CN104088955A - 基于混合模式的发动机磁流变液压悬置 - Google Patents

基于混合模式的发动机磁流变液压悬置 Download PDF

Info

Publication number
CN104088955A
CN104088955A CN201410313396.5A CN201410313396A CN104088955A CN 104088955 A CN104088955 A CN 104088955A CN 201410313396 A CN201410313396 A CN 201410313396A CN 104088955 A CN104088955 A CN 104088955A
Authority
CN
China
Prior art keywords
magnetic
ring support
flow
mixed mode
hydraulic suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410313396.5A
Other languages
English (en)
Other versions
CN104088955B (zh
Inventor
郑玲
邓召学
张自伟
郭敏敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410313396.5A priority Critical patent/CN104088955B/zh
Publication of CN104088955A publication Critical patent/CN104088955A/zh
Application granted granted Critical
Publication of CN104088955B publication Critical patent/CN104088955B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明公开了一种基于混合模式的发动机磁流变液压悬置,在挤压极板和挤压线圈座之间形成挤压阻尼通道,在外磁芯和流动线圈座之间形成流动阻尼通道,采用流动模式和挤压模式的混合模式结构,不仅能增加阻尼力的可调范围、提高悬置的隔振能力,而且阻尼力的可控性好、输出稳定;采用惯性通道与解耦膜组合结构,惯性通道与解耦膜的节流孔交错布置,缓解了悬置高频硬化现象,有效的拓宽了悬置隔振频率范围;在连接杆上设置节流盘,节流盘的扰流作用降低了高频硬化现象;壳体采用隔磁铝合金材料,使其工作时磁路漏磁减弱;采用兼有注液和排气两种功能的大直径孔结构作为注液排气孔,简化悬置的结构,密封性能更好。

Description

基于混合模式的发动机磁流变液压悬置
技术领域
本发明涉及隔振装置,具体涉及一种基于混合模式的发动机磁流变液压悬置。
背景技术
磁流变液的粘度以及屈服应力可以随外加磁场的变化而变化,这种变化具有快速、可逆及可控的特点。磁流变液压悬置就是利用磁流变液的这种特性,通过控制励磁线圈中的电流改变磁场强度来改变磁流变液压悬置的输出阻尼力,从而使发的动机的振动衰减,此过程响应迅速、过程连续、可逆。
现有的用于汽车发动机隔振的磁流变液压悬置,其工作模式一般采用单一的流动模式或者挤压模式,存在以下如下不足:1)流动模式虽然可控性好但阻尼力的可调范围小,高频时可调性较差;挤压模式宽频范围内能够提供较大阻尼力,但是由于挤压阻尼通达的宽度随激励幅值变化,其可控性不及流动模式,因此单一模式的磁流变液压悬置限制了悬置***的隔振效果;2)由于磁流变液粘度比较大,磁流变液压悬置在高频下的动态硬化现象更为突出。
发明内容
有鉴于此,本发明的目的是提供一种基于混合模式的发动机磁流变液压悬置,不仅能增加阻尼力的可调范围、避免在高频下出现动态硬化现象,而且阻尼力的可控性好、输出稳定。
本发明通过以下技术手段解决上述问题:一种基于混合模式的发动机磁流变液压悬置,包括顶端开口的壳体、设置并封堵于壳体顶端开口处的橡胶主簧、贯穿橡胶主簧的连接杆和设置于壳体内侧底部的橡胶底膜,所述壳体包括通过螺栓连接的上壳体和下壳体,所述橡胶主簧和橡胶底膜之间形成密闭且充满磁流变液的腔室,所述腔室中设置有隔磁底座,所述隔磁底座两侧均设置有流动阻尼结构,所述流动阻尼结构包括外磁芯和其上缠绕有励磁线圈的流动线圈座,所述外磁芯和流动线圈座之间形成流动阻尼通道,所述隔磁底座中部设置有其上缠绕有励磁线圈的挤压线圈座,所述对应挤压线圈座的位置设置有挤压极板,所述挤压极板和挤压线圈座之间形成挤压阻尼通道,所述连接杆一端伸入腔室与挤压极板可拆卸连接,所述隔磁底座中部上端开有凹槽,凹槽内放置带有节流孔的解耦膜,挤压线圈座和隔磁底座上均开设了与节流孔位置相错的惯性通道。
进一步,所述连接杆上设置有节流盘,所述节流盘处在挤压极板和橡胶主簧之间。
进一步,还包括用于避免流动阻尼通道和挤压阻尼通道内部磁场之间耦合的隔磁板和隔磁套筒。
进一步,所述上壳体和下壳体的内侧面各设有一个台阶面,所述隔磁底座将橡胶底膜的两端压紧在下壳体的台阶面上,所述隔磁底座将外磁芯压紧在上壳体的台阶面上。
进一步,所述挤压线圈座和流动线圈座之间设置有隔磁套筒,挤压线圈座、流动线圈座和外磁芯下端通过紧固螺钉固定在隔磁底座上,所述隔磁板通过紧固螺钉与流动线圈座和外磁芯上端连接。
进一步,所述挤压线圈座靠近挤压极板一侧设置有用于安装励磁线圈的线圈槽,所述线圈槽右侧设置有垂向导线槽,所述隔磁底座上侧设置有与锤向导线槽连通的横向导线槽,所述外磁芯和下壳体内部设置便于引出流动线圈座内励磁线圈引线的横向导线孔。
进一步,所述上壳体与下壳体、上壳体与外磁芯及下壳体与外磁芯的配合面上设置有密封圈。
进一步,所述橡胶主簧上还设置有加强块,所述加强块上设置有注液排气孔,所述连接杆上端通过加强块的中心螺纹与加强块固定连接。
进一步,所述壳体由隔磁铝合金材料制成。
本发明的有益效果:
1)本发明的磁流变液压悬置,在挤压极板和挤压线圈座之间形成挤压阻尼通道,在外磁芯和流动线圈座之间形成流动阻尼通道,采用流动模式和挤压模式的混合模式结构,不仅能增加阻尼力的可调范围、提高悬置的隔振能力,而且阻尼力的可控性好、输出稳定。
2)隔磁底座中间上端设置有解耦膜,下部布置有惯性通道。采用惯性通道与解耦膜组合结构,惯性通道与解耦膜的节流孔交错布置,当低频振动时,发动机振幅大,解耦膜停留在凹槽一侧,关闭了解耦膜的节流孔和惯性通道,有利于悬置输出较大阻尼;当高频振动时,发动机振幅小,解耦膜在凹槽内振动,惯性通道和解耦膜孔打开,缓解悬置高频硬化现象,有效的拓宽了悬置隔振频率范围。
3)所述流动阻尼通道和挤压阻尼通道通过隔磁板和隔磁套筒隔开,避免了内部磁场耦合。
4)在连接杆上设置节流盘,节流盘的扰流作用降低了高频硬化现象。
5)壳体采用隔磁铝合金材料,使其工作时磁路漏磁减弱;采用兼有注液和排气两种功能的大直径孔结构作为注液排气孔,简化悬置的结构,密封性能更好。
附图说明
下面结合附图和实施例对本发明作进一步描述。
图1为本发明的结构示意图;
图2为连接杆的结构示意图;
图3为节流盘的结构示意图;
图4为挤压极板的结构示意图;
图5为外磁芯的结构示意图;
图6为下壳体的结构示意图;
图7为隔磁板的结构示意图;
图8为流动线圈座的结构示意图;
图9为隔磁套筒的结构示意图;
图10为挤压线圈座的结构示意图;
图11为隔磁底座的结构示意图。
具体实施方式
以下将结合附图对本发明进行详细说明,如图1-11所示:本发明的基于混合模式的发动机磁流变液压悬置,包括顶端开口的壳体、设置并封堵于壳体顶端开口处的橡胶主簧2、贯穿橡胶主簧的连接杆3和设置于壳体内侧底部的橡胶底膜4,所述壳体包括通过螺栓连接的上壳体1a和下壳体1b,橡胶主簧2通过硫化工艺与上壳体1a固定连接,所述橡胶主簧2和橡胶底膜4之间形成密闭且充满磁流变液的腔室,所述腔室中设置有隔磁底座5,所述隔磁底座两侧均设置有流动阻尼结构,所述流动阻尼结构包括外磁芯6和其上缠绕有励磁线圈的流动线圈座7,所述外磁芯6和流动线圈座7之间形成流动阻尼通道,所述隔磁底座5中部设置有其上缠绕有励磁线圈的挤压线圈座8,所述对应挤压线圈座的位置设置有挤压极板9,所述挤压极板9和挤压线圈座8之间形成挤压阻尼通道,所述连接杆3一端伸入腔室与挤压极板9可拆卸连接,所述隔磁底座5中部上端开有凹槽,凹槽内放置带有节流孔10a的解耦膜10,挤压线圈座和隔磁底座上均开设了与节流孔位置相错的惯性通道5a。
作为上述技术方案的进一步改进,所述连接杆3上设置有节流盘11,所述节流盘11处在挤压极板9和橡胶主簧2之间。节流盘11的扰流作用降低了高频硬化现象。
作为上述技术方案的进一步改进,还包括用于避免流动阻尼通道和挤压阻尼通道内部磁场之间耦合的隔磁板12和隔磁套筒13。
作为上述技术方案的进一步改进,所述橡胶主簧2上还设置有加强块18,橡胶主簧2通过硫化工艺与加强块固定连接,所述加强块18上设置有注液排气孔19,所述连接杆3上端通过加强块18的中心螺纹与加强块固定连接,采用兼有注液和排气两种功能的大直径孔结构作为注液排气孔,简化悬置的结构,密封性能更好。
为使上述技术方案更加清楚,下面列举更为具体的实施方式:
一种基于混合模式的发动机磁流变液压悬置,所述上壳体1a和下壳体1b均由隔磁铝合金材料制成,所述腔室中设置有隔磁底座5,所述隔磁底座两侧均设置有流动阻尼结构,所述流动阻尼结构包括外磁芯6和其上缠绕有励磁线圈的流动线圈座7,所述外磁芯6和流动线圈座7之间形成流动阻尼通道,所述外磁芯6和下壳体1b内部设置便于引出流动线圈座内励磁线圈引线的横向导线孔16,所述隔磁底座中部设置有挤压线圈座8,所述对应挤压线圈座的位置设置有挤压极板9,所述挤压极板9和挤压线圈座8之间形成挤压阻尼通道,所述挤压线圈座靠近挤压极板一侧设置有用于安装励磁线圈的线圈槽,所述线圈槽右侧设置有垂向导线槽14,所述隔磁底座上侧设置有与锤向导线槽连通的横向导线槽15,所述横向导线孔16和横向导线槽15与外界连通处均设置有用于防止磁流变液外泄的密封螺钉20,所述连接杆露出悬置部分一端设置有一定长度的螺纹,用于与发动机连接,所述连接杆另一端伸入腔室与挤压极板可拆卸连接,所述连接杆上设置有节流盘11,所述节流盘处在挤压极板和橡胶主簧之间,所述隔磁底座中部上端开有凹槽,凹槽内放置带有节流孔10a的解耦膜10,挤压线圈座和隔磁底座上均开设了与节流孔位置相错的惯性通道5a。
所述上壳体1a和下壳体1b的内侧面各设有一个台阶面,所述隔磁底座5将橡胶底膜4的两端压紧在下壳体的台阶面上,所述隔磁底座5将外磁芯6压紧在上壳体的台阶面上,所述上壳体与下壳体、上壳体与外磁芯及下壳体与外磁芯的配合面上设置有密封圈17;避免防止漏液现象。
所述挤压线圈座和流动线圈座之间设置有隔磁套筒13,挤压线圈座8、流动线圈座7和外磁芯6下端通过紧固螺钉固定在隔磁底座5上,所述隔磁板通过紧固螺钉与流动线圈座和外磁芯上端连接。
所述下壳体底部设置有通气孔21,通气孔用于将橡胶底膜一侧与空气相通。
当发动机振动带动连接杆3及节流盘11和挤压极板9一起上下移动,挤压阻尼通道宽度发生变化,阻尼通道宽度越小,阻尼力越大;由于发动机振动幅值相对较小,挤压模式能在满足最大输出阻尼力的同时增加阻尼力的可调范围,提高了悬置的隔振能力。当低频振动时,发动机振幅大,解耦膜10停留在凹槽一侧,关闭了解耦膜的节流孔10a和惯性通道5a,有利于悬置输出较大阻尼;当高频振动时,发动机振幅小,解耦膜在凹槽内振动,惯性通道5a和节流孔10a打开,缓解悬置高频硬化现象,有效的拓宽了悬置隔振频率范围,节流盘11的扰流作用也能进一步降低了高频硬化现象;工作过程中,流动阻尼通道宽度保持不变,在宽频范围内,能够提供稳定的流动阻尼力,因此消除了挤压模式结构阻尼力可控性差的弊端,使阻尼力输出稳定可靠。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种基于混合模式的发动机磁流变液压悬置,包括顶端开口的壳体、设置并封堵于壳体顶端开口处的橡胶主簧(2)、贯穿橡胶主簧的连接杆(3)和设置于壳体内侧底部的橡胶底膜(4),所述壳体包括通过螺栓连接的上壳体(1a)和下壳体(1b),所述橡胶主簧和橡胶底膜之间形成密闭且充满磁流变液的腔室,其特征在于:所述腔室中设置有隔磁底座(5),所述隔磁底座两侧均设置有流动阻尼结构,所述流动阻尼结构包括外磁芯(6)和其上缠绕有励磁线圈的流动线圈座(7),所述外磁芯(6)和流动线圈座(7)之间形成流动阻尼通道,所述隔磁底座中部设置有其上缠绕有励磁线圈的挤压线圈座(8),所述对应挤压线圈座的位置设置有挤压极板(9),所述挤压极板和挤压线圈座之间形成挤压阻尼通道,所述连接杆(3)一端伸入腔室与挤压极板(9)可拆卸连接,所述隔磁底座中部上端开有凹槽,凹槽内放置带有节流孔(10a)的解耦膜(10),挤压线圈座和隔磁底座上均开设了与节流孔位置相错的惯性通道(5a)。
2.根据权利要求1所述的基于混合模式的发动机磁流变液压悬置,其特征在于:所述连接杆(3)上设置有节流盘(11),所述节流盘处在挤压极板和橡胶主簧之间。
3.根据权利要求2所述的基于混合模式的发动机磁流变液压悬置,其特征在于:还包括用于避免流动阻尼通道和挤压阻尼通道内部磁场之间耦合的隔磁板(12)和隔磁套筒(13)。
4.根据权利要求3所述的基于混合模式的发动机磁流变液压悬置,其特征在于:所述上壳体和下壳体的内侧面各设有一个台阶面,所述隔磁底座(5)将橡胶底膜(4)的两端压紧在下壳体的台阶面上,所述隔磁底座(5)将外磁芯(6)压紧在上壳体的台阶面上。
5.根据权利要求3所述的基于混合模式的发动机磁流变液压悬置,其特征在于:所述挤压线圈座(8)和流动线圈座(7)之间设置有隔磁套筒(13),挤压线圈座(8)、流动线圈座(7)和外磁芯(6)下端通过紧固螺钉固定在隔磁底座(5)上,所述隔磁板(12)通过紧固螺钉与流动线圈座(7)和外磁芯(6)上端连接。
6.根据权利要求5所述的基于混合模式的发动机磁流变液压悬置,其特征在于:所述挤压线圈座(8)靠近挤压极板(9)一侧设置有用于安装励磁线圈的线圈槽,所述线圈槽右侧设置有垂向导线槽(14),所述隔磁底座上侧设置有与锤向导线槽连通的横向导线槽(15),所述外磁芯和下壳体内部设置便于引出流动线圈座内励磁线圈引线的横向导线孔(16)。
7.根据权利要求6所述的基于混合模式的发动机磁流变液压悬置,其特征在于:所述上壳体与下壳体、上壳体与外磁芯及下壳体与外磁芯的配合面上设置有密封圈(17)。
8.根据权利要求7所述的基于混合模式的发动机磁流变液压悬置,其特征在于:所述橡胶主簧上还设置有加强块(18),所述加强块上设置有注液排气孔(19),所述连接杆(3)上端通过加强块(18)的中心螺纹与加强块固定连接。
9.根据权利要求1-8任意一项所述的基于混合模式的发动机磁流变液压悬置,其特征在于:所述壳体由隔磁铝合金材料制成。
CN201410313396.5A 2014-07-03 2014-07-03 基于混合模式的发动机磁流变液压悬置 Expired - Fee Related CN104088955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410313396.5A CN104088955B (zh) 2014-07-03 2014-07-03 基于混合模式的发动机磁流变液压悬置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410313396.5A CN104088955B (zh) 2014-07-03 2014-07-03 基于混合模式的发动机磁流变液压悬置

Publications (2)

Publication Number Publication Date
CN104088955A true CN104088955A (zh) 2014-10-08
CN104088955B CN104088955B (zh) 2016-01-20

Family

ID=51636698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410313396.5A Expired - Fee Related CN104088955B (zh) 2014-07-03 2014-07-03 基于混合模式的发动机磁流变液压悬置

Country Status (1)

Country Link
CN (1) CN104088955B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104455176A (zh) * 2014-11-27 2015-03-25 安徽微威胶件集团有限公司 一种新型磁流变弹性体解耦膜元件
CN105927696A (zh) * 2016-07-07 2016-09-07 河南科技大学 一种磁流变精密机床隔振器
CN106286687A (zh) * 2016-11-09 2017-01-04 重庆交通大学 流动与挤压组合模式的磁流变隔振器
KR101812744B1 (ko) 2017-03-29 2018-01-30 평화산업주식회사 방열구조가 구비된 모듈형 능동 엔진마운트
CN108501680A (zh) * 2018-05-10 2018-09-07 浙江零跑科技有限公司 一种悬置液封结构
CN108869611A (zh) * 2018-07-22 2018-11-23 重庆交通大学 乘用车发动机多模式磁流变隔振器
CN109404475A (zh) * 2018-12-12 2019-03-01 重庆交通大学 变解耦膜刚度混合模式磁流变隔振器
CN109505917A (zh) * 2018-12-04 2019-03-22 重庆理工大学 基于磁控刚度与阻尼的隔振装置
CN109532451A (zh) * 2019-01-11 2019-03-29 河南科技学院 一种新型发动机悬置
CN109707581A (zh) * 2019-02-01 2019-05-03 安徽工程大学 一种能量可回收的发动机半主动悬置装置
CN109838496A (zh) * 2017-11-24 2019-06-04 现代自动车株式会社 用于车辆的发动机悬置
CN110259873A (zh) * 2019-06-28 2019-09-20 重庆交通大学 混合模式磁流变隔振器
CN112060900A (zh) * 2020-10-10 2020-12-11 上海汽车集团股份有限公司 汽车、动力总成悬置***及其抗扭拉杆
WO2024020832A1 (zh) * 2022-07-27 2024-02-01 华为技术有限公司 一种减振装置及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171186A1 (en) * 2001-05-16 2002-11-21 Delphi Technologies, Inc. Hydraulic mount with magnetorheological fluid
KR20040049230A (ko) * 2002-12-05 2004-06-11 대한민국(부경대학교 총장) 자기유동성 유체를 이용한 댐퍼의 피스톤밸브장치
CN101936360A (zh) * 2010-09-07 2011-01-05 吉林大学 汽车动力总成半主动控制磁流变液压悬置
CN102829127A (zh) * 2012-09-20 2012-12-19 重庆大学 汽车发动机悬置***磁流变隔振器
CN103148158A (zh) * 2013-03-15 2013-06-12 重庆大学 基于挤压模式的发动机磁流变液压悬置
CN103644246A (zh) * 2013-12-02 2014-03-19 江苏大学 一种混合模式磁流变液压悬置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020171186A1 (en) * 2001-05-16 2002-11-21 Delphi Technologies, Inc. Hydraulic mount with magnetorheological fluid
KR20040049230A (ko) * 2002-12-05 2004-06-11 대한민국(부경대학교 총장) 자기유동성 유체를 이용한 댐퍼의 피스톤밸브장치
CN101936360A (zh) * 2010-09-07 2011-01-05 吉林大学 汽车动力总成半主动控制磁流变液压悬置
CN102829127A (zh) * 2012-09-20 2012-12-19 重庆大学 汽车发动机悬置***磁流变隔振器
CN103148158A (zh) * 2013-03-15 2013-06-12 重庆大学 基于挤压模式的发动机磁流变液压悬置
CN103644246A (zh) * 2013-12-02 2014-03-19 江苏大学 一种混合模式磁流变液压悬置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104455176B (zh) * 2014-11-27 2017-02-01 安徽微威胶件集团有限公司 一种磁流变弹性体解耦膜元件
CN104455176A (zh) * 2014-11-27 2015-03-25 安徽微威胶件集团有限公司 一种新型磁流变弹性体解耦膜元件
CN105927696A (zh) * 2016-07-07 2016-09-07 河南科技大学 一种磁流变精密机床隔振器
CN105927696B (zh) * 2016-07-07 2018-02-23 河南科技大学 一种磁流变精密机床隔振器
CN106286687A (zh) * 2016-11-09 2017-01-04 重庆交通大学 流动与挤压组合模式的磁流变隔振器
KR101812744B1 (ko) 2017-03-29 2018-01-30 평화산업주식회사 방열구조가 구비된 모듈형 능동 엔진마운트
CN109838496A (zh) * 2017-11-24 2019-06-04 现代自动车株式会社 用于车辆的发动机悬置
CN108501680A (zh) * 2018-05-10 2018-09-07 浙江零跑科技有限公司 一种悬置液封结构
CN108501680B (zh) * 2018-05-10 2023-08-29 浙江零跑科技股份有限公司 一种悬置液封结构
CN108869611A (zh) * 2018-07-22 2018-11-23 重庆交通大学 乘用车发动机多模式磁流变隔振器
CN109505917B (zh) * 2018-12-04 2020-09-18 重庆理工大学 基于磁控刚度与阻尼的隔振装置
CN109505917A (zh) * 2018-12-04 2019-03-22 重庆理工大学 基于磁控刚度与阻尼的隔振装置
CN109404475B (zh) * 2018-12-12 2020-09-08 重庆交通大学 变解耦膜刚度混合模式磁流变隔振器
CN109404475A (zh) * 2018-12-12 2019-03-01 重庆交通大学 变解耦膜刚度混合模式磁流变隔振器
CN109532451A (zh) * 2019-01-11 2019-03-29 河南科技学院 一种新型发动机悬置
CN109707581A (zh) * 2019-02-01 2019-05-03 安徽工程大学 一种能量可回收的发动机半主动悬置装置
CN109707581B (zh) * 2019-02-01 2024-01-23 安徽工程大学 一种能量可回收的发动机半主动悬置装置
CN110259873A (zh) * 2019-06-28 2019-09-20 重庆交通大学 混合模式磁流变隔振器
CN110259873B (zh) * 2019-06-28 2021-03-02 重庆交通大学 混合模式磁流变隔振器
CN112060900A (zh) * 2020-10-10 2020-12-11 上海汽车集团股份有限公司 汽车、动力总成悬置***及其抗扭拉杆
CN112060900B (zh) * 2020-10-10 2022-04-05 上海汽车集团股份有限公司 汽车、动力总成悬置***及其抗扭拉杆
WO2024020832A1 (zh) * 2022-07-27 2024-02-01 华为技术有限公司 一种减振装置及控制方法

Also Published As

Publication number Publication date
CN104088955B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN104088955B (zh) 基于混合模式的发动机磁流变液压悬置
CN102829127B (zh) 汽车发动机悬置***磁流变隔振器
CN103148158B (zh) 基于挤压模式的发动机磁流变液压悬置
CN104074919B (zh) 基于周径向流动模式的发动机磁流变液压悬置
CN203926577U (zh) 磁流变液减震器
CN106594159B (zh) 一种实现三向隔振的磁流变复合悬置
CN104595412A (zh) 基于流动模式的双筒结构磁流变减振器
CN105003585A (zh) 变截面活塞式磁流变减振器
CN108869611B (zh) 乘用车发动机多模式磁流变隔振器
CN201093028Y (zh) 一种液压悬置及其灌装装置
CN105546024A (zh) 一种多模式半主动液压悬置
CN110056599A (zh) 一种基于剪切模式下可变行程的双筒主动式磁流变减振器
CN2828439Y (zh) 电流变流体减振器
CN108591343A (zh) 一种缸筒定位的外绕式磁流变阻尼器
CN102297233B (zh) 一种单出杆磁流变阻尼器
WO2023279748A1 (zh) 一种基于混合阻尼模式的高输出力隔振悬置
CN107630972A (zh) 一种汽车磁流变减震器
CN105546012A (zh) 一种可控解耦膜及节流孔式半主动悬置
CN106286687A (zh) 流动与挤压组合模式的磁流变隔振器
CN206159353U (zh) 基于混合阻尼模式的发动机磁流变液压悬置
CN112555326B (zh) 一种双环形阻尼间隙磁流变阻尼器
CN110259876B (zh) 双锥台式阻尼通道磁流变隔振器
CN105370784A (zh) 一种抗温衰减震器
CN210266143U (zh) 一种高密封性的石油管道节流阀
CN102141108B (zh) 外置电磁铁伸缩式磁流变阻尼器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20190703