CN104106166B - 利用高温燃料电池***的再循环的方法和装置 - Google Patents

利用高温燃料电池***的再循环的方法和装置 Download PDF

Info

Publication number
CN104106166B
CN104106166B CN201380008569.6A CN201380008569A CN104106166B CN 104106166 B CN104106166 B CN 104106166B CN 201380008569 A CN201380008569 A CN 201380008569A CN 104106166 B CN104106166 B CN 104106166B
Authority
CN
China
Prior art keywords
fuel cell
recirculation flow
anode
cell system
recycling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380008569.6A
Other languages
English (en)
Other versions
CN104106166A (zh
Inventor
J·卢克马基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila Finland Oy
Original Assignee
Wartsila Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wartsila Finland Oy filed Critical Wartsila Finland Oy
Publication of CN104106166A publication Critical patent/CN104106166A/zh
Application granted granted Critical
Publication of CN104106166B publication Critical patent/CN104106166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明专注于一种利用高温燃料电池***的再循环的装置,所述燃料电池***中的各个燃料电池包括阳极侧(100)、阴极侧(102)以及介于所述阳极侧和所述阴极侧之间的电解质(104),并且所述燃料电池***包括用于执行反应物的阳极(100)侧再循环流的装置(109)。所述装置包括:用于针对所述再循环流实现70%或更高的循环比的装置(120);用于向所述再循环供应包含相当高的含氧量的送进流的装置(122),所述送进流占整个流的30%或更少;用于执行热交换以在所述再循环流中提供相当低的温度条件的装置(105);用于在所述再循环流中执行催化部分氧化以在燃料电池***启动或关闭情形下为所述再循环流生成相当高的量的氢的装置(107);以及用于从所述阳极侧再循环排出整个流的30%或更少的装置(114),所述装置(105)和(120)被布置为向所述装置(107)提供350℃‑500℃的进口温度,同时所述装置(107)的出口温度不超过800℃。

Description

利用高温燃料电池***的再循环的方法和装置
技术领域
世界上大多数能量是通过石油、煤、天然气或核动力产生的。就(例如)可用性以及对环境的友好性而言,所有这些产生方法均具有其特定问题。就环境而言,尤其是石油和煤在燃烧时导致污染。核动力的问题(至少)是用过的燃料的储存。
尤其是由于环境问题,已开发出与上述能源相比更加环境友好并且(例如)具有更好的效率的新能源。
燃料电池是前景很好的未来能量转换装置,通过燃料电池,燃料(例如,生物气)的能量在环境友好的工艺中经由化学反应被直接转换为电。
背景技术
如图1所示,燃料电池包括阳极侧100和阴极侧102以及介于它们之间的电解质材料104。在固体氧化物燃料电池(SOFC)中,氧气106被供应给阴极侧102,并且通过接收来自阴极的电子而被还原为负氧离子。负氧离子穿过电解质材料104到达阳极侧100,在那里它与燃料108反应,从而生成水(通常还有二氧化碳(CO2))。在阳极100和阴极102之间是用于燃料电池的外部电路111,该外部电路111包括负载110。
图2中呈现了作为高温燃料电池装置的示例的SOFC装置。SOFC装置可利用(例如)天然气、生物气、甲醇或者包含烃的其它混合物作为燃料。图2中的SOFC装置包括成堆叠形成物103(SOFC叠堆)的不止一个(通常为多个)燃料电池。各个燃料电池包括图1中所呈现的阳极100和阴极102结构。部分用过的燃料可通过各个阳极在反馈装置109中再循环。图2中的SOFC装置还包括燃料热交换器105和重整器107。通常使用多个热交换器以控制燃料电池过程中的不同位置处的热状态。重整器107是将诸如(例如)天然气的燃料转化为适合于燃料电池的组合物(例如,包含氢和甲烷、二氧化碳、一氧化碳和惰性气体的组合物)的装置。然而在各个SOFC装置中并非必须具有重整器。
利用测量装置115(例如,燃料流量计、流速计和温度计),可对SOFC装置的操作进行必要测量。阳极100处用过的部分气体可通过阳极在反馈装置109中再循环,其它部分的气体从阳极100排出114。
固体氧化物燃料电池(SOFC)装置是直接通过氧化燃料来生成电的电化学转换装置。SOFC装置的优点包括高效率、长期的稳定性、低发射和成本。主要缺点是高工作温度,其导致启动和关闭时间长并且导致机械和化学相容性问题。
诸如甲烷的天然气和包含更高碳化合物的气体通常用作SOFC中的燃料,然而,这些气体在被供应给燃料电池之前必须被预处理以防止结焦(即,形成有害的碳化合物,例如焦炭、浮尘、焦油、碳酸盐和碳化物)。这些不同形式的碳在此上下文中可被统称为有害碳化合物。在有害碳化合物的形成中碳氢化合物经历热或催化分解。生成的化合物可附着到燃料电池装置的表面并吸附催化剂(例如,镍颗粒)。在结焦中生成的有害碳化合物覆盖了燃料电池装置的一些活性表面,从而使燃料电池过程的反应性显著劣化。有害碳化合物甚至可能完全阻塞燃料通道。
因此,防止有害碳化合物的形成对于确保燃料电池的长使用寿命而言很重要。防止有害碳化合物形成还节省了催化剂,催化剂是在燃料电池中为了加速化学反应而使用的物质(镍、铂等)。气体预处理需要水,水被供应给燃料电池装置。在阳离子和燃料(即,阳极100侧的气体)化合时生成的水也可用于气体的预处理。
固体氧化物燃料电池(SOFC)的阳极电极通常包含显著量的镍,如果气氛没有还原,则镍易于形成氧化镍。如果氧化镍的形成严重,则电极的形态改变,从而不可避免地导致显著的电化学活动损失,甚至导致电池的损坏。因此,SOFC***在启动和关闭期间需要包含还原剂(例如,用诸如氮的惰性气体稀释的氢)的吹扫气体(即,安全气体)以便防止燃料电池的阳极电极氧化。在实际***中,必须使吹扫气体的量最小化,因为大量的(例如)含氢加压气体是昂贵的并且作为需要空间的组分而成问题。吹扫气体并非必然是单元素的,它们也可以是化合物气体。
燃料电池***中的CPOx(催化部分氧化)的处理通常生成一氧化碳CO和氢气H2。对燃料电池***启动或关闭操作的要求包括充足的蒸汽和氢气生成,其中生成大量CO是有害的。利用更大量的空气(即,氧气)以便更完全的氧化会生成太多热,从而使得在启动情形下温度升高过多或者在关闭情形下冷却过程过慢。
CPOx(催化部分氧化)通常生成一氧化碳CO和氢气H2。这一气体混合物用于各种化学工业用途,并且CPOx的工作温度为700℃以上。传统气体产物由于***加热/工作温度下的结焦而不适合于燃料电池。对启动或关闭气体的要求包括充足的蒸汽和氢气生成,而生成大量CO是有害的。利用更大量的空气(即,氧气)以便更完全的氧化会生成太多热,从而使得对于正常SOFC工作条件、热管理、热应力和材料选择,温度升高过多。
接下来简短讨论与此技术领域有关的一些现有技术文献。在专利申请文献US2011159386 A1中呈现了启动燃料电池***的过程,该***具有带阴极侧和阳极侧的燃料电池、重整器和辅助燃烧器。燃料电池空气利用辅助燃烧器被预热,并被提供给燃料电池的阴极侧。残余气体从燃料电池的阳极侧循环至重整器,并从重整器循环至阳极侧。然而,停止向阳极侧供应空气以便将氧气从阳极侧再循环移除。
在专利申请文献US2006093879 A1中呈现了启动具有阳极排气循环回路的燃料电池***的程序。该燃料电池***与其主负载断开连接,并在其阴极侧和阳极侧均具有空气。来自阳极侧流再循环的大部分气体被排出,仅向阳极侧再循环中提供有限的少量燃料流。燃料和空气混合物中的氢气和氧气在阳极侧中再循环时发生催化反应,直至基本上没有氧气留在循环回路中;然后,向阳极侧流中的燃料流速增大至正常工作水平,随后在电池两端连接主负载。因此US2006093879 A1中呈现的实施方式用于燃料电池***的重装阶段,此文献中的要点也在于将氧气从阳极侧移除。必须将氢气和水蒸汽提供给阳极侧(代替生成它们)。
在专利申请US2002102443 A1中呈现了关闭具有阳极排气循环回路的燃料电池***的程序。在操作期间一部分阳极侧废气流通过阳极侧在循环回路中再循环。这样关闭燃料电池***:将主负载与外部电路断开连接,随后使包含燃料的新鲜氢气停止流向阳极侧流,并通过使这些气体在阳极循环回路中再循环以接触催化剂来使阳极侧再循环中的氢气催化反应直至基本上所有氢气均被移除。因此文献US2002102443 A1呈现了与文献US2006093879 A1中所呈现的方法类似但反转的方法。
另外,公开EP1571726 A1以及公开EP1998398 A2表示本发明的现有技术。
发明内容
本发明的目的是实现一种燃料电池***,其中在燃料电池***的启动和关闭情形下,使得使用吹扫气体和外部水连接的需要最小化或者甚至完全忽略这种需要。这通过一种利用高温燃料电池***的再循环的装置来实现,所述燃料电池***中的各个燃料电池包括阳极侧、阴极侧以及介于所述阳极侧和所述阴极侧之间的电解质,并且所述燃料电池***包括用于执行反应物的阳极侧再循环流的装置。所述装置包括:用于针对所述再循环流实现70%或更高的循环比的装置;用于向所述再循环供应包含相当高的含氧量的送进流的装置,所述送进流占整个流的30%或更少;用于执行热交换以在所述再循环流中提供相当低的温度条件的装置;用于在所述再循环流中执行催化部分氧化以在燃料电池***启动或关闭情形下为所述再循环流生成相当高的量的氢的装置;以及用于从所述阳极侧再循环排出整个流的30%或更少的装置,所述用于执行热交换和实现循环比的装置被布置为向用于执行催化部分氧化的装置提供350℃-500℃的进口温度,同时所述装置的出口温度不超过800℃。
本发明还专注于一种利用高温燃料电池***的再循环的方法,在所述方法中执行反应物的阳极侧再循环流。在所述方法中:针对所述再循环流实现70%或更高的循环比;向所述再循环供应包含相当高的含氧量的送进流,所述送进流占整个流的30%或更少;执行热交换以在所述再循环流中提供相当低的温度条件;在所述再循环流中执行催化部分氧化以在燃料电池***启动或关闭情形下为所述再循环流生成相当高的量的氢;以及从所述阳极侧再循环排出整个流的30%或更少,所述热交换向所述催化部分氧化提供350℃-500℃的进口温度,同时出口温度不超过800℃。
本发明基于针对具有对于所需的氧化水平而言足够的氧气或空气含量的再循环流实现相当高的循环比,并且执行热交换以在再循环流中提供相当低的温度条件。执行催化部分氧化以针对再循环流生成相当高的量的氢和蒸汽中的至少一个,并且在燃料电池***启动或关闭情形下控制蒸汽与碳(S/C)和氧与氢(O/C)关系条件中的至少一个。
本发明的有益效果在于,即使在没有所需的任何外部吹扫气体的情况下也可执行燃料电池***的启动和关闭,这带来显著的成本和空间节省和安装益处。
附图说明
图1呈现单个燃料电池结构。
图2呈现SOFC装置的示例。
图3呈现在不同循环比下CPOx出口和进口处的温度值以及出口S/C(蒸汽与碳之比)值。
图4呈现根据本发明的优选实施方式。
具体实施方式
固体氧化物燃料电池(SOFC)可具有多种几何形状。平面几何形状(图1)是大多数类型的燃料电池所采用的典型的夹层型几何形状,其中电解质104被夹在电极(阳极100和阴极102)之间。SOFC还可被制成管形几何形状,其中(例如)空气或燃料穿过管的内部,而另一气体沿着管的外部流过。这还可被布置为使得用作燃料的气体穿过管的内部,而空气沿着管的外部流过。SOFC的其它几何形状包括改型平面电池(MPC或MPSOFC),其中波状结构取代平面电池的传统平坦构造。这些设计是有前景的,因为它们同时具有平面电池(低电阻)和管状电池二者的优点。
SOFC中所使用的陶瓷在达到非常高的温度之前不会变得离子活性,结果,必须在600至1,000℃的温度下对叠堆加热。在阴极102处氧气106(图1)还原为阳离子。然后,可通过固体氧化物电解质104将这些离子输送至阳极100,在阳极处这些离子可将用作燃料的气体108电化学氧化。在这一反应中,放出水和二氧化碳副产物以及两种电子。然后,这些电子流过外部电路111并且可在该处被利用。然后,当那些电子再次进入阴极材料102时,循环重复。
在大部分固体氧化物燃料电池***中,典型燃料是天然气(主要为甲烷)、不同的生物气(主要为氮气和/或二氧化碳稀释的甲烷)以及其它包含燃料的高级烃(包括乙醇)。甲烷和高级烃需要在进入燃料电池堆叠103之前在重整器107(图2)中或者(部分地)在叠堆103内被重整。重整反应需要特定量的水,另外还需要一些水以防止可能的积碳(即,由高级烃导致的结焦)。这些水可在内部通过阳极气体排出流的循环来提供,因为在燃料电池反应中生成过量的水,和/或所述水可利用辅助供水(例如,直接的新鲜水供应或排气冷凝物的循环)来提供。通过阳极再循环装置,阳极气体中的部分未用燃料和稀释剂也被返回供应给该过程,而在辅助供水装置中,仅向该过程添加水。由于固体氧化物燃料电池的阳极电极通常由多孔镍基陶瓷-金属结构组成(所述形态对于电池性能而言很关键),所以镍的氧化会不可避免地改变燃料电池性能。这就是为什么SOFC***需要包含还原剂(例如,利用诸如氮的惰性气体稀释的氢)的吹扫气体(即,安全气体),以便防止燃料电池***的阳极电极氧化。在实际燃料电池***中,维持过多的吹扫气体储存是不经济的,即,应该使吹扫气体的量最小化。另外,吹扫气体的使用所需的加压装置对燃料电池***的物理尺寸有显著影响。
在根据本发明的方法中,以新颖的方式使用催化部分氧化(CPOx)以在燃料电池***中利用(例如)阳极循环鼓风机提供高循环比(RR)(例如,90%)。这使得气体化合物能够包含来自所述催化部分氧化的热。因此,具有高含氧量(即,高λ)的燃料进料口组合物是可行的(λ0.6-0.75,其中λ1是完全化学计量燃烧),这在现有技术实施方式中意味着CPOx出口温度达1600-1800℃以上。但是在根据本发明的方法中,利用具有高λ的高RR来提供满足所有启动要求的足够质量的气体,同时出口温度不超过800℃。在根据本发明的催化部分氧化(CPOx)中,将利用高阳极循环比(RR)来应对释放的热,所述RR是整个流的再循环部分(按体积计量)。例如,当RR=90%时,则气体的90%将在阳极侧再循环中被冷却并循环回到CPOx进口。这也将确保CPOx上游的受热组件中的蒸汽压,其阻止了(例如)热交换器中的积碳。CPOx进口温度为(例如)450℃左右。在催化剂中或重整器中执行CPOx。
图3中呈现了在不同循环比下CPOx出口和进口302处的温度值301以及出口304S/C(蒸汽与碳之比)值。可以看出,对于在没有阳极侧再循环的情况下所需的进口气体混合,出口温度将升高至大约1900℃。但是在根据本发明的一个实施方式中,由于阳极侧再循环中的材料选择,CPOx出口处的目标温度值低于700℃。
接下来将讨论叠堆上的氢消耗对CPOx处生成的氢。如果叠堆消耗氢,则这可通过降低送进气体的λ来应对:即,将向CPOx供应较少的氧,并且将形成更多的氢。换言之,根据叠堆上的氢消耗,可调节空气供应(即,氧气供应)以防止叠堆中氢不足。尽管这也意味着将形成较少蒸汽,但是这可通过在与生成蒸汽的氧的反应中将消耗氢量的情况下叠堆处的氢氧化来平衡,这将表现为来自阳极侧再循环的蒸汽更多。因此,叠堆上的氢消耗是可调节的参数。控制应该考虑蒸汽与碳的要求:即,CPOx不应不必要地过多减少进口氧气供应以补偿消耗,因为过多减少空气供应将开始使燃料电池***的S/C降低,这将导致结焦。
图4中呈现了根据本发明的优选装置,其中燃料电池***包括用于执行反应物的阳极100侧再循环流的装置109。装置109包括管道以及布置再循环所需的其它***部件。其它***部件109可以是(例如)连接器和阀门。所述装置包括向再循环供应包含相当高的含氧量的送进气体流的装置122(a,b),所述送进流占整个流的量的30%或更小。优选地,送进流是再循环流的约10%(其因此表示整个流的90%部分)。在此优选装置中,装置122包括装置122a和122b,它们通过管道以及空气和燃料的送进操作所需的其它***部件布置。其它***部件122(a,b)可以是(例如)连接器、阀门和/或可控阀门以执行受控送进操作。装置122a送进用作燃料的空气,装置122b送进空气,通过将燃料和再循环气体和空气的管道连接到混合器(未示出)或者在不连接燃料和再循环气体和空气的管道的情况下,通过所述混合器将所述空气与燃料流并与再循环空气混合。连接的空气和燃料送进流形成向再循环的所述送进气体流。所述送进装置是示例性的,在根据本发明的实施方式中也可使用其它送进装置以形成所述送进气体流,所述送进气体流包含相当高的含氧量,并且所述送进流占整个流的量的30%或更小。因此,优选装置包括用于将整个流的30%或更小从阳极侧再循环排出的装置114。所述装置114通过管道114和/或其它***部件(例如,连接器和/或阀门)来布置。
用于送进的装置122(a,b)被布置为向再循环供应送进流,所述送进流包括在0.55-0.90范围内的λ值,该值指示送进流的所述相当高的含氧量。当需要时,利用λ传感器或其它传感器测量指示含氧量的λ值。所述装置包括针对再循环流实现70%或更高的循环比的装置120。装置120优选包括针对再循环流实现80%-94%的循环比RR(例如,RR=90%)的阳极循环鼓风机120,以使得气体化合物能够包含来自由用于执行催化部分氧化的装置107执行的氧化的热。在图4的优选实施方式中,装置107被呈现为催化剂107,但是比催化剂更优选地,装置107还可被实现为重整器107。在再循环流中执行催化部分氧化以在燃料电池***启动或关闭情形下针对再循环流生成相当高的量的氢和蒸汽。优选地,装置107被布置为针对再循环流生成百分含量为3.5%-15%的氢,作为所述相当高的量的氢。用于执行催化部分氧化的装置107还可被布置为利用混合的送进流和再循环流执行催化部分氧化,以使得燃料电池***的阳极侧中的气体在热力学上在燃料电池***加热、冷却或操作的正常温度范围中的结焦区域之外。
图4的优选装置包括用于执行热交换以在再循环流中提供相当低的温度条件以防止在催化剂之前自动点火的装置105(a,b,c,d)。用于执行热交换的装置105优选被布置为针对在再循环流中执行催化部分氧化的装置107提供350℃-500℃(例如,450℃)的进口温度。在描述的该优选装置中,装置105包括四个热交换器105a、105b、105c、105d。热交换器105a将送进空气(例如)在与燃料送进气体流混合之前利用电加热加热至(例如)450℃。热交换器105b将燃料送进气体流和再循环气体流在与送进空气流混合之前加热至(例如)450℃,然后混合的空气和燃料气体流流向用于执行催化部分氧化的装置107。热交换器105c使流向叠堆103的阳极侧100的气体冷却至一定程度。在启动情形下(即,在燃料电池***的加热阶段),叠堆103使再循环气体冷却。另外,至少在叠堆模块包括散热器以提高从再循环气体至空气的热交换时,被供应给叠堆的阴极侧102的空气使再循环气体冷却。热交换器105d执行再循环气体的冷却121(例如,空气冷却),即,在此过程阶段中,可从燃料电池***向外输送热,或者在燃料电池***内部的热集成中使用热。所描述的热交换装置是示例性的,在根据本发明的实施方式中可使用其它变型。
根据本发明的实施方式可在燃料电池***的不同类型的启动或关闭情形下(例如,在为了服务需要短时关闭和启动等情况下)使用。本发明还可在(例如)短时期ESD(紧急关闭)情形之后使用(在短时期ESD之后燃料电池***被立即启动以返回到发电状态),或者它可在热怠速下使用以在没有负载的情况下保持温度较高。
尽管参照附图和说明书呈现了本发明,但是本发明绝不限于此,在权利要求所允许的范围内可对本发明进行变化。

Claims (8)

1.一种利用高温燃料电池***的再循环的装置,所述燃料电池***中的各个燃料电池包括阳极侧(100)、阴极侧(102)以及介于所述阳极侧和所述阴极侧之间的电解质(104),并且所述燃料电池***包括用于执行反应物的阳极(100)侧再循环流的第一装置(109),所述装置的特征在于所述装置包括:
用于针对所述再循环流的量实现70%或更高的循环比的第二装置(120);用于向所述再循环供应包含相当高的含氧量的送进流的第三装置(122),所述送进流占整个流的量的30%或更少;用于执行热交换以在所述再循环流中提供相当低的温度条件的第四装置(105);用于在所述再循环流中执行催化部分氧化以在燃料电池***启动或关闭情形下为所述再循环流生成相当高的量的氢的第五装置(107);以及用于从所述阳极侧再循环排出整个流的量的30%或更少的第六装置(114),所述第四装置(105)和所述第二装置(120)被布置为向所述第五装置(107)提供350℃-500℃的进口温度,同时所述第五装置(107)的出口温度不超过800℃,并且其中,用于供应的所述第三装置(122)被布置为向所述再循环供应送进流,所述送进流包括在0.55-0.90的范围内的λ值,该λ值指示所述送进流的所述相当高的含氧量。
2.根据权利要求1所述的利用高温燃料电池***的再循环的装置,该装置的特征在于:该装置包括阳极循环鼓风机(120)作为所述第二装置(120),以用于针对所述再循环流的量实现80%-94%的循环比,使得气体化合物能够包含来自由所述第五装置(107)执行的氧化的热。
3.根据权利要求1所述的利用高温燃料电池***的再循环的装置,该装置的特征在于:用于在所述再循环流中执行催化部分氧化的所述第五装置(107)被布置为针对所述再循环流的量生成3.5%-15%含量百分比的氢,作为所述相当高的量的氢。
4.根据权利要求1所述的利用高温燃料电池***的再循环的装置,该装置的特征在于:用于在所述再循环流中执行催化部分氧化的所述第五装置(107)被布置为利用混合的送进流和再循环流执行催化部分氧化,使得所述燃料电池***的所述阳极侧中的气体在热力学上在燃料电池***加热、冷却或操作的正常温度范围中的结焦区域之外。
5.一种利用高温燃料电池***的再循环的方法,在所述方法中执行反应物的阳极(100)侧再循环流,该方法的特征在于在该方法中:针对所述再循环流的量实现70%或更高的循环比;向所述再循环供应包含相当高的含氧量的送进流,该送进流占整个流的量的30%或更少;执行热交换以在所述再循环流中提供相当低的温度条件;在所述再循环流中执行催化部分氧化以在燃料电池***启动或关闭情形下为所述再循环流生成相当高的量的氢;以及从所述阳极侧再循环排出整个流的量的30%或更少,所述热交换向所述催化部分氧化提供350℃-500℃的进口温度,同时出口温度不超过800℃,并且其中,在所述方法中向所述再循环供应送进流,该送进流包括在0.55-0.90的范围内的λ值,该λ值指示所述送进流的所述相当高的含氧量。
6.根据权利要求5所述的方法,该方法的特征在于:在所述方法中通过阳极(100)循环鼓风,针对所述再循环流的量实现80%-94%的循环比,使得气体化合物能够包含来自所述催化部分氧化的热。
7.根据权利要求5所述的方法,该方法的特征在于:在所述方法中在所述再循环流中执行催化部分氧化,以针对所述再循环流的量生成3.5%-15%含量百分比的氢,作为所述相当高的量的氢。
8.根据权利要求5所述的方法,该方法的特征在于:在所述方法中利用混合的送进流和再循环流执行催化部分氧化,使得所述燃料电池***的所述阳极侧中的气体在热力学上在燃料电池***加热、冷却或操作的正常温度范围中的结焦区域之外。
CN201380008569.6A 2012-02-10 2013-02-05 利用高温燃料电池***的再循环的方法和装置 Active CN104106166B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20125147A FI123857B (en) 2012-02-10 2012-02-10 Method and apparatus for utilizing recirculation in a high temperature fuel cell system
FI20125147 2012-02-10
PCT/FI2013/050118 WO2013117810A1 (en) 2012-02-10 2013-02-05 Method and arrangement for utilizing recirculation for high temperature fuel cell system

Publications (2)

Publication Number Publication Date
CN104106166A CN104106166A (zh) 2014-10-15
CN104106166B true CN104106166B (zh) 2017-11-17

Family

ID=47740990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380008569.6A Active CN104106166B (zh) 2012-02-10 2013-02-05 利用高温燃料电池***的再循环的方法和装置

Country Status (8)

Country Link
US (2) US20150147665A1 (zh)
EP (1) EP2812941B1 (zh)
JP (4) JP6194321B2 (zh)
KR (1) KR101563455B1 (zh)
CN (1) CN104106166B (zh)
FI (1) FI123857B (zh)
IN (1) IN2014DN06594A (zh)
WO (1) WO2013117810A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6361910B2 (ja) * 2014-04-07 2018-07-25 日産自動車株式会社 燃料電池システム及びその運転方法
WO2015162333A1 (en) 2014-04-25 2015-10-29 Convion Oy Transition arrangement and process of a fuel cell system operation state
CN105576268B (zh) 2014-10-08 2019-02-15 通用电气公司 用于控制流量比的***和方法
AT517685B1 (de) * 2015-11-17 2017-04-15 Avl List Gmbh Messverfahren und Messvorrichtung zur Ermittlung der Rezirkulationsrate
JP6322219B2 (ja) 2016-03-31 2018-05-09 本田技研工業株式会社 燃料電池システム
CN108091907B (zh) 2016-11-22 2020-09-25 通用电气公司 燃料电池***及其停机方法
WO2022113397A1 (ja) * 2020-11-24 2022-06-02 三浦工業株式会社 燃料電池システム
WO2022215224A1 (ja) * 2021-04-08 2022-10-13 三浦工業株式会社 燃料電池システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946358A (zh) * 2007-12-17 2011-01-12 国际壳牌研究有限公司 用于产生电力的基于燃料电池的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273701A (ja) * 1998-03-23 1999-10-08 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
US20020102443A1 (en) 2001-01-25 2002-08-01 Deliang Yang Procedure for shutting down a fuel cell system having an anode exhaust recycle loop
JP4137796B2 (ja) 2002-01-04 2008-08-20 ユーティーシー パワー コーポレイション アノード排気再循環ループを有する燃料電池システム始動手順
AUPS244802A0 (en) * 2002-05-21 2002-06-13 Ceramic Fuel Cells Limited Fuel cell system
DE10230149B4 (de) * 2002-07-04 2008-08-07 Sgl Carbon Ag Vorrichtung zur Erzeugung von Wasserstoff
US7674538B2 (en) * 2004-03-04 2010-03-09 Delphi Technologies, Inc. Apparatus and method for high efficiency operation of a high temperature fuel cell system
US7858214B2 (en) 2005-09-21 2010-12-28 Delphi Technologies, Inc. Method and apparatus for light internal reforming in a solid oxide fuel cell system
JP2008146851A (ja) * 2006-12-06 2008-06-26 Fuji Electric Holdings Co Ltd 燃料電池発電装置の停止方法及び燃料電池発電装置
US20080292922A1 (en) * 2007-05-22 2008-11-27 Fischer Bernhard A Method and apparatus for fueling a solid oxide fuel cell stack assembly
EP2336083A1 (en) * 2009-12-17 2011-06-22 Topsøe Fuel Cell A/S Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas
DE102009060679A1 (de) 2009-12-28 2011-06-30 J. Eberspächer GmbH & Co. KG, 73730 Betriebsverfahren für ein Brennstoffzellensystem

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946358A (zh) * 2007-12-17 2011-01-12 国际壳牌研究有限公司 用于产生电力的基于燃料电池的方法

Also Published As

Publication number Publication date
JP2018170284A (ja) 2018-11-01
FI20125147A (fi) 2013-08-11
US9496567B2 (en) 2016-11-15
JP6194321B2 (ja) 2017-09-06
CN104106166A (zh) 2014-10-15
JP2017073393A (ja) 2017-04-13
KR101563455B1 (ko) 2015-10-26
KR20140114907A (ko) 2014-09-29
JP2015509274A (ja) 2015-03-26
JP6952013B2 (ja) 2021-10-20
FI123857B (en) 2013-11-29
WO2013117810A1 (en) 2013-08-15
US20160141653A1 (en) 2016-05-19
JP2020170705A (ja) 2020-10-15
IN2014DN06594A (zh) 2015-05-22
JP7050117B2 (ja) 2022-04-07
US20150147665A1 (en) 2015-05-28
EP2812941B1 (en) 2015-11-04
EP2812941A1 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
CN104106166B (zh) 利用高温燃料电池***的再循环的方法和装置
WO2010058749A1 (ja) Mcfc発電システムとその運転方法
US9972855B2 (en) Solid oxide fuel cell system and a method of operating a solid oxide fuel cell system
US20170025696A1 (en) Fuel cell system with improved thermal management
JP4570904B2 (ja) 固体酸化物形燃料電池システムのホットスタンバイ法及びそのシステム
EP2543102A1 (en) Method and arrangement for avoiding anode oxidation
US10079398B2 (en) Transition arrangement and process of a fuel cell system operation state
KR101368667B1 (ko) 선박용 연료전지시스템
KR101296819B1 (ko) 석탄 가스 연료 전지 시스템
KR101269294B1 (ko) 난방용 및 냉방용 온수 생성 기능을 갖는 연료전지 시스템
CN116722186A (zh) 一种高温燃料电池运行***及其应急电热管理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant