CN104022295B - 一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法 - Google Patents

一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法 Download PDF

Info

Publication number
CN104022295B
CN104022295B CN201410188912.6A CN201410188912A CN104022295B CN 104022295 B CN104022295 B CN 104022295B CN 201410188912 A CN201410188912 A CN 201410188912A CN 104022295 B CN104022295 B CN 104022295B
Authority
CN
China
Prior art keywords
tio
nanotube
pdag
titanium plate
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410188912.6A
Other languages
English (en)
Other versions
CN104022295A (zh
Inventor
鞠剑峰
石玉军
高强
吴东辉
苏广均
华平
李建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN201410188912.6A priority Critical patent/CN104022295B/zh
Publication of CN104022295A publication Critical patent/CN104022295A/zh
Application granted granted Critical
Publication of CN104022295B publication Critical patent/CN104022295B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了直接甲醇燃料电池纳米PdAg/TiO2纳米管电极及制备方法,产品由钛板阳极氧化先在表面形成纳米管,然后电镀沉积纳米PdAg合金而成。钛板阳极氧化焙烧后在钛板表面形成一薄层高比表面的TiO2纳米管,TiO2纳米管表面电镀沉积的PdAg合金能提高TiO2纳米管的导电性以及PdAg合金对TiO2的协同作用提高TiO2对甲醇的催化氧化性能,同时,甲醇氧化产生的CO等中间产物被吸附、转移到PdAg/TiO2纳米管表面,并被深度氧化为最终产物CO2,可以提高催化剂的抗CO毒化能力,由于PdAg的价格远低于Pt、Ru等贵金属,且在PdAg/TiO2纳米管中量较小,因此可以大大降低催化剂的成本,PdAg/TiO2纳米管电极用作直接甲醇燃料电池阳极,可以提高电池性能。

Description

一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法
技术领域
本发明涉及直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法。
背景技术
直接甲醇燃料电池(Direct Methanol Fuel Cell,DMFC)具有能耗少、能量密度高、甲醇来源丰富、价格便宜、***简单、运行便捷和噪声低等优点,被认为是未来汽车动力和其它交通工具最有希望的化学电源,引起人们的广泛关注。DMFC最关键的材料之一是电极催化剂,它直接影响电池的性能、稳定性、使用寿命及制造成本。贵金属Pt在低温条件下(小于80℃)具有优异的催化性能,目前DMFC的电极催化剂均以Pt为主要成分,其中PtRu催化剂比纯Pt具有更强的抗CO中毒性能和更高的催化活性,被认为是目前DMFC最佳的催化剂,但是由于其价格昂贵、Ru易溶等缺陷,在DMFC中的利用率还达不到商业化的要求。人们进行了大量研究制备多元复合催化剂以提高其催化活性,提高抗CO毒化能力。TiO2掺杂如PtRuTiOX/C和Au/TiO2PtRu催化剂或作为载体如PtNi/TiO2、PdNi/TiO2、PdAg/TiO2等,可以减少催化剂中贵金属Pt的用量或制备非铂催化剂,降低催化剂制造成本,提高催化性能和抗CO毒化能力,具有应用前景。PdAg/TiO2纳米管电极可作为传感器或直接甲醇燃料电池阳极,对甲醇具有良好的催化性能和抗CO毒化性能,还未见报道。
发明内容
本发明的目的在于提供一种可用作直接甲醇燃料电池阳极,降低直接甲醇燃料电池催化剂成本,提高其催化活性和抗CO毒化能力的直接甲醇燃料电池PdAg/TiO2纳米管电极及制备方法。
本发明的技术解决方案是:
本发明以钛板阳极氧化先在表面形成纳米管,然后电镀沉积纳米 PdAg合金而成。钛板阳极氧化焙烧后在钛板表面形成一薄层高比表面的TiO2纳米管,TiO2纳米管表面电镀沉积的PdAg合金能提高TiO2纳米管的导电性以及PdAg合金对TiO2的协同作用提高TiO2对甲醇的催化氧化性能,同时,甲醇氧化产生的CO等中间产物被吸附、转移到PdAg/TiO2纳米管表面,并被深度氧化为最终产物CO2,可以提高催化剂的抗CO毒化能力,由于PdAg的价格远低于Pt、Ru等贵金属,且在PdAg/TiO2纳米管中量较小,因此可以大大降低催化剂的成本,PdAg/TiO2纳米管电极用作直接甲醇燃料电池阳极,可以提高电池性能。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1:
(1)钛板的前处理:钛板用金相砂纸打磨,丙酮中超声除油15分钟,甲醇或乙醇清洗,1mol/L的HF处理10分钟,二次蒸馏水超声清洗3次,烘干。
(2)TiO2纳米管/Ti的制备:将处理好的钛板在电解液中进行阳极氧化。电解液的组成:0.5%-1%的HF,1mol/L的H2SO4。电解电位20V,电解时间30分钟。电解完毕,去离子水洗涤,烘干,马弗炉中500-600℃焙烧3小时得TiO2纳米管/Ti。
(3)PdAg/TiO2纳米管电极的制备:将制备好的TiO2纳米管/Ti作为阴极进行电镀,镀液的体积为50mL。电镀液的组成:
电镀完毕,去离子水洗涤,烘干,得PdAg/TiO2纳米管电极。
实施例2:
(1)钛板的前处理:钛板用金相砂纸打磨,丙酮中超声除油15分 钟,甲醇或乙醇清洗,1mol/L的HF处理10分钟,二次蒸馏水超声清洗3次,烘干。
(2)TiO2纳米管/Ti的制备:将处理好的钛板在电解液中进行阳极氧化。电解液的组成:0.5%-1%的HF,1mol/L的H2SO4。电解电位20V,电解时间120分钟。电解完毕,去离子水洗涤,烘干,马弗炉中500-600℃焙烧3小时得TiO2纳米管/Ti。
(3)PdAg/TiO2纳米管电极的制备:将制备好的TiO2纳米管/Ti作为阴极进行电镀,镀液的体积为50mL。电镀液的组成:
电镀完毕,去离子水洗涤,烘干,得PdAg/TiO2纳米管电极。
实施例3:
(1)钛板的前处理:钛板用金相砂纸打磨,丙酮中超声除油15分钟,甲醇或乙醇清洗,1mol/L的HF处理10分钟,二次蒸馏水超声清洗3次,烘干。
(2)TiO2纳米管/Ti的制备:将处理好的钛板在电解液中进行阳极氧化。电解液的组成:0.5%-1%的HF,1mol/L的H2SO4。电解电位20V,电解时间60分钟。电解完毕,去离子水洗涤,烘干,马弗炉中500-600℃焙烧3小时得TiO2纳米管/Ti。
(3)PdAg/TiO2纳米管电极的制备:将制备好的TiO2纳米管/Ti作为阴极进行电镀。电镀液的组成:
电镀完毕,去离子水洗涤,烘干,得PdAg/TiO2纳米管电极。

Claims (1)

1.一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法,其特征在于,所述的制备方法包括下列步骤:
(1)钛板的前处理:钛板用金相砂纸打磨,丙酮中超声除油15分钟,甲醇或乙醇清洗,1mol/L的HF处理10分钟,二次蒸馏水超声清洗3次,烘干;
(2)TiO2纳米管/Ti的制备:将处理好的钛板在电解液中进行阳极氧化;电解液的组成:0.5%-1%的HF,1mol/L的H2SO4,电解电位20V,电解时间30-120分钟;电解完毕,去离子水洗涤,烘干,马弗炉中500-600℃焙烧3小时得TiO2纳米管/Ti;
(3)PdAg/TiO2纳米管电极的制备:将制备好的TiO2纳米管/Ti作为阴极进行电镀,镀液的体积为50mL,电镀液的组成:
电镀完毕,去离子水洗涤,烘干,得PdAg/TiO2纳米管电极。
CN201410188912.6A 2014-05-07 2014-05-07 一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法 Expired - Fee Related CN104022295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410188912.6A CN104022295B (zh) 2014-05-07 2014-05-07 一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410188912.6A CN104022295B (zh) 2014-05-07 2014-05-07 一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法

Publications (2)

Publication Number Publication Date
CN104022295A CN104022295A (zh) 2014-09-03
CN104022295B true CN104022295B (zh) 2016-10-19

Family

ID=51438941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410188912.6A Expired - Fee Related CN104022295B (zh) 2014-05-07 2014-05-07 一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法

Country Status (1)

Country Link
CN (1) CN104022295B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105562111B (zh) * 2015-12-11 2018-03-09 长春工业大学 Pd/ZIF‑67/TiO2纳米管复合催化剂的制备方法
CN111129509B (zh) * 2019-12-31 2022-05-17 南通大学 一种直接甲醇燃料电池阳极催化剂及其制备方法
CN112146197B (zh) * 2020-09-14 2022-03-11 南通大学 一种消声杀菌消毒自净化空气净化机
CN113533450B (zh) * 2021-07-12 2024-06-18 南通大学 一种敏感电极、甲醛柔性传感器及其制备方法
CN113363506A (zh) * 2021-07-12 2021-09-07 南通大学 一种直接甲醇燃料电池电极及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763094B2 (ja) * 2008-12-19 2011-08-31 古河電気工業株式会社 光半導体装置用リードフレーム及びその製造方法
CN102553649B (zh) * 2011-12-26 2013-09-25 河海大学 17β-***分子印迹银掺杂的TiO2纳米管及其制备方法

Also Published As

Publication number Publication date
CN104022295A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
Wu et al. NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities
Xu et al. Cu2O–Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media
Lu et al. Low-cost Ni3B/Ni (OH) 2 as an ecofriendly hybrid cocatalyst for remarkably boosting photocatalytic H2 production over g-C3N4 nanosheets
Wang et al. Coral-like-structured Ni/C3N4 composite coating: an active electrocatalyst for hydrogen evolution reaction in alkaline solution
Gao et al. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst
Sun et al. Ordered mesoporous nickel sphere arrays for highly efficient electrocatalytic water oxidation
McKone et al. Ni–Mo nanopowders for efficient electrochemical hydrogen evolution
Huang et al. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis
Lang et al. Hollow core–shell structured Ni–Sn@ C nanoparticles: a novel electrocatalyst for the hydrogen evolution reaction
Zhang et al. High-efficiency and stable alloyed nickel based electrodes for hydrogen evolution by seawater splitting
CN104022295B (zh) 一种直接甲醇燃料电池PdAg/TiO2纳米管电极的制备方法
Xu et al. Balancing catalytic activity and interface energetics of electrocatalyst-coated photoanodes for photoelectrochemical water splitting
CN102703942B (zh) 一种脉冲电沉积制备纳米铂/钯二氧化钛纳米管复合电极的方法
Zhang et al. Hybrid Ni (OH) 2/FeOOH@ NiFe nanosheet catalysts toward highly efficient oxygen evolution reaction with ultralong stability over 1000 hours
Gong et al. Efficient and stable evolution of oxygen using pulse-electrodeposited Ir/Ni oxide catalyst in Fe-spiked KOH electrolyte
CN104022289B (zh) 一种直接甲醇燃料电池RuNi/TiO2纳米管电极及制备方法
Koteeswara Reddy et al. Electrochemical water oxidation of ultrathin cobalt oxide-based catalyst supported onto aligned ZnO nanorods
Hao et al. In situ synthesis of ternary NiCoRu-based layered double hydroxide by chlorine corrosion toward electrocatalytic water oxidation
Liu et al. Improved catalytic performance of Pt/TiO2 nanotubes electrode for ammonia oxidation under UV-light illumination
CN104037428B (zh) 一种合金‑TiO2纳米管/Ti阳极直接甲醇燃料电池及其制备方法
Yin et al. Tuning Ni-foam into NiOOH/FeOOH heterostructures toward superior water oxidation catalyst via three-step strategy
CN102703953B (zh) 一种循环伏安电沉积制备纳米铂/二氧化钛纳米管电极的方法
Telli et al. Investigation of noble metal loading CoWZn electrode for HER
Javan et al. Design of new anodic bimetallic nanocatalyst composed of Ni–Cu supported by reduced carbon quantum dots for the methanol oxidation reaction
CN106191945A (zh) 一种脉冲电沉积制备二氧化钛纳米管固载铂‑镍双金属复合电极的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161019

Termination date: 20170507

CF01 Termination of patent right due to non-payment of annual fee