CN104091915A - Electrochemical sodium storage composite electrode with high capacity and cycle stability and preparation method - Google Patents

Electrochemical sodium storage composite electrode with high capacity and cycle stability and preparation method Download PDF

Info

Publication number
CN104091915A
CN104091915A CN201410340020.3A CN201410340020A CN104091915A CN 104091915 A CN104091915 A CN 104091915A CN 201410340020 A CN201410340020 A CN 201410340020A CN 104091915 A CN104091915 A CN 104091915A
Authority
CN
China
Prior art keywords
graphene
mos2
composite nano
combination electrode
tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410340020.3A
Other languages
Chinese (zh)
Other versions
CN104091915B (en
Inventor
陈卫祥
马琳
黄国创
王臻
叶剑波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410340020.3A priority Critical patent/CN104091915B/en
Publication of CN104091915A publication Critical patent/CN104091915A/en
Application granted granted Critical
Publication of CN104091915B publication Critical patent/CN104091915B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The invention discloses an electrochemical sodium storage composite electrode with high capacity and cycle stability and a preparation method. The electrochemical sodium storage active substance is a MoS2 nano tile/graphene composite nano material; the substance amount ratio of the MoS2 nano tile to graphene in the composite nano material is (1 to 1)-(1 to 13); the MoS2 nano tile is of a few-layer layered structure, and the average layer number is 4; the composite electrode comprises the following components by weight percent: 80% of MoS2 nano tile/graphene composite nano material, 10% of acetylene black, 5% of carboxymethyl cellulose and 5% of polyvinylidene fluoride. The preparation method comprises the following steps: preparing a MoS2 nano tile/graphene composite nano material, and blending the MoS2 nano tile/graphene composite nano material with acetylene black and polyvinylidene fluoride to obtain a paste; smearing the paste on a copper foil serving as a current collector; and performing vacuum drying and rolling to obtain the electrochemical sodium storage composite electrode. The MoS2 nano tile/graphene electrochemical sodium storage composite electrode disclosed by the invention has high reversible sodium storage capacity and wide application prospect.

Description

Electrochemistry storage sodium combination electrode and the preparation method of a kind of high power capacity and stable circulation
Technical field
The present invention relates to electrochemistry storage sodium electrode and preparation method thereof, relate in particular to and use MoS 2nanometer watt/a kind of high power capacity prepared by Graphene and the electrochemistry of stable circulation storage sodium combination electrode and preparation method thereof, belong to inorganic composite nano material, new energy materials preparation field.
Background technology
Along with the development of modern mobile communication, new-energy automobile and intelligent grid, novel chemical power source has played more and more important effect in modern society.Traditional secondary cell, if lead acid accumulator is because it is containing harmful metallic element Pb, its application is restricted.Lithium ion battery has the excellent properties such as high specific energy, memory-less effect, environmental friendliness, in the Portable movable electrical equipment such as mobile phone and notebook computer, is widely used.As electrokinetic cell, lithium ion battery is also with a wide range of applications at aspects such as electric bicycle, electric automobile and intelligent grids.But due to the fail safe of lithium ion battery solution carefully and lithium resource limited never, lithium ion battery still also exists a lot of work to do as the extensive use of electrokinetic cell and storage battery.Along with the development of new-energy automobile and the large-scale application of storage battery substitute the secondary cell of a kind of cheapness, environmental friendliness and the height ratio capacity of existing secondary cell system in the urgent need to finding a kind of energy.Because sodium ion has less radius, can electrochemical intercalation and the de-compound that is embedded in some layer of structure, as: inorganic transition metal oxide, sulfide etc.Sodium also has aboundresources, cheap, nontoxic and process the advantages such as convenient in addition.Therefore, chargeable sodium-ion battery also becomes the research system of a new secondary cell in recent years.But up to the present as the electrode material of high performance electrochemistry storage sodium still seldom.
MoS 2having and layer structure like graphite-like, is the S-Mo-S of very strong covalent bonds in its layer, is weak Van der Waals force between layers.MoS 2weak interlaminar action power and larger interlamellar spacing allow to be reacted at its interlayer and introduced external atom or molecule by insertion.Such characteristic makes MoS 2material can be used as the material of main part that inserts reaction.Therefore, MoS 2it is a kind of electrode material that has the electrochemistry storage sodium of development and application prospect.But general MoS 2nano material electrochemistry storage sodium poor-performing, its electrochemistry storage sodium capacity lower (only having 50-100 mAh/g), has affected its practical application.
?two-dimensional nano material has the characteristic of numerous excellences with its unique pattern, its research has caused people's very big interest.Graphene is most typical two-dimensional nano material, and its unique two-dimensional nano chip architecture makes the performances such as physics, chemistry and mechanics of its numerous uniquenesses, has important scientific research meaning and technology application prospect widely.Graphene has high specific area, high conduction and heat conductivility, high charge mobility, excellent mechanical property, these excellent characteristics make Graphene be with a wide range of applications in fields such as nano electron device, novel catalyst material and electrochemistry energy storage and energy conversion.
The immense success that the discovery of Graphene and research thereof obtain has excited the very big interest of people to other inorganic two-dimensional nano investigations of materials, as the transition metal dichalcogenide of individual layer or few number of plies etc.Recently, Graphene concept has expanded to the inorganic compound of other layer structures from material with carbon element, namely for the inorganic material of layer structure, when its number of plies reduces (below 8 layers), while especially reducing to individual layer, its electronic property or band structure can produce obvious variation, thereby cause it to show the physics and chemistry characteristic different from corresponding body phase material.Except Graphene, as body phase MoS 2reduce to few number of plies when individual layer (especially), shown and the visibly different physics of body phase material, chemical characteristic.Research shows the MoS of individual layer or few number of plies 2nanometer sheet has better electrochemistry storage sodium performance.But as the electrode material of electrochemistry storage sodium, MoS 2low electric conductivity between layers affected the performance of its application.
Due to MoS 2nanometer sheet and Graphene have similar two-dimensional nano sheet pattern, and both have good similitude on microscopic appearance and crystal structure.If by MoS 2the composite material of nanometer sheet and the compound preparation of Graphene, the high conduction performance of graphene nanometer sheet can further improve the electric conductivity of composite material, strengthen the electronics transmission in electrochemistry storage sodium electrode process, can further improve the electrochemistry storage sodium performance of composite material.With common MoS 2nanometer sheet comparison, the MoS of little nanometer watt shape pattern 2not only there is more edge, more short sodium ion diffusion admittance can be provided, and load on Graphene, there is more contact area with electrolyte.So MoS 2the composite nano materials of nanometer watt/Graphene can show the electrochemistry storage sodium performance of remarkable enhancing.
But, up to the present, use MoS 2nanometer watt/Graphene composite nano materials have not been reported as electrochemistry storage sodium combination electrode and the preparation thereof of electroactive substance.First the present invention is raw material with graphene oxide and sodium molybdate, and the hydrothermal method of assisting by Gemini surface active agent and heat treatment subsequently, prepared MoS 2the composite nano materials of nanometer watt/Graphene, then uses MoS 2the composite nano materials of nanometer watt/Graphene, as the active material of electrochemistry storage sodium, has been prepared the combination electrode of electrochemistry storage sodium.The present invention prepares MoS 2the method of nanometer watt/Graphene composite nano materials electrochemistry storage sodium combination electrode has simply, facilitates and be easy to expand industrial applications a little.
Summary of the invention
The object of the present invention is to provide electrochemistry storage sodium combination electrode of a kind of high power capacity and stable circulation and preparation method thereof, the electrochemistry storage sodium active material of combination electrode is MoS 2the composite nano materials of-nanometer watt/Graphene, MoS in composite nano materials 2the ratio of the amount of substance of nanometer watt and Graphene is 1:1-1:3, MoS 2the nanometer watt layer structure for few number of plies, the component of combination electrode and mass percentage content thereof are: MoS 2nanometer watt/Graphene composite nano materials 80%, acetylene black 10%, carboxymethyl cellulose 5%, Kynoar 5%.
In technique scheme, the layer structure of few number of plies refers to that the number of plies is in the layer structure below 6 layers or 6 layers, described MoS 2the average number of plies of nanometer watt is 4 layers.
The preparation method of the electrochemistry storage sodium combination electrode of above-mentioned high power capacity and stable circulation comprises the following steps:
(1) be dispersed in deionized water graphene oxide is ultrasonic, add the two ammonium bromides (seeing accompanying drawing 1) of Gemini surface active agent N-dodecyl trimethylene diamine, and fully stir, then add successively Cys and sodium molybdate, and constantly stir Cys and sodium molybdate are dissolved completely, the ratio of the amount of substance of Cys and sodium molybdate consumption is 5:1, sodium molybdate with the ratio of the amount of substance of graphene oxide at 1:1-1:3;
(2) mixed dispersion step (1) being obtained is transferred in hydrothermal reaction kettle, and add deionized water to adjust volume to 80% of hydrothermal reaction kettle nominal volume, the concentration of the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamine is 0.01 ~ 0.02 mol/L, the content of graphene oxide is 30-65 mmol/L, this reactor is put in constant temperature oven, at 230-250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect hydro-thermal reaction solid product, and fully wash with deionized water, vacuumize at 100 ℃, by the hydro-thermal reaction solid product obtaining in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2 h, in mist, hydrogen volume mark is 10%, finally prepare MoS 2the composite nano materials of nanometer watt/Graphene,
(3) by the MoS of above-mentioned preparation 2nanometer watt/Graphene composite nano materials is as the electrochemistry storage sodium active material of electrode, under agitation fully mix the uniform pastel of furnishing with the 1-METHYLPYRROLIDONE solution of the Kynoar of acetylene black, carboxymethyl cellulose and mass fraction 5%, each constituent mass percentage is: MoS 2nanometer watt/Graphene composite nano materials 80%, acetylene black 10%, carboxymethyl cellulose 5%, Kynoar 5%, is coated onto this pastel on the Copper Foil of collector equably, vacuumize at 110 ℃, roll extrusion obtains MoS 2nanometer watt/Graphene electrochemistry storage sodium combination electrode.
Above-mentioned graphene oxide adopts improved Hummers method preparation.
Hydrothermal method with the two ammonium bromides assistance of Gemini surface active agent N-dodecyl trimethylene diamine of the present invention is prepared MoS 2the method of nanometer watt/Graphene composite nano materials has the following advantages: graphene oxide surface and edge with a lot of oxygen-containing functional groups (as hydroxyl, carbonyl, carboxyl), these oxygen-containing functional groups are more easily dispersed in water or organic liquid graphene oxide, but these oxygen-containing functional groups make graphene oxide surface with negative electrical charge, make graphene oxide with the MoO of negative electrical charge 4 2-ion is incompatible, and the present invention is first adsorbed onto graphene oxide surface by the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamine by electrostatic interaction, makes it with part positive charge, due to electrostatic interaction, and MoO 4 2-ion is just easy to interact and combine with the graphene oxide that has adsorbed Gemini surface active agent.The more important thing is, compare with common single cationic surfactant, in the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamine, there are 2 positively charged quaternary ammonium hydrophilic radicals, there is enough hydrophilies, and between electronegative graphene oxide, there is stronger mutual electrostatic interaction; The two ammonium bromides of N-dodecyl trimethylene diamine also have 2 hydrophobic long alkyl chain groups (seeing accompanying drawing 1), and hydrophobicity is stronger.The two ammonium bromides of N-dodecyl trimethylene diamine are adsorbed on Graphene surface, and its hydrophobic grouping exists (seeing accompanying drawing 2) with irregular " brush head " form of bending, and this version has caused water-heat process and heat treatment back loading at the MoS on Graphene surface 2the pattern with nanometer watt.This undersized MoS 2nanometer watt has more edge, as electrochemistry storage sodium material, can provide more short sodium ion diffusion admittance, contributes to strengthen its electrochemistry storage sodium performance; In addition, MoS 2nanometer watt/graphene composite material can increase the contact area of itself and electrolyte, can further contribute to improve its chemical property.So the present invention MoS 2the electrochemistry storage sodium combination electrode that nanometer watt/graphene composite material is prepared as electroactive substance has high electrochemistry storage sodium capacity, excellent cycle performance and significantly strengthen large current density electrical characteristics.
Accompanying drawing explanation
The two ammonium bromide structural representations of Fig. 1 Gemini surface active agent N-dodecyl trimethylene diamine.
Fig. 2 Gemini surface active agent is adsorbed on the schematic diagram on graphene oxide surface.
The MoS that Fig. 3 embodiment 1 prepares 2the XRD figure of nanometer watt/Graphene composite nano materials.
The MoS that Fig. 4 embodiment 1 prepares 2sEM shape appearance figure and the transmission electron microscope photo of nanometer watt/Graphene composite nano materials.
MoS prepared by the comparative example of Fig. 5 embodiment 1 2the TEM of nanometer sheet and Graphene composite nano materials and HRTEM photo.
Embodiment
Below in conjunction with embodiment, further illustrate the present invention.
Graphene oxide in following example adopts improved Hummers method preparation: 0 ounder C ice bath, 10.0 mmol (0.12 g) graphite powder dispersed with stirring, in the 50 mL concentrated sulfuric acids, is slowly added to KMnO under constantly stirring 4, institute adds KMnO 4quality be 4 times of graphite powder, stir 50 minutes, when temperature rises to 35 ℃, slowly add 50 mL deionized waters, then stir 30 minutes, add the H of 15 mL mass fractions 30% 2o 2, stir 30 minutes, through centrifugation, after HCl solution, deionized water and the acetone cyclic washing with mass fraction 5%, obtain graphene oxide successively.
?embodiment 1
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, add again the two ammonium bromides of 0.8 mmol Gemini surface active agent N-dodecyl trimethylene diamine, and fully stir, then add successively 0.76g (6.25mmol) Cys and 0.3 g (1.25 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely, with deionized water, adjust volume to approximately 80 mL;
2) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, this reactor is put in constant temperature oven, at 230 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash with deionized water, vacuumize at 100 ℃, by resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, in mist, the volume fraction of hydrogen is 10%, prepares MoS 2the composite nano materials of nanometer watt/Graphene, MoS in composite nano materials 2with the ratio of Graphene amount of substance be 1:2.With XRD, SEM and TEM are to the prepared MoS that obtains 2the composite nano materials of nanometer watt/Graphene characterizes, and XRD analysis result (seeing accompanying drawing 3) shows MoS in composite nano materials 2for the layer structure of few number of plies, the average number of plies is 4 layers.SEM pattern and TEM photo (seeing accompanying drawing 4) have also shown the MoS loading on Graphene 2have little nanometer watt pattern, its number of plies is between 2-6, and most numbers of plies are 4 layers, consistent with XRD analysis;
3) by the MoS of above-mentioned preparation 2nanometer watt/Graphene composite nano materials is as the electrode active material of electrochemistry storage sodium, with acetylene black, the 1-METHYLPYRROLIDONE solution of the Kynoar of carboxymethyl cellulose and mass fraction 5% under agitation fully mixes the uniform pastel of furnishing, this pastel is coated onto equably on the Copper Foil of collector, vacuumize at 110 ℃, then roll extrusion obtains MoS 2nanometer watt/Graphene electrochemistry storage sodium combination electrode, in combination electrode, each constituent mass percentage is: MoS 2nanometer watt/Graphene composite nano materials 80%, acetylene black 10%, carboxymethyl cellulose 5%, Kynoar 5%.
?electrochemistry storage sodium performance test: take combination electrode as work electrode, as to electrode, electrolyte is 1.0 mol/L NaClO with sodium metal sheet 4perfluorocarbon acid vinyl acetate/propene carbonate (FEC/PC, 1:1, volume ratio) solution be electrolyte, porous polypropylene film (Celguard-2400) is barrier film, in being full of the suitcase of argon gas, is assembled into test battery.By the electrochemistry storage sodium performance of constant current charge-discharge test compound electrode, charge and discharge cycles is carried out on programme controlled auto charge and discharge instrument, charging and discharging currents density 50 mA/g, voltage range 0.01 ~ 3.0 V.Test result shows: MoS 2the initial reversible capacity of electrochemistry storage sodium of nanometer watt/graphene combination electrode is 435 mAh/g, and after 50 circulations, reversible capacity is 425 mAh/g, has shown high specific capacity and excellent stable circulation performance; When high current charge-discharge (charging and discharging currents is 1000 mA/g), its capacity is 372 mAh/g, has shown its high power charging-discharging characteristic (with comparative example comparison below) significantly strengthening.
Comparative example
Adopt DTAB cationic surfactant, by above-mentioned similar approach, prepared MoS 2nanometer sheet/Graphene electrochemistry storage sodium combination electrode, concrete preparation process is as follows:
Be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, add again 1.6 mmol DTAB cationic surfactants, and fully stir, then add successively 0.76g (6.25mmol) Cys and 0.3 g (1.25mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely, with deionized water, adjust volume to approximately 80 mL, resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, this reactor is put in constant temperature oven, at 230 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash with deionized water, vacuumize at 100 ℃, by resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2 h, in mist, the volume fraction of hydrogen is 10%, prepare MoS 2the nano composite material of nanometer sheet/Graphene, MoS in composite nano materials 2with the ratio of the amount of substance of Graphene be 1:2.With XRD, SEM and TEM are to finally preparing MoS 2the nano composite material of nanometer sheet/Graphene characterizes, and XRD analysis result shows MoS in composite nano materials 2for layer structure, its average number of plies is 7 layers, and TEM and HRTEM photo (seeing accompanying drawing 5) have shown the MoS loading on Graphene 2for nanometer sheet pattern, its thickness and plane sizes are not so good as MoS above 2nanometer watt evenly, MoS 2the number of plies of nanometer sheet is at 4-9 layer, and the average number of plies is 7 layers, consistent with XRD analysis.
With prepared MoS2 nanometer sheet/Graphene composite nano materials, it is electrochemistry storage sodium active material, by above-mentioned steps 3) process prepare MoS2 nanometer sheet/Graphene electrochemistry storage sodium combination electrode, and test its electrochemistry storage sodium performance by aforementioned identical electrochemistry storage sodium method of testing.Result shows: MoS 2the initial reversible capacity of nanometer sheet/Graphene electrochemistry storage sodium combination electrode electrochemistry storage sodium is that 253 mAh/g(charging and discharging currents are 50 mA/g), after 50 circulations, reversible capacity is 235 mAh/g; When high current charge-discharge (charging and discharging currents is 1000 mA/g), its capacity is 136 mAh/g.

Claims (3)

1. the electrochemistry of a high power capacity and stable circulation storage sodium combination electrode, it is characterized in that, the electrochemistry storage sodium active material of combination electrode is the composite nano materials of MoS2-nanometer watt/Graphene, in composite nano materials, the ratio of the amount of substance of MoS2 nanometer watt and Graphene is 1:1-1:3, the MoS2 nanometer watt layer structure for few number of plies, the component of combination electrode and mass percentage content thereof are: MoS2 nanometer watt/Graphene composite nano materials 80%, acetylene black 10%, carboxymethyl cellulose 5%, Kynoar 5%.
2. the electrochemistry of high power capacity according to claim 1 and stable circulation storage sodium combination electrode, is characterized in that, the average number of plies of described MoS2 nanometer watt is 4 layers.
3. a preparation method for the electrochemistry of high power capacity and stable circulation storage sodium combination electrode described in claim 1 or 2, is characterized in that, its preparation method carries out according to the following steps:
(1) be dispersed in deionized water graphene oxide is ultrasonic, add the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamine, and fully stir, then add successively Cys and sodium molybdate, and constantly stir Cys and sodium molybdate are dissolved completely, the ratio of the amount of substance of Cys and sodium molybdate consumption is 5:1, and sodium molybdate is 1:1-1:3 with the ratio of the amount of substance of graphene oxide;
(2) mixed dispersion step (1) being obtained is transferred in hydrothermal reaction kettle, and add deionized water to adjust volume to 80% of hydrothermal reaction kettle nominal volume, the concentration of the two ammonium bromides of Gemini surface active agent N-dodecyl trimethylene diamine is 0.01 ~ 0.02 mol/L, the content of graphene oxide is 30-65 mmol/L, this reactor is put in constant temperature oven, at 230-250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect hydro-thermal reaction solid product, and fully wash with deionized water, vacuumize at 100 ℃, by the hydro-thermal reaction solid product obtaining in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2 h, in mist, hydrogen volume mark is 10%, finally prepare the composite nano materials of MoS2 nanometer watt/Graphene,
(3) using the MoS2 nanometer of above-mentioned preparation watt/Graphene composite nano materials as the electrochemistry storage sodium active material of preparing combination electrode, under agitation fully mix the uniform pastel of furnishing with the 1-METHYLPYRROLIDONE solution of the Kynoar of acetylene black, carboxymethyl cellulose and mass fraction 5%, this pastel is coated onto equably on the Copper Foil of collector, vacuumize at 110 ℃, roll extrusion obtains MoS2 nanometer watt/Graphene electrochemistry storage sodium combination electrode.
CN201410340020.3A 2014-07-17 2014-07-17 The electrochemistry storage sodium combination electrode of a kind of high power capacity and stable circulation and preparation method Expired - Fee Related CN104091915B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410340020.3A CN104091915B (en) 2014-07-17 2014-07-17 The electrochemistry storage sodium combination electrode of a kind of high power capacity and stable circulation and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410340020.3A CN104091915B (en) 2014-07-17 2014-07-17 The electrochemistry storage sodium combination electrode of a kind of high power capacity and stable circulation and preparation method

Publications (2)

Publication Number Publication Date
CN104091915A true CN104091915A (en) 2014-10-08
CN104091915B CN104091915B (en) 2016-07-06

Family

ID=51639611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410340020.3A Expired - Fee Related CN104091915B (en) 2014-07-17 2014-07-17 The electrochemistry storage sodium combination electrode of a kind of high power capacity and stable circulation and preparation method

Country Status (1)

Country Link
CN (1) CN104091915B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514425A (en) * 2015-12-11 2016-04-20 南开大学 High-performance indoor-temperature sodium ion battery and preparation method thereof
CN110247038A (en) * 2019-06-14 2019-09-17 天能电池集团股份有限公司 A kind of Bi2S3-MoS2/ graphene composite nano material and preparation method thereof
CN110350159A (en) * 2019-06-14 2019-10-18 天能电池集团股份有限公司 A kind of combination electrode and preparation method thereof of simultaneous electrochemical storage lithium and storage sodium
CN110350149A (en) * 2019-06-14 2019-10-18 天能电池集团股份有限公司 A kind of combination electrode and preparation method thereof of electrochemistry storage sodium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142548A (en) * 2011-02-25 2011-08-03 浙江大学 Compound nano material of graphene and MoS2 and preparation method thereof
CN102683648A (en) * 2012-06-08 2012-09-19 浙江大学 Preparation method of few-layer MoS2/graphene electrochemical storage lithium composite electrode
CN103094563A (en) * 2013-01-08 2013-05-08 哈尔滨工程大学 Graphene and MoS2 nano-composite with three-dimensional structure and preparation method and application
CN103198928A (en) * 2012-01-09 2013-07-10 中国科学院长春应用化学研究所 Sodium ion electrochemical capacitor
US20130309495A1 (en) * 2012-05-18 2013-11-21 InHwan Do Process of dry milling particulate materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142548A (en) * 2011-02-25 2011-08-03 浙江大学 Compound nano material of graphene and MoS2 and preparation method thereof
CN103198928A (en) * 2012-01-09 2013-07-10 中国科学院长春应用化学研究所 Sodium ion electrochemical capacitor
US20130309495A1 (en) * 2012-05-18 2013-11-21 InHwan Do Process of dry milling particulate materials
CN102683648A (en) * 2012-06-08 2012-09-19 浙江大学 Preparation method of few-layer MoS2/graphene electrochemical storage lithium composite electrode
CN103094563A (en) * 2013-01-08 2013-05-08 哈尔滨工程大学 Graphene and MoS2 nano-composite with three-dimensional structure and preparation method and application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105514425A (en) * 2015-12-11 2016-04-20 南开大学 High-performance indoor-temperature sodium ion battery and preparation method thereof
CN105514425B (en) * 2015-12-11 2019-05-31 南开大学 A kind of high-performance room-temperature sodium-ion battery and preparation method thereof
CN110247038A (en) * 2019-06-14 2019-09-17 天能电池集团股份有限公司 A kind of Bi2S3-MoS2/ graphene composite nano material and preparation method thereof
CN110350159A (en) * 2019-06-14 2019-10-18 天能电池集团股份有限公司 A kind of combination electrode and preparation method thereof of simultaneous electrochemical storage lithium and storage sodium
CN110350149A (en) * 2019-06-14 2019-10-18 天能电池集团股份有限公司 A kind of combination electrode and preparation method thereof of electrochemistry storage sodium

Also Published As

Publication number Publication date
CN104091915B (en) 2016-07-06

Similar Documents

Publication Publication Date Title
CN102142538B (en) Lithium ion battery electrode made of graphene/ MoS2 and amorphous carbon and preparation method
CN102683648B (en) Preparation method of few-layer MoS2/graphene electrochemical storage lithium composite electrode
CN102683647B (en) Preparation method of graphene-like MoS2/graphene combined electrode of lithium ion battery
CN104091922B (en) Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method
CN104124434B (en) Multiple edge MoS2nanometer sheet/Graphene electrochemistry storage lithium combination electrode and preparation method
CN102142539B (en) Electrochemical insertion/deinsertion magnesium ion electrode with high capacity and stable circulation and preparation method
CN105304862A (en) Preparation method of graphene-like MoS2/nitrogen and phosphorus co-doped graphene electrochemical lithium storage composite electrode
CN104091915B (en) The electrochemistry storage sodium combination electrode of a kind of high power capacity and stable circulation and preparation method
CN104124435B (en) Multiple edge MoS2nanometer sheet/Graphene electrochemistry storage sodium combination electrode and preparation method
CN104103814B (en) Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage lithium combination electrode and preparation method
CN104091926B (en) WS2Nanometer watt/Graphene electrochemistry storage sodium combination electrode and preparation method
CN104091916B (en) MoS2nanometer sheet with holes/Graphene electrochemistry storage sodium combination electrode and preparation method
CN102709520B (en) MoS2 nanoribbon and graphene composite electrode for lithium ion battery and preparation method for composite electrode
CN104091924B (en) Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage magnesium combination electrode and preparation method
CN104091928B (en) MoS2Nanometer sheet/Graphene electrochemistry storage lithium combination electrode with holes and preparation method
CN104091929B (en) WS2Nanometer watt/Graphene electrochemistry storage magnesium combination electrode and preparation method
CN104103834B (en) WS2Nanometer sheet with holes/Graphene electrochemistry storage sodium combination electrode and preparation method
CN104091927B (en) WS2Nanometer sheet/Graphene electrochemistry storage magnesium combination electrode with holes and preparation method
CN104091954B (en) Multiple edge WS2/ Graphene electrochemistry storage sodium combination electrode and preparation method
CN104103833B (en) Multiple edge WS2/ Graphene electrochemistry storage magnesium combination electrode and preparation method
CN104103811B (en) MoS2Nanometer sheet with holes/Graphene electrochemistry storage magnesium combination electrode and preparation method
CN104091925B (en) Multiple edge MoS2nanometer sheet/Graphene electrochemistry storage magnesium combination electrode and preparation method
CN104103810B (en) Multiple edge WS2/ Graphene electrochemistry storage lithium combination electrode and preparation method
CN104103830B (en) Electrochemistry storage lithium combination electrode and the preparation method of a kind of high power capacity and stable circulation
CN104091948B (en) Electrochemistry storage magnesium combination electrode of a kind of high power capacity and stable circulation and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160706

Termination date: 20200717

CF01 Termination of patent right due to non-payment of annual fee