CN103894199B - 用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法 - Google Patents

用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法 Download PDF

Info

Publication number
CN103894199B
CN103894199B CN201410136139.9A CN201410136139A CN103894199B CN 103894199 B CN103894199 B CN 103894199B CN 201410136139 A CN201410136139 A CN 201410136139A CN 103894199 B CN103894199 B CN 103894199B
Authority
CN
China
Prior art keywords
ferric oxide
nanometer sheet
photocatalytic water
oxide nanometer
graphene modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410136139.9A
Other languages
English (en)
Other versions
CN103894199A (zh
Inventor
陈玉金
张桓铭
朱春玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201410136139.9A priority Critical patent/CN103894199B/zh
Publication of CN103894199A publication Critical patent/CN103894199A/zh
Application granted granted Critical
Publication of CN103894199B publication Critical patent/CN103894199B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供的是一种用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法。(1)将2.90—4.10克Fe(NO3)3加入200—300毫升蒸馏水中,再加入0.01—0.02克石墨烯,将混合溶液超声10-15min;(2)将所得溶液放入恒温水浴锅中,50℃下反应2—3h,将获得的产物抽滤;(3)产物在空气中500℃退火0.5—2h所得到用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片。用所得到的材料光解水制氧具有较高的氧气产率,在以氙灯为光源,以过硫酸钠为电子牺牲剂的情况下,光解水制氧量可达0.08—0.13mmol·h-1g-1,尤其是退火时间为1h时,制氧量达到0.13mmol·h-1g-1以上,超过了商用氧化铁颗粒的制氧量五倍以上。本发明方法操作简单、适合于工业化生产。

Description

用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法
技术领域
本发明涉及一种纳米材料,具体地说是一用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片。本发明还涉及一种用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片的制备方法。
背景技术
随着半导体光催化研究的快速发展,氧化铁作为光解水催化材料引人注目。由于其在地球上的丰度极高,拥有匹配可见光波段的带隙(2.1—2.2eV),而且价带位置比O2/H2O的电位更正,是析氧性能良好的材料。尽管如此,到前为止,太阳光辐射下其光解水产氧速率仍然比较低。如何提高氧化铁的光解水催化性能成为研究的热点。研究表明,影响氧化铁光解水性能的主要原因是纳米结晶氧化铁半导体的空穴传输能力较弱(扩散距离为2—4nm),导致电子一空穴对的再复合,从而降低了光激发效率,降低了光解水性能。因此,提高电子一空穴对的分离效率是提高氧化铁光催化效率的有效方法之一,通过减小氧化铁颗粒尺寸可以减少光生电子一空穴对的复合。
石墨烯具有较大的比表面积、优良的电子传导能力、化学稳定性优良,有望成为光催化剂的一种有效载体。同时,石墨烯是一种有效电子受体材料,将具有光催化活性的金属氧化物氧化铁与石墨烯复合,在两种材料的界面,氧化铁导带上的光激发电子有可能转移到石墨烯的能带上,有望大大降低电子一空穴对的复合,从而提高催化活性。
发明内容
本发明的目的在于提供一种能降低电子一空穴对的复合,提高催化活性的用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片。本发明的目的还在于提供一种操作简单、适合于工业化生产的用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片的制备方法。
本发明的目的是这样实现的:
本发明的用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片是:(1)将2.90—4.10克Fe(NO3)3加入200—300毫升蒸馏水中,再加入0.01—0.02克石墨烯,将混合溶液超声10-15min;(2)将所得溶液放入恒温水浴锅中,50℃下反应2—3h,将获得的产物抽滤;(3)产物在空气中500℃退火0.5—2h所得到的用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片。
本发明的用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片是采用如下方法制备的:
(1)2.90—4.10克Fe(NO3)3加入200—300毫升蒸馏水中,再向溶液中加入0.01—0.02克石墨烯,并将获得的混合溶液超声10-15min;
(2)将所得溶液放入恒温水浴锅中,50℃下反应2—3h,将获得的产物抽滤;
(3)产物在空气中500℃退火0.5—2h得到用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片。
用本发明的石墨烯修饰的多孔氧化铁纳米片50mg与300mg过硫酸钠分散在100ml蒸馏水中,以氙灯为光源,利用气象色谱柱进行光解制氧量测量。
本发明提供了一种用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制法。利用石墨烯修饰的多孔氧化铁纳米片50mg与300mg过硫酸钠分散在100ml蒸馏水中,以氙灯为光源,气象色谱柱测得制氧量能够稳定在0.13m mol h-1g-1以上,如图4所示。石墨烯修饰的多孔氧化铁纳米片比商用氧化铁的制氧量高出五倍。
本发明的另一个优点是使用石墨烯修饰的多孔氧化铁纳米片做光解水制氧材料,石墨烯是一种有效电子受体材料,氧化铁与石墨烯复合,在两种材料的界面,氧化铁导带上的光激发电子有可能转移到石墨烯的能带上,有望大大降低电子一空穴对的复合,从而提高催化活性。本发明方法操作简单、适合于工业化生产。
附图说明
图1为石墨烯修饰的多孔氧化铁纳米片的扫描电镜图。
图2为石墨烯修饰的多孔氧化铁纳米片的高分辨透射电镜图。
图3为石墨烯修饰的多孔氧化铁纳米片的XRD图谱。
图4为以过硫酸钠为电子牺牲剂的情况下石石墨烯修饰的多孔氧化铁纳米片光解水制氧量的测量曲线。
具体实施方式
下面举例对本发明做更详细地描述:
实施例1:
(1)取一个500毫升容量的烧杯,加入300毫升蒸馏水,然后加入2.90—4.10克Fe(NO3)3,再向溶液中加入0.02克石墨烯,超声约10min,使其溶解分散。
(2)超声后将所得溶液放入恒温水浴锅中,50℃下反应2h,将获得的产物抽滤。
(3)产物空气中500℃退火0.5h,得到石墨烯修饰的多孔氧化铁纳米片。
实施例2:
(1)取一个500毫升容量的烧杯,加入300毫升蒸馏水,然后加入2.90—4.10克Fe(NO3)3,再向溶液中加入0.01克石墨烯,超声约10min,使其溶解分散。
(2)超声后将所得溶液放入恒温水浴锅中,50℃下反应2h,将获得的产物抽滤。
(3)产物空气中500℃退火0.5h,得到石墨烯修饰的多孔氧化铁纳米片。
实施例3:
(1)取一个500毫升容量的烧杯,加入300毫升蒸馏水,然后加入2.90—4.10克Fe(NO3)3,再向溶液中加入0.015克石墨烯,超声约10min,使其溶解分散。
(2)超声后将所得溶液放入恒温水浴锅中,50℃下反应2h,将获得的产物抽滤。
(3)产物空气中500℃退火0.5h,得到石墨烯修饰的多孔氧化铁纳米片。

Claims (2)

1.一种用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片,其特征是:(1)将2.90—4.10克Fe(NO3)3加入200—300毫升蒸馏水中,再加入0.01—0.02克石墨烯,将混合溶液超声10-15min;(2)将所得溶液放入恒温水浴锅中,50℃下反应2—3h,将获得的产物抽滤;(3)抽滤后的产物在空气中500℃退火0.5—2h所得到的用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片。
2.一种用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片的制备方法,其特征是:
(1)2.90—4.10克Fe(NO3)3加入200—300毫升蒸馏水中,再向溶液中加入0.01—0.02克石墨烯,并将获得的混合溶液超声10-15min;
(2)将所得溶液放入恒温水浴锅中,50℃下反应2—3h,将获得的产物抽滤;
(3)将抽滤后的产物在空气中500℃退火0.5—2h得到用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片。
CN201410136139.9A 2014-04-04 2014-04-04 用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法 Expired - Fee Related CN103894199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410136139.9A CN103894199B (zh) 2014-04-04 2014-04-04 用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410136139.9A CN103894199B (zh) 2014-04-04 2014-04-04 用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法

Publications (2)

Publication Number Publication Date
CN103894199A CN103894199A (zh) 2014-07-02
CN103894199B true CN103894199B (zh) 2015-09-30

Family

ID=50985955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410136139.9A Expired - Fee Related CN103894199B (zh) 2014-04-04 2014-04-04 用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法

Country Status (1)

Country Link
CN (1) CN103894199B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266787A (zh) * 2010-06-07 2011-12-07 付文甫 一种新型不含贵金属光解水制氢催化剂的制备方法
CN103560228A (zh) * 2013-10-29 2014-02-05 中国石油大学(华东) 一种用水热法复合氧化铁与石墨烯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0612895B1 (pt) * 2006-04-28 2020-12-22 Tata Steel Limited método para produzir gás hidrogênio a partir de água

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266787A (zh) * 2010-06-07 2011-12-07 付文甫 一种新型不含贵金属光解水制氢催化剂的制备方法
CN103560228A (zh) * 2013-10-29 2014-02-05 中国石油大学(华东) 一种用水热法复合氧化铁与石墨烯的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electromagnetic absorption properties of graphene/Fe nanocomposites;Yujin Chen等;《Materials Research Bulletin》;20130515;第48卷;第3362–3366页 *
Fabrication,characterization,and photocatalytic property of a-Fe2O3/graphene oxide composite;Hong Li等;《J Nanopart Res》;20130529;第15卷;正文第1-11页 *
水热体系中四氧化三铁与氧化石墨烯复合纳米颗粒的合成;杨俊松等;《硅酸盐通报》;20130131;第32卷(第1期);第100-102页 *

Also Published As

Publication number Publication date
CN103894199A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
Cao et al. Engineering of Z-scheme 2D/3D architectures with Ni (OH) 2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution
Jiang et al. Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process
Hu et al. Effect of Cu (I)–N active sites on the N2 photofixation ability over flowerlike copper-doped g-C3N4 prepared via a novel molten salt-assisted microwave process: the experimental and density functional theory simulation analysis
Liang et al. Fabrication and characterization of BiOBr: Yb3+, Er3+/g-C3N4 pn junction photocatalysts with enhanced visible-NIR-light-driven photoactivities
Lu et al. K2SO4-assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB
Liu et al. Tailored fabrication of thoroughly mesoporous BiVO4 nanofibers and their visible-light photocatalytic activities
Chen et al. In situ synthesis of V4+ and Ce3+ self-doped BiVO4/CeO2 heterostructured nanocomposites with high surface areas and enhanced visible-light photocatalytic activity
Jiang et al. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity
Yao et al. Microwave-assisted hydrothermal synthesis of broadband Yb3+/Er3+ co-doped BiOI/Bi2O4 photocatalysts with synergistic effects of upconversion and direct Z-scheme heterojunction
Pan et al. Self-assembly synthesis of LaPO 4 hierarchical hollow spheres with enhanced photocatalytic CO 2-reduction performance
Zhao et al. MoS2 quantum dots@ TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis
Alzamly et al. Construction of BiOF/BiOI nanocomposites with tunable band gaps as efficient visible-light photocatalysts
Li et al. Visible-light photochemical activity of heterostructured core–shell materials composed of selected ternary titanates and ferrites coated by TiO2
CN103007944A (zh) 石墨烯基磁性复合可见光催化材料Fe3O4-G-TiO2的制备方法
Xu et al. BiOCl-based photocatalysts: Synthesis methods, structure, property, application, and perspective
CN103182307B (zh) 一种Cu掺杂ZnO/石墨烯复合光催化剂及其制备方法
Aguilar et al. Novel preparation of ZnS from Zn5 (CO3) 2 (OH) 6 by the hydro-or solvothermal method for H2 production
CN104826628A (zh) 一种在可见光下具有高催化降解活性的石墨烯–铁掺杂TiO2纳米线的制法
Cheng et al. Lollipop-shaped Co9S8/CdS nanocomposite derived from zeolitic imidazolate framework-67 for the photocatalytic hydrogen production
CN106732796A (zh) 一种高效还原co2的共价有机聚合物可见光光催化剂
Guo et al. Enhanced photocatalytic performance of metal silver and carbon dots co-doped BiOI photocatalysts and mechanism investigation
Ma et al. A highly efficient (Mo, N) codoped ZnIn2S4/g-C3N4 Z-scheme photocatalyst for the degradation of methylene blue
CN104148094A (zh) 一种氟氧化铋/石墨烯复合可见光催化剂的制备方法
CN104671276A (zh) 一种La表面改性的ZnO纳米片组装的三维结构的合成方法
CN103894199B (zh) 用作光解水制氧的石墨烯修饰的多孔氧化铁纳米片及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150930

Termination date: 20210404

CF01 Termination of patent right due to non-payment of annual fee