CN104052478A - 由于输入信号相关引起的adc基准电压的背景校准 - Google Patents

由于输入信号相关引起的adc基准电压的背景校准 Download PDF

Info

Publication number
CN104052478A
CN104052478A CN201410095256.5A CN201410095256A CN104052478A CN 104052478 A CN104052478 A CN 104052478A CN 201410095256 A CN201410095256 A CN 201410095256A CN 104052478 A CN104052478 A CN 104052478A
Authority
CN
China
Prior art keywords
reference voltage
input signal
adc
digital
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410095256.5A
Other languages
English (en)
Other versions
CN104052478B (zh
Inventor
沈军华
R·A·卡普斯塔
E·C·古塞瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices Inc
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Publication of CN104052478A publication Critical patent/CN104052478A/zh
Application granted granted Critical
Publication of CN104052478B publication Critical patent/CN104052478B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration
    • H03M1/1014Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/1019Calibration at one point of the transfer characteristic, i.e. by adjusting a single reference value, e.g. bias or gain error by storing a corrected or correction value in a digital look-up table
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/16Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps
    • H03M1/164Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit with scale factor modification, i.e. by changing the amplification between the steps the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/44Sequential comparisons in series-connected stages with change in value of analogue signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明的实施方案可以提供模拟数字转换器(ADC)***。ADC***可以包括模拟电路,所述模拟电路接收输入信号和基准电压,并且将输入信号转换成原数字输出。模拟电路可以包括至少一个采样元件,至少一个采样元件在采样相位期间内对输入信号进行采样并且在转换相位期间再用于连接到基准电压。ADC***还可以包括数字处理器,数字处理器接收原数字输出,并且对于每个时钟周期,在模拟数字转换中对基准电压误差进行数字校正。

Description

由于输入信号相关引起的ADC基准电压的背景校准
相关申请的交叉引用
本申请要求递交于2013年3月14的序列号为61/785,167的美国临时专利申请所提供的优先权的利益,该申请的内容通过引用合并于本文。
技术领域
本发明涉及模拟数字转换器(ADC),尤其涉及其中的基准电压误差校正。
背景技术
ADC将输入模拟信号转换成数字表示形式(例如,数字字)。典型地,ADC在其转换过程中使用基准电压。例如,在逐次求近寄存器(SAR)ADC中,在位检验中使用基准电压来计算数字字的位值。然而,基准电压源经常包括会破坏转换的非理想特征。
纯粹的模拟方法通常用于产生基准电压,其理想地是过程、供给电压和温度(PVT)独立的。然而,在纯粹的模拟方法中出现了三个主要问题。首先,与这些方法相关联的高功耗和复杂度抵消了由它们所提供的多部分益处。其次,精确的PVT跟踪会很难以至不可能,因为在当今的应用中基准要求日趋严格。第三,无论基准电压产生的精度如何,非理想特征易于进入***。例如,在许多ADC设计中基准电压通常取决于输入信号,这引入了基准电压误差。理论上讲,如果允许周期之间的充分的稳定时间,消除Vin相关性是可能的;然而,对于高速、高精度ADC来说,允许该更多的时间会导致大的延迟和其它误差。
一次校准,诸如在制造时或加电之后进行的校准,能够消除由于过程变化引入的一些误差,但是不能补偿其它误差,包括动态的周期-周期误差。诸如反馈环路的单独的误差校正路径,使用单独的高度精确的ADC来测量误差,该单独的误差校正路径能够用于校正缓慢误差,例如供给和/或温度诱发的误差。然而,单独的ADC误差校正路径必须使用昂贵的ADC来测量这些缓慢误差,并且它们仍不足够快来校正由于输入信号相关性引起的诸如基准电压误差的更快的误差,因为这些误差从周期到周期是变化的。
因此,本发明的发明人认识到本领域对于在不具有能够动态地校正这种周期-周期误差的额外ADC的ADC中快速基准电压误差校正的需求。
附图说明
图1A示出了根据本发明的实施方案的ADC***。
图1B示出了根据本发明的实施方案的基准电压产生***。
图1C示出了根据本发明的实施方案的基准电压产生***的RC模型。
图1D示出了根据本发明的实施方案的基准电压产生***。
图2示出了根据本发明的实施方案的基准电压校正的过程流程。
图3示出了根据本发明的实施方案的SAR ADC***。
图4示出了根据本发明的实施方案的SAR ADC***。
图5示出了根据本发明的实施方案的流水线ADC***。
图6示出了根据本发明的实施方案的SAR ADC***的DAC。
图7示出了根据本发明的实施方案的基准电压校正的过程流程。
发明详述
本发明的实施方案可以提供模拟数字转换器(ADC)***。ADC***可以包括模拟电路,所述模拟电路接收输入信号和基准电压,并且将输入信号转换成原数字输出。模拟电路可以包括:至少一个采样元件,至少一个采样元件在采样相位期间对输入信号进行采样并且在转换相位期间再用于连接到基准电压;以及输出原数字输出的ADC输出。ADC***还可以包括数字处理器,其接收原数字输出,并且对于每个时钟周期,对模拟数字转换中的基准电压误差进行数字校正。
图1A是根据本发明的实施方案的基准电压误差校正的ADC***100。ADC***100可以包括ADC110以及数字处理器120。ADC110可以接收输入模拟信号Vin以及基准电压Vref。基于这些输入信号,ADC110可以将Vin转换以产生原数字输出信号Dout_raw。
然而,由于传递到原数字输出信号Dout_raw的输入信号相关性,基准电压Vref会将误差引入到转换中。例如,ADC110可以包括至少一个采样元件,至少一个采样元件用于在采样相位期间内对Vin进行采样并且在转换相位中还用于连接到Vref。采样元件的再使用可引起基准电压中的输入信号相关误差。因此,基准电压误差会从一个周期到另一周期而变化。可利用各种技术来产生基准电压,各种技术都将输入信号相关误差引入基准电压中。
图1B是根据本发明的实施方案的基准电压产生***130,该基准电压产生***使用基准缓冲器,基准缓冲器可以与图1A的ADC***100结合使用。基准电压产生***130可以包括基准缓冲器132、开关134以及采样电容器136。采样电容器136可以设置为一个或多个电容器。基准缓冲器132可以与开关134耦合以驱动采样电容器136。开关134可以选择性地将基准缓冲器132输出Vref连接到采样电容器136。在接收到基准缓冲器132的呈Vref形式的电荷之前,采样电容器136可以已经具有存储其中的输入电压Vin。因此,采样电容器136可由输入电压和基准电压两者重使用,导致在基准电压中的输入信号相关误差。
图1C示出了图1B中的基准电压产生***130的简化的RC模型140。RC模型140可以包括基准电压源Vref_in、电阻器142以及采样电容器136。电阻器142可以表示基准电压产生***130的基准缓冲器132、开关134和其它电路元件的输出阻抗。采样电容器136的充电过程可表示为:
Vref_out=Vref_in+(Vin-Vref_in)exp(-t/τ),     (1)
其中τ是对应于RC的时间常数,并且t是时间变量。等式(1)表明,有效连接基准电压输出Vref_out可以是Vin的函数。
图1D是根据本发明的另一实施方案的基准电压产生***150,其使用可与图1A的ADC***100结合使用的储存电容器。基准电压产生***150可以包括采样开关(фsamp)152、储存电容器(Cr)154、转换开关(фconv)156以及采样电容器158。采样开关152可以将Vref_source152选择性地与储存电容器154耦合。而且,储存电容器154可以是足够大以保持大量的基准电压电荷的电容器。转换开关156可以将储存电容器154与采样电容器158选择性地耦合以将电荷从储存电容器154传递到采样电容器158。采样电容器158可在由储存电容器154充电之前Vref已经具有存储于其内的输入电压Vin。因此,采样电容器158会被输入电压和基准电压两者重使用,导致基准电压中的输入信号相关误差。此处,采样电容器158的充电过程可表达为:
Vref_out=((Cr*Vref)+(Cs*Vin))/(Cr+Cs),     (2)
其中,Cr是储存电容器的电容,Cs是采样电容器的电容。等式(2)表明,有效采样基准电压Vref_out可以是Vin的函数。图1B-1D描绘了各种基准电压产生***的输入信号相关,仅为了示例性的目的,还可以使用其它的基准电压产生***。
返回图1A,数字处理器120可以对ADC110中的基准电压误差进行校正。数字处理器120可以接收ADC110的原数字输出信号Dout_raw。数字处理器120可实现为微控制器、微处理器、数字信号处理器等。数字处理器120可以在每个周期对Dout_raw中的基准电压误差进行数字校准和校正,从而产生Dout_correct,Dout_correct是不具有(或减弱)基准电压误差的数字输出信号。数字处理器120可以基于ADC110的特定体系结构和位权重来执行校正算法。校正算法可以在每个转换/时钟周期内由数字处理器120进行预先存储和执行。每个周期的位决策可以是用于校正算法的变量输入。校正算法可考虑到ADC110的元件的位权重。下面更详细地说明校正算法的实施方案。
图2是根据本发明的实施方案的ADC***中的基准电压误差校正的简化过程流程。例如,过程200的模拟部分可以由图1A的ADC110来执行,并且过程200的数字部分可由图1A的数字处理器120来执行。此外,过程200可以在每个转换周期内执行。在步骤210中,待转换的输入模拟信号可由ADC采样。例如,可通过ADC中的采样电容器对输入信号进行采样。在步骤212中,在输入信号转换中使用的基准电压可与ADC连接。此处,之前用于对输入信号进行采样的至少一个采样元件可再用于基准电压连接。这样,输入信号相关误差会引入基准电压中。
在步骤214中,ADC可以利用基准电压转换输入信号并且由此可以产生原数字输出Dout_raw。Dout_raw可以包含由于基准电压误差引起的误差。转换可以是SAR转换、流水线式转换等。在步骤216中,Dout_raw可由数字处理器捕获。在步骤218中,相关的位决策(k)可从Dout_raw可中提取。至少一个位决策可与再用于输入信号采样和基准电压连接两者的采样元件相关联。
在步骤220中,可以基于提取的位决策(k)来数字地校正Dout_raw中的基准电压误差。基准电压校正可以通过应用采样元件的权重总和来执行。例如,对应于数字输出的实际总权重,称为w_tot,可表达为:
w_tot=w_eff[n-1:0]x b[n-1:0]’,     (3)
其中w_eff[n-1:0]是转换的位权重,b[n-1:0]是数字输出位,b[n-1:0]’是b[n-1:0]的转置。而且,有效位权重可以是Vin、Vref、以及基准元件权重w_ele[n-1:0]的函数,其可表达为:
w_eff[k]=f(Vin,Vref,w_ele[n-1:0]),     (4)其中k在0至n-1之间并且对应于相应周期中的位决策,w_ele[n-1:0]是元件权重,函数f()是因设计体系结构而具体不同。例如,不同的SAR ADC可以各自具有取决于其体系结构的独特的f(),不同的流水线式ADC可各自具有取决于其体系结构等的独特的f()。因此,f()可以是已知的并且可以预先存储。此外,总权重w_tot也可以是Vin和Vref的函数,并且可表达为:
w_tot=Vin/Vref_id*2^n,     (5)
基准元件的权重w_ele[n-1:0]也可以是已知的且可预先存储。因此,使用带有从瞬时数字输出Dout_raw接收到的变量k的等式(3)、(4)和(5),基准电压误差校正可以计算w_tot的形式执行,从而产生Dout_correct。在步骤222中,Dout_correct可以输出。Dout_correct可以无基准电压误差(或者具有减弱的基准电压误差)。
本文所描述的基准电压校正技术可结合各种不同的ADC体系结构来实施。图3是根据本发明的实施方案的具有基准电压误差校正的SAR ADC***300。SAR ADC***300可以包括数字模拟转换器(DAC)310、比较器320、SAR逻辑330以及数字处理器340。DAC310可接收输入模拟信号(Vin)、基准电压(Vref)和地电压(GND)。DAC310可以包括共用的输入信号和基准电压电容器。例如,DAC310可以包括采样电容器312.0-312.n以及将Vin、Vref、或Gnd任一者与采样电容器312.0-312.n选择性地耦合的对应组的开关314.0-314.n。
DAC310可以包括采样电容器312.0-312.n以及将Vin、Vref或Gnd任一者与采样电容器312.0-312.n选择性地耦合的对应组的开关314.0-314.n。在转换相位期间,采样电容器312.0-312.n可以连接到Vref或Gnd。采样电容器312.0-312.n的重使用会导致基准电压中的输入信号相关误差。因此,基准电压误差从一个周期到另一个周期是变化的。基准电压Vref可通过如本文所描述的基准缓冲器、储存电容器等产生。
比较器320可以接收DAC310的输出作为一个输入并且接收Vcm作为另一个输入,用于在数字字转换周期中进行位检验的比较。SAR逻辑330可以接收比较输出并且决定每个位检验是否得到‘0’或‘1’。对位决策进行汇编,SAR逻辑330可以产生原数字输出信号Dout_raw。
数字处理器340可以接收Dout_raw。数字处理器340可实现为微控制器、微处理器、数字信号处理器等。数字处理器340可在每个周期对Dout_raw中的基准电压误差进行数字校准和校正,从而产生Dout_correct,Dout_correct是不具有基准电压误差(或具有减弱的基准电压误差)的数字输出信号。数字处理器340可基于ADC(例如,DAC310)的具体体系结构和位权重来执行校正算法。校正算法可预先存储且在每个转换/时钟周期通过数字处理器340来执行,如本文所描述的(例如,图2的过程200)。
图4是根据本发明的实施方案的带有基准电压误差校正的另一SARADC***400。SAR ADC***400可以包括部分共用的输入信号和基准电压电容器。SAR ADC***400可以包括DAC410、比较器420、SAR逻辑430以及数字处理器440。DAC410可以接收输入模拟信号(Vin)、基准电压(Vref)和地电压(GND)。DAC410可以包括共用的输入信号和基准电压电容器。在实施方案中,DAC410可以包括两组电容器,即LSB电容器412.0-412.n以及MSB电容器416.0-416.m。LSB电容器412.0-412.n可通过一组开关414.0-414.n与Vref或Gnd选择性地耦合。LSB电容器412.0-412.n可不被输入信号共用。另一方面,MSB电容器416.0-416.m可通过一组开关418.0-418.m与Vref、Gnd和Vin选择性地耦合。不同于LSB电容器412.0-412.n,MSB电容器416.0-416.m可由基准电压和输入信号共用。
例如,在采样相位期间内,输入信号Vin可采样到MSB电容器416.0-416.m上。在转换相位期间内,MSB电容器416.0-416.m和LSB电容器412.0-412.n可连接到Vref或Gnd。MSB电容器416.0-416.m的重使用会导致基准电压中的输入信号相关误差。因此,基准电压误差可以从一个周期到另一个周期变化。基准电压Vref可以由如上文所述的基准缓冲器、储存电容器等产生。
比较器420可以接收DAC410的输出作为一个输入以及接收Vcm作为另一个输入,用于在数字字转换周期中用于位检验的比较。SAR逻辑430可以接收比较素材并且决定每个位检验是否得到了‘0’或‘1’。将位检验进行汇编,SAR逻辑443可以产生原数字输出信号Dout_raw。
数字处理器440可以接收Dout_raw。数字处理器440可实现为微控制器、微处理器、数字信号处理器等。数字处理器440可在每个周期对Dout_raw中的基准电压误差进行数字校准和校正,从而产生Dout_correct,Dout_correct是不具有基准电压误差(或具有减弱的基准电压误差)的数字输出信号。数字处理器440可基于ADC(DAC410)的具体体系结构和位权重来执行校正算法。校正算法可预先存储并且在每个转换/时钟周期内由数字处理器440执行,如本文所描述的(例如,图2中的过程200以及下文要讨论的图7的过程700)。
图5是根据本发明的实施方案的带有基准电压误差校正的流水线式ADC***500。流水线式ADC***500可包括模拟部分和数字部分。模拟部分可接收输入模拟信号(Vin)、以及基准电压(Vref)和地电压(GND)。模拟部分可以包括开关510、512、532以及采样电容器520、522。在该实施方案中,电容器Cf520可以仅接收Vin并且可以不被Vref共用。另一方面,电容器Cs522可选择性地接收Vin、Vref或Gnd,并且可以由输入信号Vin和Vref共用。虽然该实施方案表明了部分共用的采样元件,还可以在流水线式ADC中实现全共用采样元件。模拟部分还可以包括第一级,第一级包括比较器530、开关510、512、532、采样电容器520、522以及子ADC545,以及后端ADC540。第一级的子ADC545和后端ADC540可以产生原数字输出信号Dout_raw。
在数字部分中,数字处理器550可以接收Dout_raw。数字处理器550可实现为微控制器、微处理器、数字信号处理器等。数字处理器550可在每个周期对Dout_raw中的基准电压误差进行数字校准和校正,从而产生Dout_correct,Dout_correct是不具有基准电压误差(或具有减弱的基准电压误差)的数字输出信号。数字处理器550可以基于ADC的具体体系结构和位权重来执行校正算法。校正算法可预先存储并且可在每个转换/时钟周期内由数字处理器550执行,如本文所描述的(例如,图2的过程200,以及下文讨论的图7的过程700)。
图6示出了根据本发明的实施方案的部分共用的SAR ADC中的DAC600。为简要,DAC600示出了1位的MSB和LSB。DAC600可以包括差动输入信号Vip和Vin,以及描绘为上Vrt和下Vrb的基准电压。DAC600可以包括采样开关(фsamp)612.1-612.8、储存电容器(Cres)614、MSB采样电容器616.1,616.2、LSB采样电容器618.1,618.2、MSB转换开关(фmsb)620.1-620.4,以及LSB转换开关(фlsb)622.1,622.2。MSB采样电容器616.1,616.2可由输入信号和基准电压共用。下文更详细地说明DAC600的操作。
图7是根据本发明的实施方案的用于ADC***中的基准电压误差校正的简化过程流程。过程700可在每个转换周期对于ADC中的共用的采样元件来执行。在步骤710中,可通过ADC对待转换的输入模拟信号进行采样。例如,可通过ADC中的采样电容器对输入信号进行采样。例如,在图6实施例的DAC600中,在采样相位期间内差动输入信号Vip和Vim可以采样到MSB电容器616.1,616.2和LSB采样电容器618.1,618.2上。此外,理想基准电压可连接到储存电容器Cres614。
在步骤712中,在输入信号转换中使用的基准电压可连接到ADC。此处,之前用于对输入信号采样的至少一个采样元件可再用于基准电压连接。因此,输入信号相关误差会引入基准电压中。例如,在图6实施例的DAC600中,Cres614可以短接到Cmsbs616.1,616.2,取决于在转换相位期间MSB位检验决策是‘0’还是‘1’。由于Cres614的有限值,理想基准电压Vrt-Vrb会在其与Cmsbs616.1,616.2短接之后降至Vrp-Vrm,输入信号相关。
在步骤714中,ADC可以利用基准电压来转换输入信号并且从而可以产生原数字输出Dout_raw。Dout_raw可以包含由于基准电压误差引起的误差。转换可以是SAR求近转换、流水线式转换等。在步骤716中,Dout_raw可由数字处理器捕获。在步骤718中,可从Dout_raw中提取位决策(k)。在步骤720中,可从Dout_raw中提取非共用采样元件有效权重。
在步骤722中,可以基于提取的信息来对Dout_raw中的基准电压误差进行数字校正。例如,考虑图6的DAC600,DAC600的输出节点3和4可最终由于SAR ADC负反馈环路而被驱动到零。因此,基于两个节点1和2上采样相位和转换相位之间的电荷保存:
(Vrt-Vrb)*Cres+Vip*k*Cmsb+Vim*(1-k)*Cmsb=(Vrp-Vrm)*Cres+Vrp*Cmsb;     (6)
(Vrb-Vrt)*Cres+Vim*k*Cmsb+Vip*(1-k)*Cmsb=(Vrm-Vrp)*Cres+Vrm*Cmsb;     (7)
其中k是MSB决策。在该带有1位MSB的实施例中,k是0或1。因此,表达可简化为:
Vrp-Vrm=((2*k-1)*Cmsb*(Vip-Vim)+2*Cres*(Vrt-Vrb))/(2*Cres+Cmsb);     (8)
因此,MSB电容器的有效权重可表达为:
w_eff[k]=(Vrp-Vrm)/(Vrt-Vrb)*(2*k-1)*Wmsb/2;     (9)
其中Wmsb是对应MSB电容器的位权重。将其与LSB决策的总有效权重求和可得到:
w_tot=w_eff[k]+wlsbs_eff;     (10)
并且根据ADC运算的定义,w_tot还可以表达为:
w_tot=(Vip-Vim)/(Vrt-Vrb)*Wsum/2;     (11)
其中,Wsum是基准电容器的总权重。等式(9)、(10)和(11)分别对应于等式(4)、(3)和(5)。因此,基于这些等式,w_tot可以表达为:
w_tot=(2*Cres*(2*k-1)*Wmsb/2+wlsbs_eff*(2*Cres+Cmsb))/(2*Cres+Cmsb*(1-Wmsb/Wsum));     (12)
因此,可以计算有效/正确数字输出权重w_tot。注意的是,在等式(12)中,仅k和w_lsbs_eff是可从原ADC输出Dout_raw提取的变量输入。所有其它参数可以是恒定值。因此,可以在每个转换/时钟周期内在数字域中计算呈w_tot形式的基准电压校正Dout_correct。返回图7,Dout_correct可以在步骤724中输出。Dout_correct可以无基准电压误差(或者具有减弱的基准电压误差)。
所公开的实施方案的特征可以硬件、软件、固件或其组合来实现并且用于***、子***、部件或其子组件中。当以软件实现时,公开的实施方案的元件是用于执行必要任务的程序或代码段。程序或代码段能够存储在机器可读存储介质上。“机器可读存储介质”可以包括能够存储信息的任何介质。机器可读存储介质的实施例可以包括电子电路、半导体存储器、ROM、快擦写存储器、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、任何电磁存储装置或光学存储装置。可经由诸如因特网、内联网等计算机网络来下载代码段。
虽然上文已经参考具体的实施方案描述了本发明,本发明不限于图中所示的上述实施方案和具体构造。例如,图示的一些部件可彼此组合而作为一个实施方案,或者部件可分成多个子部件,或者可添加任何其它已知的或可用的部件。操作过程不限于实施例中所示的那些。本领域技术人员将理解的是,本发明可以其它方式实施,而不偏离本发明的精神和实质性特征。例如,上文所述的特征和实施方案可彼此组合或者彼此不组合。因此,当前的实施方案的所有方面都应视为示例性的,而不是限制性的。本发明的范围由随附的权利要求而不是通过前面的说明书来表明,并且落在权利要求的等同内容的含义和范围之内的所有改变因此意在包含于其中。

Claims (23)

1.模拟数字转换器(ADC)***,包括:
模拟电路,其接收输入信号和基准电压,以及将所述输入信号转换成原数字输出,包括:
至少一个采样元件,其在采样相位期间对所述输入信号进行采样并且在转换相位期间再用于与所述基准电压连接,以及
输出,其输出所述原数字输出;以及
数字处理器,其接收所述原数字输出,并且对于每个时钟周期在模拟数字转换重对基准电压误差进行数字校正。
2.如权利要求1所述的ADC***,其中所述数字处理器在每个周期中提取位决策以用于所述基准电压误差校正。
3.如权利要求1所述的ADC***,其中所述基准电压误差是所述输入信号的函数。
4.如权利要求1所述的ADC***,其中所述基准电压误差是所述模拟数字转换的实际位权重的函数。
5.如权利要求1所述的ADC***,其中所述至少一个采样元件是电容器。
6.如权利要求1所述的ADC***,其中所述至少一个采样元件是电容DAC的部分。
7.如权利要求6所述的ADC***,其中所述基准电压误差是由于在所述模拟数字转换过程中所述电容DAC从所述基准电压汲取电荷引起的。
8.如权利要求1所述的ADC***,其中模拟电路包括逐次求近寄存器(SAR)ADC。
9.如权利要求8所述的ADC***,其中所述基准电压误差在所述模拟数字转换过程中变化。
10.如权利要求1所述的ADC***,其中所述模拟电路包括流水线式ADC。
11.模拟数字转换方法,包括:
对模拟输入信号进行采样;
再使用用于对所述模拟输入信号进行采样的至少一个采样元件来连接到基准电压;
将所述模拟输入信号转换成原数字信号;
在每个时钟周期对所述原数字信号中的基准电压误差进行校正;以及
输出校正的数字信号。
12.如权利要求11所述的方法,还包括:提取模拟输入信号到原数字信号转换的位决策并且在所述基准电压误差校正中使用提取的位决策。
13.如权利要求11所述的方法,其中所述基准电压误差是输入信号的函数。
14.如权利要求11所述的方法,其中所述基准电压误差是模拟数字转换的实际位权重的函数。
15.如权利要求11所述的方法,其中所述至少一个采样元件是电容器。
16.如权利要求11所述的方法,其中所述至少一个采样元件是电容DAC的部分。
17.如权利要求11所述的方法,其中所述基准电压误差是由于在所述模拟数字转换过程中所述电容DAC从所述基准电压汲取电荷引起的。
18.如权利要求11所述的方法,其中将所述模拟输入信号转换成原数字信号使用SAR转换。
19.如权利要求18所述的方法,其中所述基准电压误差在所述模拟数字转换过程中变化。
20.如权利要求11所述的方法,其中将所述模拟输入信号转换成原数字信号使用流水线式转换。
21.非暂态性机器可读介质,其存储适于由处理器执行以实现包括如下步骤的方法的指令:
接收转换的数字信号;
从转换的数字信号中提取位决策;以及
基于所提取的位决策,在每个时钟周期校正转换的数字信号中的基准电压误差。
22.如权利要求21所述的非暂态性机器可读介质,其中转换的数字信号是SAR转换信号。
23.如权利要求21所述的非暂态性机器可读介质,其中转换的数字信号是流水线式转换的信号。
CN201410095256.5A 2013-03-14 2014-03-14 用于adc基准电压的背景校准的***和方法 Active CN104052478B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361785167P 2013-03-14 2013-03-14
US61/785,167 2013-03-14
US14/028,767 US8981972B2 (en) 2013-03-14 2013-09-17 Background calibration of ADC reference voltage due to input signal dependency
US14/028,767 2013-09-17

Publications (2)

Publication Number Publication Date
CN104052478A true CN104052478A (zh) 2014-09-17
CN104052478B CN104052478B (zh) 2017-11-17

Family

ID=50189602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410095256.5A Active CN104052478B (zh) 2013-03-14 2014-03-14 用于adc基准电压的背景校准的***和方法

Country Status (3)

Country Link
US (1) US8981972B2 (zh)
EP (1) EP2779463A3 (zh)
CN (1) CN104052478B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614819A (zh) * 2022-03-17 2022-06-10 北京安酷智芯科技有限公司 一种具有失调电压自校正功能的源跟随基准缓冲器

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9154146B1 (en) * 2014-06-03 2015-10-06 The Board Of Regents, The University Of Texas System Dynamic offset injection for CMOS ADC front-end linearization
US9197240B1 (en) * 2014-07-10 2015-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method and circuit for noise shaping SAR analog-to-digital converter
US10205462B2 (en) * 2014-12-17 2019-02-12 Analog Devices, Inc. SAR ADCs with dedicated reference capacitor for each bit capacitor
US9641189B2 (en) * 2014-12-17 2017-05-02 Analog Devices, Inc. Calibration techniques for SAR ADCs with on-chip reservoir capacitors
CN105720980B (zh) * 2014-12-17 2019-12-17 美国亚德诺半导体公司 对于每个位电容器具有专用参考电容器的sar dac
US10050636B2 (en) 2016-05-04 2018-08-14 Texas Instruments Incorporated Methods and apparatus to reduce non-linearity in analog to digital converters
US10291249B2 (en) * 2016-07-18 2019-05-14 Analog Devices, Inc. Common mode rejection in a reservoir capacitor SAR converter
US9628101B1 (en) * 2016-09-27 2017-04-18 Semiconductor Components Industries, Llc Methods and apparatus for an analog-to-digital converter
US9935645B1 (en) * 2016-10-05 2018-04-03 Texas Instruments Incorporated Analog-to-digital converter non-linearity correction using coefficient transformation
JP6338802B1 (ja) * 2016-10-28 2018-06-06 三菱電機株式会社 アナログデジタル変換装置及びアナログデジタル変換方法
KR101903907B1 (ko) 2017-10-17 2018-10-02 (주)유민에쓰티 검출 신뢰도를 향상시킨 누액 검출 장치
US10454492B1 (en) 2018-06-19 2019-10-22 Analog Devices, Inc. Analog-to-digital converter speed calibration techniques
US10516411B1 (en) 2018-07-11 2019-12-24 Analog Devices Global Unlimited Company Common mode rejection in reservoir capacitor analog-to-digital converter
US10224949B1 (en) * 2018-07-26 2019-03-05 Synaptics Incorporated Shared cycle LSB generation for an array of successive approximation analog-to-digital converters
US10608655B1 (en) 2018-12-06 2020-03-31 Analog Devices, Inc. Inter-stage gain calibration in double conversion analog-to-digital converter
FR3096389B1 (fr) * 2019-05-22 2021-08-13 Continental Automotive Gmbh Capteur et dispositif de détection de présence
US11652492B2 (en) 2020-12-30 2023-05-16 Analog Devices International Unlimited Company Signal chain with embedded power management
US11942960B2 (en) 2022-01-31 2024-03-26 Analog Devices, Inc. ADC with precision reference power saving mode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057136A (zh) * 1990-06-04 1991-12-18 通用电气公司 子区域模-数转换器的数字式错误校正***
US5319370A (en) * 1992-08-31 1994-06-07 Crystal Semiconductor, Inc. Analog-to-digital converter with a continuously calibrated voltage reference
US6084394A (en) * 1995-12-05 2000-07-04 Siemens Aktiengesellschaft Electronic measuring device using a correction factor to compensate for measuring errors
US7495589B1 (en) * 2007-09-17 2009-02-24 Texas Instruments Incorporated Circuit and method for gain error correction in ADC
CN102893528A (zh) * 2010-05-14 2013-01-23 丰田自动车株式会社 采样保持电路及a/d转换装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710303B2 (en) * 2007-04-17 2010-05-04 Microchip Technology Incorporated Analog-to-digital converter offset and gain calibration using internal voltage references
US8451154B2 (en) * 2008-10-22 2013-05-28 Integrated Device Technology, Inc. Pipelined ADC calibration
WO2011099367A1 (ja) * 2010-02-09 2011-08-18 日本電気株式会社 A/d変換装置及びa/d変換補正方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1057136A (zh) * 1990-06-04 1991-12-18 通用电气公司 子区域模-数转换器的数字式错误校正***
US5319370A (en) * 1992-08-31 1994-06-07 Crystal Semiconductor, Inc. Analog-to-digital converter with a continuously calibrated voltage reference
US6084394A (en) * 1995-12-05 2000-07-04 Siemens Aktiengesellschaft Electronic measuring device using a correction factor to compensate for measuring errors
US7495589B1 (en) * 2007-09-17 2009-02-24 Texas Instruments Incorporated Circuit and method for gain error correction in ADC
CN102893528A (zh) * 2010-05-14 2013-01-23 丰田自动车株式会社 采样保持电路及a/d转换装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614819A (zh) * 2022-03-17 2022-06-10 北京安酷智芯科技有限公司 一种具有失调电压自校正功能的源跟随基准缓冲器
CN114614819B (zh) * 2022-03-17 2024-07-02 北京安酷智芯科技有限公司 一种具有失调电压自校正功能的源跟随基准缓冲器

Also Published As

Publication number Publication date
CN104052478B (zh) 2017-11-17
US20140266847A1 (en) 2014-09-18
US8981972B2 (en) 2015-03-17
EP2779463A2 (en) 2014-09-17
EP2779463A3 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
CN104052478A (zh) 由于输入信号相关引起的adc基准电压的背景校准
CN107046424B (zh) 具有双转换的adc后台校准
CN107070455B (zh) 混合逐次逼近型寄存器模数转换器及执行模数转换的方法
JP6563349B2 (ja) Adcにおけるdacのミスマッチエラーの検出と補正のための回路及び方法
KR101927272B1 (ko) 연속 근사 레지스터 아날로그 디지털 컨버터
US9369137B2 (en) Clock generation circuit, successive comparison A/D converter, and integrated circuit device
JP4160629B2 (ja) Ad変換器、ad変換方法、ad変換プログラムおよび制御装置
CN102082572A (zh) 电容器阵列的校正方法和电容器阵列的校正装置
CN103905049A (zh) 一种高速快闪加交替比较式逐次逼近模数转换器
CN101322313A (zh) 包含校正数模转换器的数字校正连续逼近例程转换器
CN105720980B (zh) 对于每个位电容器具有专用参考电容器的sar dac
JP2018050282A (ja) 逐次比較型ad変換器
EP3182593B1 (en) Circuit for stabilizing a dac reference voltage
CN107302359B (zh) 高精度逐次逼近结构adc的变权重子dac校正方法
CN104426549B (zh) 具有子adc校准的多步式adc
US20150244383A1 (en) Analog-digital converter
JP6650788B2 (ja) 半導体装置
CN112511167A (zh) 低噪声模数转换器
JP6489605B2 (ja) A/d変換装置
CN110719104A (zh) 储存电容器模数转换器中的共模抑制
KR20200074084A (ko) 추가적인 능동 회로부가 없는 sar adc에서의 넓은 입력 공통 모드 범위를 인에이블하기 위한 방법 및 장치
US9197231B1 (en) Systems and methods for data conversion
JP2012227775A (ja) アナログデジタル変換器および信号処理システム
KR101711542B1 (ko) 레인지-스케일링 기반의 복합 파이프라인 아날로그-디지털 컨버터
WO2022269403A1 (en) Successive-approximation analog-to-digital converters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant