CN103882388A - 一种纳米复合Ag/CNTs一维材料的制备方法 - Google Patents

一种纳米复合Ag/CNTs一维材料的制备方法 Download PDF

Info

Publication number
CN103882388A
CN103882388A CN201410064633.9A CN201410064633A CN103882388A CN 103882388 A CN103882388 A CN 103882388A CN 201410064633 A CN201410064633 A CN 201410064633A CN 103882388 A CN103882388 A CN 103882388A
Authority
CN
China
Prior art keywords
cnts
dimensional material
sputtering
preparation
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410064633.9A
Other languages
English (en)
Inventor
景茂祥
沈湘黔
李旻
李博
李旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201410064633.9A priority Critical patent/CN103882388A/zh
Publication of CN103882388A publication Critical patent/CN103882388A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种纳米复合Ag/CNTs一维材料的制备方法,首先将碳纳米管浸入乙醇或丙酮中,利用超声分散处理后,喷涂在基体上,60℃下干燥;然后将喷涂了碳纳米管的基体置于离子溅射仪中的样品台上,以Ag为靶溅射电极,在溅射真空度10-1~10-3Mpa、溅射电流为10~30mA的条件下,溅射10s~2min,得到纳米银和CNTs的质量比为0.1~4:1的纳米复合Ag/CNTs一维材料。本发明制备过程简单可控,成品速度快,成本低;能够得到分散性好且负载量大的纳米复合Ag/CNTs一维材料。

Description

一种纳米复合Ag/CNTs一维材料的制备方法
技术领域
本发明属于材料领域,尤其是纳米复合Ag/CNTs一维材料的制备方法。
背景技术
银纳米颗粒在燃料电池、光敏器件、生物材料等领域具有广泛的应用前景。但这些应用中经常面临着一个共性问题,即银纳米粒子在高含量时易团聚及由此造成的化学、光学、催化性能的降低。为了实现高含量、低团聚这一目的,部分研究人员利用碳载体较好的耐腐蚀性、生物相容性及高的比表面积等优点,合成了碳基负载型银纳米颗粒材料,如Ag/多聚糖[P.Sanpui.ACS Appl,Mater.Interfaces,3(2011)218-228]、Ag/石墨烯[S.Bong.Electrochem.Commun.12(2010)129-131]、Ag/碳黑[Xinhua Xu.J.Electroanalytical Chemistry,696(2013)9-14]、Ag/CNTs(安亭等,物理化学学报,2012,28(9),2202-2208)等,在一定程度上提高了银粒子的分散性和活性,但由于其制备方法,如化学沉积法及化学镀法、水热法、银镜法等液相法的局限性,使得Ag纳米颗粒的负载量通常很低,若提高负载量,Ag纳米颗粒则出现团聚现象,难以满足实际应用中对Ag纳米颗粒高分散、高负载量的要求。吴永庆等[无机材料学报,2009,24:122-144]采用简单的热蒸发沉积法合成了Ag纳米晶颗粒/多壁碳纳米管复合材料,但这种方法Ag靶温度高达1000℃,纳米银易氧化,且容易导致碳纳米管发生形变。
发明内容
为了克服上述制备方法的缺点,本发明提供一种工艺简便、Ag纳米颗粒分散性好、负载量大的纳米复合Ag/CNTs一维材料的制备方法。
本发明的目的是通过以下技术方案实现的:
一种纳米复合Ag/CNTs一维材料的制备方法,其特征在于,包括以下步骤:
(1)将碳纳米管(简称“CNTs”)浸入乙醇或丙酮中,利用超声分散处理后,喷涂在基体上,60℃下干燥;
(2)将喷涂了碳纳米管的基体置于离子溅射仪中的样品台上,以Ag为靶溅射电极,在溅射真空度10-1~10-3Mpa、溅射电流为10~30mA的条件下,溅射10s~2min,得到纳米银和CNTs的质量比为0.1~4:1的的纳米复合Ag/CNTs一维材料。
优选地,步骤(1)中所述基体为玻璃片或PET(全称“聚对苯二甲酸乙二醇酯”)膜。
优选地,步骤(2)中溅射真空度10-2Mpa、溅射电流为10mA的条件下,溅射时间为2min。
优选地,步骤(2)中溅射真空度10-1Mpa、溅射电流为20mA的条件下,溅射时间为1.2min。
优选地,步骤(2)中溅射真空度10-3Mpa、溅射电流为30mA的条件下,溅射时间为10s。
本发明所述的制备方法具有如下优点:
(1)制备过程简单可控,成品速度快,成本低。
(2)由于碳纳米管的比表面积大,纳米银负载在其表面,负载量大,分散性高,活性强。
附图说明
图1为表征喷涂在基体上的CNTs表面形貌的SEM照片。
图2为表征实施例1获得的纳米复合Ag/CNTs一维材料表面形貌的SEM照片。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例1:
首先,将CNTs浸入乙醇中,超声处理10分钟后,喷涂在玻璃片上,于60℃下干燥。然后,将喷涂有CNTs的玻璃片放置于日本JFC-1600离子溅射仪中的样品台上,以Ag靶为溅射电极,抽真空至真空度10-2Mpa停止,在溅射电流10mA下溅射2min,得到纳米复合Ag/CNTs一维材料。
采用日本JEOL公司JSM-7001F场发射扫描电子显微镜,获取表征实施例1制备得到的纳米复合Ag/CNTs一维材料的表面形貌,如图2所示。与图1中所示的CNTs的表面形貌相比,实施例1所述的制备方法在CNTs的表面均匀负载了银纳米颗粒。在SEM观察区域内的纳米复合Ag/CNTs一维材料表面,任意取3个点进行能谱分析,结果见表1,能谱分析结果表明Ag:C的质量比约为4:1。
实施例2:
首先,将CNTs浸入丙酮中,超声处理30分钟后,喷涂在PET膜上,60℃下干燥,然后,将喷涂有CNTs的PET膜放置于离子溅射仪中的样品台上,溅射电极为Ag靶,抽真空至真空度10-1Mpa停止,在溅射电流20mA下溅射时间1.2min,得到纳米复合Ag/CNTs一维材料。测试结果显示:实施例2所述的制备方法在CNTs的表面均匀负载了银纳米颗粒;能谱分析结果:Ag:C质量比约为2:1。
实施例3:
首先,将CNTs浸入乙醇中,超声处理20分钟后,喷涂在PET膜上,60℃下干燥。然后,将喷涂有CNTs的PET膜放置于离子溅射仪中的样品台上,溅射电极为Ag靶,抽真空至真空度10-3Mpa停止,在溅射电流30mA下溅射时间10s,得到纳米复合Ag/CNTs一维材料。结果显示:实施例3所述的制备方法在CNTs的表面均匀负载了银纳米颗粒;能谱分析结果:Ag:C质量比约为0.1:1。
表1实施例1~3所得纳米复合Ag/CNTs一维材料表面的Ag/C质量比
Figure BDA0000469379250000031
上述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (5)

1.一种纳米复合Ag/CNTs一维材料的制备方法,其特征在于,包括以下步骤:
(1)将碳纳米管浸入乙醇或丙酮中,利用超声分散处理后,喷涂在基体上,60℃下干燥;
(2)将喷涂了碳纳米管的基体置于离子溅射仪中的样品台上,以Ag为靶溅射电极,在溅射真空度10-1~10-3Mpa、溅射电流为10~30mA的条件下,溅射10s~2min,得到纳米银和CNTs的质量比为0.1~4:1的的纳米复合Ag/CNTs一维材料。
2.根据权利要求1所述的纳米复合Ag/CNTs一维材料的制备方法,其特征在于,步骤(1)中所述基体为玻璃片或PET膜。
3.根据权利要求1所述的纳米复合Ag/CNTs一维材料的制备方法,其特征在于,步骤(2)中溅射真空度10-2Mpa、溅射电流为10mA的条件下,溅射时间为2min。
4.根据权利要求1所述的纳米复合Ag/CNTs一维材料的制备方法,其特征在于,步骤(2)中溅射真空度10-1Mpa、溅射电流为20mA的条件下,溅射时间为1.2min。
5.根据权利要求1所述的纳米复合Ag/CNTs一维材料的制备方法,其特征在于,步骤(2)中溅射真空度10-3Mpa、溅射电流为30mA的条件下,溅射时间为10s。
CN201410064633.9A 2014-02-25 2014-02-25 一种纳米复合Ag/CNTs一维材料的制备方法 Pending CN103882388A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410064633.9A CN103882388A (zh) 2014-02-25 2014-02-25 一种纳米复合Ag/CNTs一维材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410064633.9A CN103882388A (zh) 2014-02-25 2014-02-25 一种纳米复合Ag/CNTs一维材料的制备方法

Publications (1)

Publication Number Publication Date
CN103882388A true CN103882388A (zh) 2014-06-25

Family

ID=50951503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410064633.9A Pending CN103882388A (zh) 2014-02-25 2014-02-25 一种纳米复合Ag/CNTs一维材料的制备方法

Country Status (1)

Country Link
CN (1) CN103882388A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255544A (zh) * 2008-03-21 2008-09-03 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101255544A (zh) * 2008-03-21 2008-09-03 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴永庆,等: "Ag纳米晶颗粒/碳纳米管复合材料的制备与结构研究", 《无机材料学报》 *
张洁,等: "碳纳米管和金属纳米粒子复合结构的拉曼光谱特性", 《中国激光》 *
闫晓琦,等: "溅射镀Au-CNTs复合材料的制备及电化学储氢性能", 《中国有色金属学报》 *

Similar Documents

Publication Publication Date Title
Wang et al. Interfacial Scaffolding Preparation of Hierarchical PBA‐Based Derivative Electrocatalysts for Efficient Water Splitting
McArthur et al. Synthesis and characterization of 3D Ni nanoparticle/carbon nanotube cathodes for hydrogen evolution in alkaline electrolyte
Wiggins-Camacho et al. Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes
Skákalová et al. Chemical oxidation of graphite: evolution of the structure and properties
Hou et al. Hierarchical core–shell structure of ZnO nanorod@ NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors
Barreca et al. Cobalt oxide nanomaterials by vapor-phase synthesis for fast and reversible lithium storage
CN108698849B (zh) 通过在悬浮的非负载型石墨烯纳米片上生长氧化锌纳米棒或微米棒获得的石墨烯基复合纳米结构的生产
Li et al. Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells
Huang et al. Ultradispersed platinum nanoclusters on polydopamine-functionalized carbon nanotubes as an excellent catalyst for methanol oxidation reaction
Jukk et al. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nanotube composites in alkaline solution
Lake et al. Graphene metal oxide composite supercapacitor electrodes
Li et al. Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly
Chandrasekaran et al. Three-dimensional printed MoS2/graphene aerogel electrodes for hydrogen evolution reactions
Chien et al. Nitrogen DC-pulse atmospheric-pressure-plasma jet (APPJ)-processed reduced graphene oxide (rGO)‑carbon black (CB) nanocomposite electrodes for supercapacitor applications
Liang et al. Effective trapping of polysulfides using functionalized thin-walled porous carbon nanotubes as sulfur hosts for lithium–sulfur batteries
Burdette-Trofimov et al. Direct measure of electrode spatial heterogeneity: influence of processing conditions on anode architecture and performance
KR20120129780A (ko) 극단파 백색광 조사법을 이용한 탄소-합금 복합체의 제조 방법
Butt et al. An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: a revisited insight into a potential electrode material for supercapacitors
Shi et al. A supramolecular self-assembly hydrogel binder enables enhanced cycling of SnO 2-based anode for high-performance lithium-ion batteries
Meseck et al. Three-dimensional organization of surface-bound silicone nanofilaments revealed by focused ion beam nanotomography
WO2014175432A1 (ja) Dlc層を有する構造体及びdlc層の生成方法
Zhang et al. A facile strategy for ZnFe 2 O 4 coating preparing by electrophoretic deposition and its supercapacitor performances
Jessl et al. Anisotropic carbon nanotube structures with high aspect ratio nanopores for Li-ion battery anodes
Pinto et al. Material jetting of carbon nano onions for printed electronics
CN103280338A (zh) 用于超级电容器中无支撑电极的增强型碳纳米管巴基纸及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140625