CN104032151A - An EB cold hearth smelting method of TC4 titanium alloy ingots - Google Patents

An EB cold hearth smelting method of TC4 titanium alloy ingots Download PDF

Info

Publication number
CN104032151A
CN104032151A CN201410236742.4A CN201410236742A CN104032151A CN 104032151 A CN104032151 A CN 104032151A CN 201410236742 A CN201410236742 A CN 201410236742A CN 104032151 A CN104032151 A CN 104032151A
Authority
CN
China
Prior art keywords
rifle
melting
titanium
electron beam
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410236742.4A
Other languages
Chinese (zh)
Other versions
CN104032151B (en
Inventor
刘路
丁辉
黄海广
李志敏
曹占元
张玉勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Titanium Industry Co Ltd
Original Assignee
Yunnan Titanium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Titanium Industry Co Ltd filed Critical Yunnan Titanium Industry Co Ltd
Priority to CN201410236742.4A priority Critical patent/CN104032151B/en
Publication of CN104032151A publication Critical patent/CN104032151A/en
Application granted granted Critical
Publication of CN104032151B publication Critical patent/CN104032151B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention relates to an EB cold hearth smelting method of TC4 titanium alloy ingots. The method adopts an electron beam cold hearth smelting furnace and can produce TC4 titanium alloy ingots of big size: 1050mm*210mm*8000mm. The method uses sponge titanium, titanium scrap, pure aluminum and intermediate alloy of aluminum and vanadium with different proportions as raw materials. When the electron beam cold hearth smelting furnace is used for smelting TC4, first, raw materials are put in a feeder, secondly, each part of the furnace is separately sealed and vacuum pumping is performed, etc. The method has the advantages of enhancing the efficiency of smelting titanium alloy and the quality of ingots, remarkably shortening the production time, improving the smelting quality, reducing energy consumption, and being capable of producing more than 10000kg of titanium alloy ingots at a time.

Description

A kind of EB cold hearth melting method of TC4 titan alloy casting ingot
Technical field
The invention belongs to titanium alloy melting processing method technical field.
Background technology
Traditional titanium alloy melting all adopts water jacketed copper crucible, and melting technology mainly contains three kinds of modes:
(1) non-consumable electrode electric arc furnace melting.Alloy melting carries out under vacuum or protection of inert gas, and this technique is mainly consumable electrode melting and prepares electrode;
(2) vaccum consumable electrode electric arc furnace melting.The consumable electrode that titanium or titanium alloy make of take is negative electrode, take water jacketed copper crucible as anode.The electrode having melted enters crucible with drop form, forms molten bath.Weld pool surface, by electric-arc heating, is in a liquid state all the time, and the surrounding that bottom contacts with crucible receives that pressure is cooling, produces top-down crystallization.After solidifying, molten metal in molten bath becomes titanium ingot;
(3) vacuum consumable electrode skull melting.It is a kind of type of furnace of the casting shaped piece that melting and centrifugal casting are joined together.Its maximum feature is between water jacketed copper crucible and metal melt, to have one deck titanium alloy solids shell, i.e. so-called scull is usingd this liner as crucible, is used to form molten bath storage solutions, has avoided the pollution of crucible to titanium alloy liquid.After cast, stay one deck scull in crucible, can be used as crucible lining and continue to use;
But above these procedures are complicated, malfunction, energy consumption is larger, and subsequent machining cost is large, and high and low density is mingled with poor removal effect, cannot scale operation TC4 titan alloy casting ingot.
Summary of the invention
Object of the present invention is exactly in order to improve the quality of products, to increase industrial scale, reducing production costs; This method flexible operation is controlled, non-environmental-pollution, energy utilization efficiency are high.
The object of the invention is to be achieved through the following technical solutions.
An EB cold hearth melting method for TC4 titan alloy casting ingot, the present invention adopts electron beam cold hearth melting stove, melting large size: 1050mm * 210mm * 8000mm TC4 titanium alloy ingot; Its method is:
Select titanium sponge, titanium defective material and fine aluminium, the aluminium vanadium master alloy etc. of different ratios as raw material, when with electron beam cold hearth melting stove melting TC4, first raw material is put into feeder; Then stove each several part is independently sealed and vacuumized respectively; When vacuum reaches the entry condition of electron beam gun, (vacuum tightness is 1.0 * 10 -3hpa), open high-voltage power supply, and unlocking electronic rifle carries out preheating, after preheating completes, unlocking electronic rifle carries out melting, and the power of 1, No. 2 rifle is remained on to 300-450kw, and voltage is that 50kv melts raw material, the beam power of No. 3 rifles is remained on to 250-350kw, and voltage 50kv carries out Refining to melt raw material liquid state; When alloy liquid is filled whole cold bed and is about to enter crystallizer, open the overflow figure of No. 3 electron beam guns, when titanium liquid flows to crystallizer, start No. 4 rifle, power 50kw, voltage 35kv.The electron beam of No. 4 rifles is gathered to the position that crystallizer has covered titanium liquid, to keep the molten state of titanium liquid, until titanium liquid covers crystallizer completely; And start to draw ingot, when drawing ingot and increase power and the voltage of No. 4 rifles; When drawing ingot length to reach 100mm, 1,2, No. 3 rifle Modulating Power draws ingot speed with coupling, and the power of adjusting No. 4 rifles continues fusing while making electric current to the current value of melt raw material; After raw material melting is complete, close rifle 1,2, No. 3, close hot spot point, the overflow figure of No. 4 rifles, the size and the power that progressively reduce No. 4 rifle figures carry out feeding.After feeding completes, utilize 1, No. 2 rifle that cold bed surrounding is cleaned out, then close 1-4 rifle, last cooling coming out of the stove.
The invention has the beneficial effects as follows, improve TC4 titanium alloy melting efficiency, improve the quality of ingot casting, improve melting quality, reduce energy consumption, reduce cost.After the present invention implements in actual production, production efficiency significantly improves, and energy consumption declines 5%, and production capacity has improved 80%.The TC4 ingot casting of producing meets national requirements, and quality obviously promotes.
Embodiment
An EB cold hearth melting method for TC4 titan alloy casting ingot, the present invention adopts electron beam cold hearth melting stove, melting large size: 1050mm * 210mm * 8000mm TC4 titanium alloy ingot.Its method is:
Select titanium sponge, titanium defective material and fine aluminium, the aluminium vanadium master alloy etc. of different ratios as raw material, when with electron beam cold hearth melting stove melting TC4, first raw material is put into feeder; Then stove each several part is independently sealed and vacuumized respectively; When vacuum reaches the entry condition of electron beam gun, (vacuum tightness is 1.0 * 10 -3hpa), open high-voltage power supply, and unlocking electronic rifle carries out preheating, after preheating completes, unlocking electronic rifle carries out melting, and the power of 1, No. 2 rifle is remained on to 300-450kw, and voltage is that 50kv melts raw material, the beam power of No. 3 rifles is remained on to 250-350kw, and voltage 50kv carries out Refining to melt raw material liquid state; When alloy liquid is filled whole cold bed and is about to enter crystallizer, open the overflow figure of No. 3 electron beam guns, when titanium liquid flows to crystallizer, start No. 4 rifle, power 50kw, voltage 35kv.The electron beam of No. 4 rifles is gathered to the position that crystallizer has covered titanium liquid, to keep the molten state of titanium liquid, until titanium liquid covers crystallizer completely; And start to draw ingot, when drawing ingot and increase power and the voltage of No. 4 rifles; When drawing ingot length to reach 100mm, 1,2, No. 3 rifle Modulating Power draws ingot speed with coupling, and the power of adjusting No. 4 rifles continues fusing while making electric current to the current value of melt raw material; After raw material melting is complete, close rifle 1,2, No. 3, close hot spot point, the overflow figure of No. 4 rifles, the size and the power that progressively reduce No. 4 rifle figures carry out feeding.After feeding completes, utilize 1, No. 2 rifle that cold bed surrounding is cleaned out, then close 1-4 rifle, last cooling coming out of the stove.
process scheme
Electron beam melting furnace is the specific equipment of high temperature refractory melting and purification.Electron beam melting is carried out under high vacuum, and temperature of superheat during melting is high, maintains the liquid time long, makes the Refining effect of material be able to fully effectively carry out.The floating of the volatilization that during electron beam melting, that material mainly occurs is degassed, decomposition, deoxidation, technology are mingled with and not molten impurity etc.Wherein, the floating of not molten impurity and be enriched in the top of ingot casting can be removed when crop.Under vacuum, the negative electrode of electron beam gun is heated and produces thermoelectron effusion.Under the effect of acceleration voltage (30kv), electron beam passes from the centre hole of anode, continues downwards motion, and the adjusting through multi-focusing and the magnetic scanning lens of magnetic focusing lens, makes electron beam accurately and intensively bombard the surface of arriving fuel rod.Surface in raw material and molten bath produces more than 1400 ℃ temperature, and raw material surface is heated, melts, splashes in molten bath.Molten bath is exactly the melt portions of ingot upper end, and it is around water jacketed copper crucible (crystallizer).Due to the heat effect of electron beam, molten bath keeps constantly upper and lower, inside and outside convection current.Along with the raw material melting constantly splashes into, weld pool surface constantly rises, and ingot puller constantly pulls ingot downwards again, makes weld pool surface keep certain height.
Electron beam melting is a kind of special vacuum metallurgy equipment.Utilize the electron beam gun in stove the high-power electron beam of tens to hundreds of kilowatts can be focused on to 1cm 2upper, produce 1400 ℃ of above high temperature.When high-power electron beam focuses on raw material, just can, by these melting of metal, reach the object of melting and purification.Because high-temperature area is limited, molten metal need to splash into molten bath below bit by bit, cooling through crystallizer, is frozen into ingot.Under the effect of high vacuum and high temperature, gas and impurity in liquid metal evaporate in a large number, thus obtain highly purified densification solidify state ingot metal.
Equipment basic parameter
One of electron-beam cold bed furnace
Power: 3150kw
Output: 4000 tons of ingot castings
Product weight: approximately 10 tons/root
Product specification: 1050mm * 210mm * 8000mm.

Claims (1)

1. an EB cold hearth melting method for TC4 titan alloy casting ingot, is characterized in that, adopts electron beam cold hearth melting stove, melting large size: 1050mm * 210mm * 8000mm TC4 titanium alloy ingot; Its method is:
Select titanium sponge, titanium defective material and fine aluminium, the aluminium vanadium master alloy etc. of different ratios as raw material, when with electron beam cold hearth melting stove melting TC4, first raw material is put into feeder; Then stove each several part is independently sealed and vacuumized respectively; When vacuum reaches the entry condition of electron beam gun and vacuum tightness be 1.0 * 10 -3hpa, open high-voltage power supply, and unlocking electronic rifle carries out preheating, after preheating completes, unlocking electronic rifle carries out melting, and the power of 1, No. 2 rifle is remained on to 300-450kw, and voltage is that 50kv melts raw material, the beam power of No. 3 rifles is remained on to 250-350kw, and voltage 50kv carries out Refining to melt raw material liquid state; When alloy liquid is filled whole cold bed and is about to enter crystallizer, open the overflow figure of No. 3 electron beam guns, when titanium liquid flows to crystallizer, start No. 4 rifle, power 50kw, voltage 35kv; The electron beam of No. 4 rifles is gathered to the position that crystallizer has covered titanium liquid, to keep the molten state of titanium liquid, until titanium liquid covers crystallizer completely; And start to draw ingot, when drawing ingot and increase power and the voltage of No. 4 rifles; When drawing ingot length to reach 100mm, 1,2, No. 3 rifle Modulating Power draws ingot speed with coupling, and the power of adjusting No. 4 rifles continues fusing while making electric current to the current value of melt raw material; After raw material melting is complete, close rifle 1,2, No. 3, close hot spot point, the overflow figure of No. 4 rifles, the size and the power that progressively reduce No. 4 rifle figures carry out feeding; After feeding completes, utilize 1, No. 2 rifle that cold bed surrounding is cleaned out, then close 1-4 rifle, last cooling coming out of the stove.
CN201410236742.4A 2014-05-30 2014-05-30 The EB cold hearth melting method of a kind of TC4 titan alloy casting ingot Active CN104032151B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410236742.4A CN104032151B (en) 2014-05-30 2014-05-30 The EB cold hearth melting method of a kind of TC4 titan alloy casting ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410236742.4A CN104032151B (en) 2014-05-30 2014-05-30 The EB cold hearth melting method of a kind of TC4 titan alloy casting ingot

Publications (2)

Publication Number Publication Date
CN104032151A true CN104032151A (en) 2014-09-10
CN104032151B CN104032151B (en) 2016-06-01

Family

ID=51463144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410236742.4A Active CN104032151B (en) 2014-05-30 2014-05-30 The EB cold hearth melting method of a kind of TC4 titan alloy casting ingot

Country Status (1)

Country Link
CN (1) CN104032151B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212989A (en) * 2014-08-28 2014-12-17 云南钛业股份有限公司 Method for smelting and producing TA10 hot continuous rolling square billet by adopting electron beam cooling bed furnace
CN104353816A (en) * 2014-10-20 2015-02-18 云南钛业股份有限公司 Method for quickly cooling cast ingot
CN104451175A (en) * 2014-12-07 2015-03-25 金川集团股份有限公司 Manufacturing method of high-purity metal cast ingot
CN105838899A (en) * 2016-05-18 2016-08-10 青海聚能钛业有限公司 Electron beam cold hearth single melted TC4 titanium alloy cast ingot head feeding process
CN106282593A (en) * 2016-09-21 2017-01-04 青海聚能钛业有限公司 The technique that a kind of electron-beam cold bed furnace reclaims remelting TC4 waste material
CN106544544A (en) * 2016-12-06 2017-03-29 青海聚能钛业股份有限公司 A kind of method of electron-beam cold bed furnace single melting TC4 titan alloy casting ingots
CN106756082A (en) * 2016-11-30 2017-05-31 青海聚能钛业股份有限公司 The technique that a kind of electron-beam cold bed furnace reclaims remelting TC11 crumbles
CN107502784A (en) * 2017-10-18 2017-12-22 云南钛业股份有限公司 The method of the rifle cold cathode EB stove Joint Production TC4 titanium alloys billet of VAR stoves+7/slab ingot
CN107760878A (en) * 2016-08-19 2018-03-06 宁波创润新材料有限公司 The method of smelting of ingot casting
CN107760877A (en) * 2016-08-18 2018-03-06 宁波创润新材料有限公司 The method of smelting of ingot casting
CN108220612A (en) * 2018-01-19 2018-06-29 青海聚能钛业股份有限公司 Zircaloy processing method is recycled in a kind of electron-beam cold bed furnace melting
CN108220613A (en) * 2018-01-19 2018-06-29 青海聚能钛业股份有限公司 A kind of method considered to be worth doing using electron-beam cold bed furnace melting zirconium
CN108941487A (en) * 2018-06-20 2018-12-07 昆明理工大学 A kind of electron-beam cold bed furnace water cooling Cu crystallizer and titanium alloy preparation method
CN109694968A (en) * 2019-01-10 2019-04-30 青海聚能钛金属材料技术研究有限公司 TA19 titanium alloy and its method of smelting
CN110918906A (en) * 2019-10-23 2020-03-27 云南钛业股份有限公司 Method for removing bubbles of electron beam cold bed furnace casting titanium and titanium alloy hollow ingot
CN111485115A (en) * 2020-06-03 2020-08-04 云南钛业股份有限公司 Method for controlling Al element volatilization by adjusting vacuum degree of electron beam cold hearth furnace
CN111945022A (en) * 2020-08-10 2020-11-17 昆明理工大学 Method for reducing ingot pulling time of smelting titanium and titanium alloy slab ingot in EB (Electron Beam) furnace
CN112368406A (en) * 2018-06-26 2021-02-12 赛峰飞机发动机公司 Method for producing ingot having titanium-containing metal compound
CN112501457A (en) * 2020-10-28 2021-03-16 攀枝花云钛实业有限公司 Method for smelting titanium or titanium alloy square billet by electron beam cold bed
CN112609088A (en) * 2020-12-11 2021-04-06 航天海鹰(哈尔滨)钛业有限公司 Method for improving structure and performance of titanium cast ingot by using stirring magnetic field
CN112680629A (en) * 2020-11-23 2021-04-20 昆明理工大学 Short-process preparation method of Ti-Al-V-Fe alloy hot rolled plate
CN112725647A (en) * 2020-11-23 2021-04-30 昆明理工大学 Short-process preparation method of Ti-Al-Nb-Zr-Mo alloy hot rolled plate
CN112795799A (en) * 2020-11-23 2021-05-14 昆明理工大学 Cold cathode EB furnace smelting method of forging-free direct rolling Ti-Al-V-Fe alloy ingot
CN113215426A (en) * 2021-03-22 2021-08-06 洛阳双瑞精铸钛业有限公司 Preparation process method of titanium and titanium alloy EB ingot
CN114000010A (en) * 2021-11-05 2022-02-01 云南钛业股份有限公司 High-quality titanium alloy ingot and production method thereof
CN116274895A (en) * 2023-03-23 2023-06-23 陕西天成航空材料有限公司 Preparation method of titanium alloy cast ingot with uniform components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA21699U (en) * 2006-12-11 2007-03-15 Mykola Petrovych Kondratii Plant for electron-beam recasting of spongy titanium block
KR20110117397A (en) * 2010-04-21 2011-10-27 주식회사 엔아이비 Tial base intermetallic compound and manufacturing method of the same
CN102776390A (en) * 2012-07-02 2012-11-14 洛阳双瑞精铸钛业有限公司 Method for producing titanium slabs efficiently

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA21699U (en) * 2006-12-11 2007-03-15 Mykola Petrovych Kondratii Plant for electron-beam recasting of spongy titanium block
KR20110117397A (en) * 2010-04-21 2011-10-27 주식회사 엔아이비 Tial base intermetallic compound and manufacturing method of the same
CN102776390A (en) * 2012-07-02 2012-11-14 洛阳双瑞精铸钛业有限公司 Method for producing titanium slabs efficiently

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张英明,孙军,韩明臣,周廉,张建朝: "TC4合金的电子束冷床熔炼研究", 《宇航材料工艺》, no. 5, 31 October 2007 (2007-10-31), pages 50 - 52 *
张英明: "低成本钛合金制备技术研究进展", 《稀有金属快报》, vol. 26, no. 7, 31 July 2007 (2007-07-31), pages 7 - 10 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104212989A (en) * 2014-08-28 2014-12-17 云南钛业股份有限公司 Method for smelting and producing TA10 hot continuous rolling square billet by adopting electron beam cooling bed furnace
CN104353816A (en) * 2014-10-20 2015-02-18 云南钛业股份有限公司 Method for quickly cooling cast ingot
CN104451175A (en) * 2014-12-07 2015-03-25 金川集团股份有限公司 Manufacturing method of high-purity metal cast ingot
CN105838899A (en) * 2016-05-18 2016-08-10 青海聚能钛业有限公司 Electron beam cold hearth single melted TC4 titanium alloy cast ingot head feeding process
CN107760877A (en) * 2016-08-18 2018-03-06 宁波创润新材料有限公司 The method of smelting of ingot casting
CN107760878A (en) * 2016-08-19 2018-03-06 宁波创润新材料有限公司 The method of smelting of ingot casting
CN106282593B (en) * 2016-09-21 2018-06-12 青海聚能钛业股份有限公司 A kind of technique of electron-beam cold bed furnace recycling remelting TC4 waste materials
CN106282593A (en) * 2016-09-21 2017-01-04 青海聚能钛业有限公司 The technique that a kind of electron-beam cold bed furnace reclaims remelting TC4 waste material
CN106756082A (en) * 2016-11-30 2017-05-31 青海聚能钛业股份有限公司 The technique that a kind of electron-beam cold bed furnace reclaims remelting TC11 crumbles
CN106544544A (en) * 2016-12-06 2017-03-29 青海聚能钛业股份有限公司 A kind of method of electron-beam cold bed furnace single melting TC4 titan alloy casting ingots
CN106544544B (en) * 2016-12-06 2018-08-10 青海聚能钛业股份有限公司 A kind of method of electron-beam cold bed furnace single melting TC4 titan alloy casting ingots
CN107502784A (en) * 2017-10-18 2017-12-22 云南钛业股份有限公司 The method of the rifle cold cathode EB stove Joint Production TC4 titanium alloys billet of VAR stoves+7/slab ingot
CN107502784B (en) * 2017-10-18 2019-05-21 云南钛业股份有限公司 A method of producing TC4 titanium alloy billet/slab ingot
CN108220613B (en) * 2018-01-19 2019-12-24 青海聚能钛业股份有限公司 Method for smelting zirconium chips by using electron beam cold hearth furnace
CN108220613A (en) * 2018-01-19 2018-06-29 青海聚能钛业股份有限公司 A kind of method considered to be worth doing using electron-beam cold bed furnace melting zirconium
CN108220612B (en) * 2018-01-19 2019-12-24 青海聚能钛业股份有限公司 Processing method for smelting and recovering zirconium alloy by electron beam cold hearth furnace
CN108220612A (en) * 2018-01-19 2018-06-29 青海聚能钛业股份有限公司 Zircaloy processing method is recycled in a kind of electron-beam cold bed furnace melting
CN108941487A (en) * 2018-06-20 2018-12-07 昆明理工大学 A kind of electron-beam cold bed furnace water cooling Cu crystallizer and titanium alloy preparation method
CN112368406B (en) * 2018-06-26 2021-12-24 赛峰飞机发动机公司 Method for producing ingot having titanium-containing metal compound
CN112368406A (en) * 2018-06-26 2021-02-12 赛峰飞机发动机公司 Method for producing ingot having titanium-containing metal compound
CN109694968A (en) * 2019-01-10 2019-04-30 青海聚能钛金属材料技术研究有限公司 TA19 titanium alloy and its method of smelting
CN109694968B (en) * 2019-01-10 2021-03-12 青海聚能钛金属材料技术研究有限公司 TA19 titanium alloy and smelting method thereof
CN110918906A (en) * 2019-10-23 2020-03-27 云南钛业股份有限公司 Method for removing bubbles of electron beam cold bed furnace casting titanium and titanium alloy hollow ingot
CN111485115A (en) * 2020-06-03 2020-08-04 云南钛业股份有限公司 Method for controlling Al element volatilization by adjusting vacuum degree of electron beam cold hearth furnace
CN111945022A (en) * 2020-08-10 2020-11-17 昆明理工大学 Method for reducing ingot pulling time of smelting titanium and titanium alloy slab ingot in EB (Electron Beam) furnace
CN112501457A (en) * 2020-10-28 2021-03-16 攀枝花云钛实业有限公司 Method for smelting titanium or titanium alloy square billet by electron beam cold bed
CN112680629A (en) * 2020-11-23 2021-04-20 昆明理工大学 Short-process preparation method of Ti-Al-V-Fe alloy hot rolled plate
CN112725647A (en) * 2020-11-23 2021-04-30 昆明理工大学 Short-process preparation method of Ti-Al-Nb-Zr-Mo alloy hot rolled plate
CN112795799A (en) * 2020-11-23 2021-05-14 昆明理工大学 Cold cathode EB furnace smelting method of forging-free direct rolling Ti-Al-V-Fe alloy ingot
CN112795799B (en) * 2020-11-23 2021-11-26 昆明理工大学 Cold cathode EB furnace smelting method of forging-free direct rolling Ti-Al-V-Fe alloy ingot
CN112609088A (en) * 2020-12-11 2021-04-06 航天海鹰(哈尔滨)钛业有限公司 Method for improving structure and performance of titanium cast ingot by using stirring magnetic field
CN113215426A (en) * 2021-03-22 2021-08-06 洛阳双瑞精铸钛业有限公司 Preparation process method of titanium and titanium alloy EB ingot
CN113215426B (en) * 2021-03-22 2022-07-19 洛阳双瑞精铸钛业有限公司 Preparation process method of titanium and titanium alloy EB ingot
CN114000010A (en) * 2021-11-05 2022-02-01 云南钛业股份有限公司 High-quality titanium alloy ingot and production method thereof
CN116274895A (en) * 2023-03-23 2023-06-23 陕西天成航空材料有限公司 Preparation method of titanium alloy cast ingot with uniform components
CN116274895B (en) * 2023-03-23 2023-11-07 陕西天成航空材料有限公司 Preparation method of titanium alloy cast ingot with uniform components

Also Published As

Publication number Publication date
CN104032151B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
CN104032151B (en) The EB cold hearth melting method of a kind of TC4 titan alloy casting ingot
CN102965529B (en) Preparation method of short-process titanium alloy Ti-Ni-Nb
CN107164639B (en) A kind of electron beam covers the method that formula solidification technology prepares high temperature alloy
CN104190885B (en) A kind of four rifle electron-beam cold bed furnace produce the method for huge high-purity nickel ingot square billet
CN107267788B (en) A kind of electron beam melting purification is combined the method for preparing high-purity nickel base superalloy with low-temperature receiver gettering
CN103484691A (en) Nickel and nickel alloy EB furnace smelting method
CN106435184B (en) The recovery process that a kind of metal is cut
CN105274365A (en) Titanium alloy preparation technology
CN105695777A (en) Method for refining nickel-based high-temperature alloy via electron beam directional solidification technology
CN107385244B (en) A kind of electron beam covers the method that induced coagulation technology High Purity prepares nickel base superalloy
CN102899510A (en) Production method of high-purity metal vanadium
CN212778615U (en) Multi-electrode vacuum non-consumable arc melting device for titanium and titanium alloy
CN212645338U (en) Single or multi-electrode vacuum consumable arc melting device for titanium and titanium alloy
CN111235399B (en) Method for preparing titanium rod, titanium alloy and titanium alloy device
CN102560136A (en) Smelting and arcing process for vacuum consumable electro-arc furnace, and smelting process
CN104195356B (en) Smelting and purification method of beryllium beads used for casting pure beryllium ingots
CN104250704B (en) A kind of 18Ni-200 steel ingot and preparation method thereof
CN206751890U (en) A kind of electron-beam cold bed furnace
CN105238936A (en) Vacuum consumable-electrode arc melting ingot pulling device for metal material melting
CN109266863A (en) A kind of high purity titanium ingot method of purification
CN103495715A (en) Vacuum continuous casting nickel and nickel alloy billet production method
CN104923752B (en) Titanium or titanium alloy continuous casting technology and equipment
CN109014088A (en) Method of smelting
CN104259240B (en) A kind of 18Ni-200 rod iron and preparation method thereof
CN205102586U (en) Consumable vacuum arc furnace

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant