池正极的复合材料的制备方法
CN104993106A (zh) 一种锌基复合材料碱式碳酸锌及其制备方法和应用
CN104124445B (zh) 一种NiV3O8锂离子电池负极材料及其制备方法
CN109802122B (zh) 高稳定性有机钠离子电池正极材料及其工艺和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240313

Address after: 405400 Standard Factory Building No. 8, Puli Industrial New Area, Zhaojia Street, Kaizhou District, Chongqing

Patentee after: Chongqing jiadingsheng Technology Co.,Ltd.

Country or region after: China

Address before: 443002 No. 8, University Road, Yichang, Hubei

Patentee before: CHINA THREE GORGES University

Country or region before: China

TR01 Transfer of patent right