CN103846437A - 通过增材激光制造来制造金属部件的方法 - Google Patents

通过增材激光制造来制造金属部件的方法 Download PDF

Info

Publication number
CN103846437A
CN103846437A CN201310621038.6A CN201310621038A CN103846437A CN 103846437 A CN103846437 A CN 103846437A CN 201310621038 A CN201310621038 A CN 201310621038A CN 103846437 A CN103846437 A CN 103846437A
Authority
CN
China
Prior art keywords
parts
grain
powder
layer
goods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310621038.6A
Other languages
English (en)
Other versions
CN103846437B (zh
Inventor
T.埃特
M.康特
M.霍伊贝
J.舒尔布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of CN103846437A publication Critical patent/CN103846437A/zh
Application granted granted Critical
Publication of CN103846437B publication Critical patent/CN103846437B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0272Rods, electrodes, wires with more than one layer of coating or sheathing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/606Directionally-solidified crystalline structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)
  • Architecture (AREA)

Abstract

本发明涉及完全或部分制造三维金属制品/部件(11)的方法,所述方法包括以下步骤:a)通过用能量束(14)扫描,由增材制造方法从金属基础材料(12)连续建造所述制品/部件(11),从而b)在制品/部件(11)的第一方向和第二方向上建立受控的晶粒取向,c)其中第二晶粒取向通过应用能量束(14)的特定扫描图案而实现,所述第二晶粒取向与所述制品/部件(14)的横截剖面匹配或者与制品/部件(11)的特征负荷条件匹配。

Description

通过增材激光制造来制造金属部件的方法
发明背景
本发明涉及耐高温部件的技术,尤其是用于燃气涡轮的热气路径部件。本发明涉及通过增材制造(additive manufacturing)技术制造金属部件/三维制品的方法,例如选择性激光熔融(SLM)、选择性激光烧结(SLS)或电子束熔融(EBM)。
现有技术
增材制造已成为制造金属功能原型和部件的越来越有吸引力的解决方案。已知SLM、SLS和EBM方法用粉末材料作为基础材料。部件或制品直接从粉末床产生。其它增材制造方法,例如激光金属成形(LMF)、激光工程化净成形(LENS)或直接金属沉积(DMD)使材料局部熔融到现有部分上。这种新产生的材料可沉积为线或粉末,其中粉末沉积装置沿着预定路径连同自动机或CNC机移动。
图1显示现有技术已知的基本SLM布置10,其中三维制品(部件)11通过以下制造:连续增加具有预定的层厚度d、面积和轮廓的粉末层12,然后通过来自激光装置13并由控制单元15控制的扫描激光束14熔融所述粉末层12。
通常,一个层的扫描矢量在该层内彼此平行(见图2a),或者在一个层内,限定的区域(所谓箱板(chest board)图案)具有扫描矢量之间的固定角度(参见图3a)。在后继的层之间(这是指在层n和层n+1之间,在层n+1和层n+2之间,等等),扫描矢量旋转例如90°的角度(参见图2b,3b)或不同于90°或n*90°的角度(参见图4a,4b)。对于由SLM制造的制品,目前为止这样做(对于后继的层或对于制品一个层内的图案的特定区域,例如箱板,使用交替的扫描器路径)是为了得到良好品质(最佳的部件/制品密度和几何精度)。
目前本领域已知的典型SLM轨道布置(track alignment)显示于图5中。
由于熔融池中的典型温度曲线和熔融池邻近所得的热梯度,垂直于粉末平面(x-y平面)的较快和优选的晶粒生长是有利的。这得到在z方向(=第一晶粒取向方向,晶体学[001]方向)上显示伸长晶粒的特征微结构。此方向垂直于x-y平面。因此,以z方向延伸的第一样品(见图1)显示不同于在x-y平面(=第二晶粒取向,第二晶体学方向)内延伸的第二样品的性质,例如,沿z方向的杨氏模量一般不同于在粉末平面(x-y平面)内的杨氏模量。
因此,基于粉末的技术或其它增材制造技术的一个特征特点是材料性质(例如,杨氏模量、屈服强度、拉伸强度、低循环疲劳性能、蠕变)的强烈各向异性,这归因于已知的在SLM粉末床处理期间的逐层建造(layer-wise build-up)方法和局部固化条件。
材料性质的这种各向异性可能在若干应用中为缺点。因此,申请人已提交两个目前为止未公布的专利申请,其披露了通过增材激光制造技术制造的部件的各向异性材料性质可通过适当的“构建后”热处理来减小,得到更各向同性的材料性质。
在最近三十年间,已开发定向固化(DS)和单晶(SX)的涡轮部件,所述部件通过熔模铸造来制造,其中在第一和第二晶粒取向(垂直于第一生长方向)上例如杨氏模量的低值与热机械负荷条件匹配(align)。在此,这种匹配通过施用晶种和晶粒选择剂(grain selector)而提供,结果是部件性能和寿命的显著提高。
然而,对于通过SLM生产的零件/部件,迄今未知控制第一和第二晶体学取向的那些技术。
用发生性激光方法(称为外延激光金属成形(E-LMF)的技术)控制在单晶(SX)基体上形成的沉积物的微结构也已经变得可能。这些方法可生产具有优选晶粒取向(DS)或无晶粒边界(SX)的部件。
随着将来的热气路径部件提高的设计复杂性,当薄壁或双壁部件的铸造产量预期下降时,通过铸造而经济地制造这些SX或DS零件/部件将变得越来越成问题。另外,外延激光金属成形仅可适用于其中基础材料已具有单晶取向的部件。
由于其直接从粉末床产生很复杂的设计的能力,SLM技术能够制造高性能和复杂成形的部件。因此,如上所述对铸造SX或DS部件的微结构的类似控制高度有益于用SLM技术或其它增材制造激光技术制造的部件和原型。对杨氏模量的额外控制和匹配会进一步提高这些部件的性能和应用潜力。
发明概述
本发明的一个目的是公开一种通过增材制造方法完全或部分制造具有改进性质的金属部件/三维制品的方法,根据部件的设计意图,在其中可按照有利的方式使用各向异性性质,或者在其中可减小或避免各向异性。本发明的又一个目的是公开一种适合的方法,其实现使所述制品的各向异性性质与局部热机械负荷条件匹配。
通过权利要求1的方法达到这个和其它目的。
本发明公开对金属部件/三维制品(例如,部件所用的试件(coupon)、***件(insert))的晶粒的第二晶体学取向的控制,所述金属部件/三维制品由通过增材制造技术处理的基于Ni、Co或Fe的超合金制成。为此,在制品制造期间适当布置扫描器路径是重要的。
有利的是控制所制造的材料的微结构并利用这种特征性的材料各向异性。
本发明基于发现能够通过扫描和建造控制来控制第二晶体取向。
根据本发明制造的部件/制品具有受控的第二晶体学晶粒取向,与根据本领域目前的增材制造方法制造的部件相比,这导致金属部件和原型的更高寿命和操作性能。
用于完全或部分制造三维金属制品/部件的本发明的方法包括以下步骤:
a) 通过用能量束扫描,由增材制造方法从金属基础材料连续建造所述制品/部件,从而
b) 在制品/部件的第一方向和第二方向上建立受控的晶粒取向,
c) 其中第二晶粒取向通过应用能量束的特定扫描图按而实现,所述第二晶粒取向与所述制品/部件的横截剖面匹配或者与制品/部件的局部负荷条件匹配。
在本方法的优选实施方案中,在期望杨氏模量的最小值之处,通过将扫描器路径布置为交替地与部件的方向平行(在第一层)和垂直(在下一层)等等,实现对第二晶粒取向的有效控制。
本方法可尤其用于制造具有复杂设计的小至中尺寸的热气路径部件和原型。这些部件可例如存在于燃气涡轮的第一涡轮级中、压缩机中或燃烧器中。一个优势为,本方法可用于新部件制造并且可用于修复/修理过程中。
根据本发明的一个实施方案,所述增材制造方法为以下之一:选择性激光熔融(SLM)、选择性激光烧结(SLS)或电子束熔融(EBM),并且使用粉末形式的金属基础材料。
具体地讲,所述SLM或SLS或EBM方法包括以下步骤:
a) 产生所述制品的三维模型,随后为切片过程以计算横截面;
b) 随后,将所述计算的横截面传送到机器控制单元(15);
c) 提供该过程需要的所述基础材料的粉末;
d) 在基板上或在先前处理的粉末层上制备具有固定和均匀厚度的粉末层(12);
e) 与根据所述控制单元(15)中储存的三维模型的所述制品的横截面相对应,通过用能量束(14)扫描来进行熔融;
f) 使先前形成的横截面的上表面降低一个层厚度(d);
g) 重复所述步骤d)至f),直至达到根据所述三维模型的最后横截面;和
h) 任选加热处理所述三维制品(11),其中
在步骤e)中,所述能量束以一定方式扫描,使得:
- 扫描矢量在后继的层之间或在层的每个特定区域(岛)之间垂直,从而建立特定的期望的第二晶体学晶粒取向,或者
- 扫描矢量在后继的层之间或在层的每个特定区域(岛)之间具有随机角度,从而不建立特定的第二晶体学晶粒取向。
能量束,例如高密度能量激光束,以特定扫描图案扫描,使得第二晶体学晶粒取向与部件的设计意图匹配。
更具体地讲,为了建立制备具有固定和均匀厚度的粉末层所需的良好流动性,针对所述粉末层的层厚度调节所述粉末的晶粒尺寸分布。根据本发明的另一个实施方案,粉末晶粒具有球形形状。
根据本发明的另一个实施方案,通过筛分和/或风选(空气分离)得到粉末的精确的晶粒尺寸分布。
根据本发明的另一个实施方案,通过粉末冶金学的方法提供所述粉末,具体为以下之一:气体或水雾化、等离子旋转电极方法或机械研磨。
根据本发明的另一个实施方案,所述金属基础材料为高温Ni基合金。
根据本发明的另一个实施方案,所述金属基础材料为高温Co基合金。
根据本发明的另一个实施方案,所述金属基础材料为高温Fe基合金。
具体地讲,所述合金可包含精细分散的氧化物,具体为以下之一:Y2O3、AlO3、ThO2、HfO2、ZrO2
本发明的重要方面是优选的微结构不必在部件的整个体积内实施的事实。相反,可根据局部机械完整性(MI)的需要,对不同区域以任意方式开启和关闭所述匹配。与熔模铸造或E(外延)-LMF比较这是一个优势,在熔模铸造或E-LMF中,一旦外延生长条件不再存在,并且已发生等轴晶粒生长,则失去微结构控制。
附图简述
现在通过不同的实施方案并参考附图更准确地解释本发明。
图1显示根据本领域目前的SLM制造的基本布置,其可用于本发明。
图2a、2b显示用于SLM制造的第一扫描策略(在相邻层之间具有90°角度的交替扫描矢量);
图3a、3b显示用于SLM制造的第二扫描策略(箱板策略);
图4a至4c显示用于SLM制造的两种另外的扫描策略(在相邻层之间具有63°角度或具有随机角度的交替扫描矢量);
图5显示本领域目前已知的典型SLM轨道布置。
图6显示,对于由Hastelloy® X制备的样品,对两种不同扫描策略,以室温和750℃作为试验温度,在“建成(as built)”条件下检测的杨氏模量值;和
图7显示在刻蚀条件下的Ni基超合金的光学显微相片,以及从电子背散射衍射(EBSD)扫描得到的取向图。
附图标记列表
10   SLM布置
11   制品(3D),部件
12   粉末层
13   激光装置
14   激光束
15   控制单元
d   层厚度(粉末层)。
发明不同实施方案的详述
如以上在现有技术中所述,基于粉末的增材制造技术的一个特征特点是由逐层建造方法产生的材料性质的强烈各向异性。
已证明,沿z方向的机械性质不同于x-y平面(为粉末平面)内的机械性质。沿z方向(建造方向)的杨氏模量一般低于x-y平面内的杨氏模量。这显示于图6中,图6关于用两种不同扫描策略(意味着两种不同的扫描图案)通过增材制造的由Hastalloy® X制成的样品,其在室温RT和750℃温度下试验。杨氏模量在“建成”条件下测量。由于在这些方法中基于粉末的制品生产和能量束-材料相互作用的固有高冷却速率,所述材料就化学组成而言很均匀,并且基本没有偏析。另外,在“建成”条件下的材料具有很细的微结构(例如,沉淀物和晶粒尺寸),比常规铸造或锻造的超合金细得多。与不同的扫描策略M比较,利用扫描策略I总是得到显著更低的杨氏模量。这对于第一取向(z方向)和第二取向(x-y平面)两者均成立,对于两个不同的试验温度(室温RT和750℃)也成立。
对于在[001]方向上柱形晶粒生长的观察是众所周知的。然而,类似的方向相关性也存在于x-y平面中。已发现,利用特定的过程装置,可在第二平面(扫描器移动平面)内控制[001]生长。
用于制造三维金属制品/部件的本发明的方法包括以下步骤:
a) 通过用能量束扫描,由增材制造方法从金属基础材料连续建造所述制品/部件,从而
b) 在制品/部件的第一方向和第二方向上建立受控的晶粒取向,
c) 其中第二晶粒取向通过应用能量束的特定扫描图按而实现,所述第二晶粒取向与所述制品/部件的横截剖面匹配或者与制品/部件的局部负荷条件匹配。
对于本发明,第二晶粒取向与部件的特征负荷条件匹配(例如,沿着部件横截剖面)是重要的。
在公开方法的一个实施方案中,在期望杨氏模量的最小值之处,通过将扫描器路径布置为在后续的层中交替地与部件的方向平行(在第一层)和垂直(在下一层)等等,实现对第二晶粒取向的有效控制。
所述增材制造技术尤其为选择性激光熔融(SLM)、选择性激光烧结(SLS)和电子束熔融(EBM)。可用所述基于粉末的增材制造技术完全或部分地建造制品,例如,燃气涡轮的叶片或叶轮,例如叶冠建造。制品也可以为例如用于整个部件的修理过程的***件或试件。
在用选择性激光熔融SLM、选择性激光烧结SLS或电子束熔融EBM作为增材制造技术时,本发明的方法包括以下步骤:
a) 产生所述制品的三维模型,随后为切片过程以计算横截面;
b) 随后,将所述计算的横截面传送到机器控制单元(15);
c) 提供该过程需要的所述基础材料的粉末,例如Ni基超合金的粉末;
d) 在基板上或在先前处理的粉末层上制备具有固定和均匀厚度的粉末层(12);
e) 与根据所述控制单元(15)中储存的三维模型的所述制品的横截面相对应,通过用能量束(14)扫描来进行熔融;
f) 使先前形成的横截面的上表面降低一个层厚度(d);
g) 重复所述步骤d)至f),直至达到根据所述三维模型的最后横截面;和
h) 任选加热处理所述三维制品(11),其中
在步骤e)中,所述能量束以一定方式扫描,使得:
- 扫描矢量在每个后继层之间或在层的每个特定区域(岛)之间垂直,从而建立特定的期望的第二晶体学晶粒取向,或者
- 扫描矢量在每个后继层之间或在层的每个特定区域(岛)之间具有随机角度,从而不建立特定的第二晶体学晶粒取向。
图7显示在刻蚀条件下Ni基超合金的光学显微相片和从电子背散射衍射(EBSD)扫描得到的取向图。另外,相对于建造方向z显示由EBSD得到的优选晶体取向,表示为极图(001)和反极图。所有取向图通过用相对于建造方向z的标准反极图(IPF)色键来着色。可以看到,晶粒不仅显示沿z轴的优选取向而且显示在x-y平面内的优选取向。另外,第二晶体学晶粒取向相应于所应用的激光移动(例如,在x-y平面内45°)。
利用这种定制的SLM建造方法,可制造在最重负荷区域内具有优化机械性能的部件,例如燃气涡轮叶片。为此目的,使具有杨氏模量最小值的方向与叶片的负荷条件匹配。
重要的是,不仅使晶粒的第一晶体学取向,而且使晶粒的第二晶体学取向有利地与部件的设计意图匹配,导致产生延长的服务寿命。
在期望杨氏模量的最小值之处,通过将扫描器路径布置为与部件的方向平行和垂直,实现对第二晶粒取向的有效控制。在不同层中扫描器路径方向的角度变化必须总是为90°或此值的倍数(参见图2a、2b)。
本发明涉及发现使用在每个层之间或在层的每个特定区域(岛)之间垂直的扫描矢量来建立第二晶体学取向。
也可通过使用扫描矢量消除优选的第二取向(得到不显著的第二取向),所述扫描矢量在每个层的每个岛内平行并且在每个后继的层内旋转例如63°角度(参见图4a、4b)或者使用随机角度(参见图4c、4d)改变每个岛内和每个层内的扫描方向。用于不显著的第二取向的最佳扫描图案为63°/xx°。
本发明的一个重要方面是优选的微结构不必在部件的整个体积中实施的事实。相反,可根据局部机械完整性(MI)需要,对不同区域以任意方式开启和关闭所述匹配。这与熔模铸造或E-LMF比较是一个优势,在熔模铸造或E-LMF中,一旦外延生长条件不再存在,并且已发生等轴晶粒生长,则失去微结构控制。
优选地,针对层厚度d调节在此SLM、SLS或EBM方法中使用的粉末的晶粒尺寸分布,以具有良好的流动性,这是制备具有固定和均匀厚度d的粉末层所需的。
优选地,在此方法中使用的粉末的粉末晶粒具有球形形状。通过筛分和/或风选(空气分离),可得到粉末的精确的晶粒尺寸分布。另外,通过气体或水雾化、等离子旋转电极方法、机械研磨和类似的粉末冶金学的方法,可得到粉末。
在其它情况下,可用悬浮体代替粉末。
在所述高温材料为Ni基合金时,可使用多种市售可得的合金,例如Waspaloy®、Hastelloy® X、IN617®、IN718®、IN625®、Mar-M247®、IN100®、IN738®、1N792®、Mar-M200®、B1900®、RENE 80®、Alloy 713®、Haynes 230®、Haynes 282®或其它衍生物。
在所述高温材料为Co基合金时,可使用多种市售可得的合金,例如FSX 414®、X-40®、X-45®、MAR-M 509®或MAR-M 302®。
在所述高温材料为Fe基合金时,可使用多种市售可得的合金,例如A 286®、Alloy 800 H®、N 155®、S 590®、Alloy 802®、Incoloy MA 956®、Incoloy MA 957®或PM 2000®。
这些合金尤其可包含精细分散的氧化物,例如Y2O3、AlO3、ThO2、HfO2、ZrO2
在一个优选的实施方案中,用本发明的方法制造的部件为用于涡轮机的叶片或叶轮。叶片/叶轮包括具有一定剖面的翼片。第二晶粒取向的匹配与翼片剖面相配,并且第二晶粒取向的匹配逐渐并连续地适配于翼片的形状。这产生很好的机械和疲劳性质。
总结:
机械试验和微结构评估已显示,通过SLM方法或通过其它增材制造方法建造的样品具有强烈的各向异性性能。通过扫描和控制能量束,使得第二结晶学晶粒取向与部件设计意图匹配(与特征负荷条件匹配),可生产在最重负荷区域具有优化机械性能的部件。为此目的,使具有杨氏模量最小值的方向与部件的负荷条件匹配。

Claims (15)

1. 完全或部分制造三维金属制品/部件(11)的方法,所述方法包括以下步骤:
a)通过用能量束(14)扫描,由增材制造方法从金属基础材料(12)连续建造所述制品/部件(11),从而
b)在所述制品/部件(11)的第一方向和第二方向上建立受控的晶粒取向,
c)其中所述受控的晶粒取向通过应用能量束(14)的特定扫描图案而实现,所述受控的晶粒取向与所述制品/部件(14)的横截剖面匹配或者与所述制品/部件(11)的局部负荷条件匹配。
2. 权利要求1的方法,其特征在于,在期望杨氏模量的最小值之处,通过将扫描器路径布置为在后继的层中交替地与所述部件(11)的方向平行和垂直,实现对所述第二晶粒取向的控制。
3. 权利要求1的方法,其特征在于为了实现不显著的第二晶粒取向,在后继的层中使所述扫描器路径旋转随机角度。
4. 权利要求1的方法,其特征在于为了实现不显著的第二晶粒取向,扫描矢量在每个层的每个岛内平行,并且在每个后继的层中旋转63°。
5. 权利要求1-4中的一项的方法,其特征在于所述增材制造方法为以下之一:选择性激光熔融(SLM)、选择性激光烧结(SLS)或电子束熔融(EBM),特征在于使用粉末形式的金属基础材料,且所述方法包括以下步骤:
a) 产生所述制品的三维模型,随后为切片过程以计算横截面;
b) 随后,将所述计算的横截面传送到机器控制单元(15);
c) 提供该过程需要的所述基础材料的粉末;
d) 在基板上或在先前处理的粉末层上制备具有固定和均匀厚度的粉末层(12);
e) 通过用能量束(14)扫描与根据所述控制单元(15)中储存的三维模型的所述制品横截面相对应的区域来进行熔融;
f) 使先前形成的横截面的上表面降低一个层厚度(d);
g) 重复所述步骤c)至f),直至达到根据所述三维模型的最后横截面;和
h) 任选加热处理所述三维制品(11),其中
在步骤e)中,所述能量束(14)以一定方式扫描,使得:
- 扫描矢量在每个后继层之间或在层的每个特定区域(岛)之间垂直,从而建立特定的期望的第二晶体学晶粒取向,或者
- 扫描矢量在每个后继层之间或在层的每个特定区域(岛)之间具有随机角度,从而不建立特定的第二晶体学晶粒取向。
6. 权利要求5的方法,其特征在于,为了建立制备具有固定和均匀厚度(d)的粉末层(12)所需的良好流动性,针对所述粉末层(12)的层厚度(d)调节所述粉末的晶粒尺寸分布。
7. 权利要求5的方法,其特征在于所述粉末晶粒具有球形形状,并且特征在于通过筛分和/或风选(空气分离)得到所述粉末的精确晶粒尺寸分布。
8. 权利要求5的方法,其特征在于通过粉末冶金学的方法提供所述粉末,具体为以下之一:气体或水雾化、等离子旋转电极方法或机械研磨。
9. 权利要求5的方法,其特征在于所述增材制造方法用悬浮体代替粉末。
10. 权利要求1-9中的一项的方法,其特征在于所述金属基础材料为以下之一:高温Ni基合金、Co基合金、Fe基合金或它们的组合。
11. 权利要求10的方法,其特征在于所述合金包含精细分散的氧化物,具体为以下之一:Y2O3、AlO3、ThO2、HfO2、ZrO2
12. 权利要求1、2、5中的一项的方法,其特征在于仅在指定的子体积中应用所述第二晶粒取向的优先匹配。
13. 通过权利要求1-12中的一项的方法制造的部件(11),其特征在于所述部件(11)用于压缩机、燃烧器或燃气涡轮的涡轮节,优选作为叶片、叶轮或隔热罩。
14. 权利要求13的部件(11),其中所述部件包括具有一定剖面的翼片,其特征在于所述第二晶粒取向的匹配与所述翼片的剖面相配,并且特征在于其逐渐并连续地适配于所述翼片的形状。
15. 权利要求13的部件(11),其中所述第二晶粒取向的匹配与所述部件的局部负荷条件匹配。
CN201310621038.6A 2012-12-01 2013-11-29 通过增材激光制造来制造金属部件的方法 Expired - Fee Related CN103846437B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12008074.2 2012-12-01
EP12008074.2A EP2737965A1 (en) 2012-12-01 2012-12-01 Method for manufacturing a metallic component by additive laser manufacturing

Publications (2)

Publication Number Publication Date
CN103846437A true CN103846437A (zh) 2014-06-11
CN103846437B CN103846437B (zh) 2017-05-10

Family

ID=47290562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310621038.6A Expired - Fee Related CN103846437B (zh) 2012-12-01 2013-11-29 通过增材激光制造来制造金属部件的方法

Country Status (7)

Country Link
US (1) US20140154088A1 (zh)
EP (1) EP2737965A1 (zh)
JP (1) JP5933512B2 (zh)
KR (2) KR20140071907A (zh)
CN (1) CN103846437B (zh)
AU (1) AU2013263783B2 (zh)
CA (1) CA2833890C (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148636A (zh) * 2014-08-29 2014-11-19 中国科学院重庆绿色智能技术研究院 一种控制金属零件增材制造热变形的扫描路径生成方法
CN105108142A (zh) * 2015-06-18 2015-12-02 航星利华(北京)科技有限公司 一种激光3d打印制备单晶和定向凝固零件的方法
CN105258159A (zh) * 2014-07-14 2016-01-20 联合工艺公司 增材制造的表面终饰
CN105537590A (zh) * 2016-02-01 2016-05-04 合肥中加激光技术有限公司 一种金属slm三维打印减小热堆积影响的方法
CN105642890A (zh) * 2014-11-28 2016-06-08 通用电器技术有限公司 使用添加式制造工艺制造构件的方法
CN105710365A (zh) * 2014-12-19 2016-06-29 通用电器技术有限公司 用于生产金属构件的方法
CN107438488A (zh) * 2015-03-30 2017-12-05 瑞尼斯豪公司 增材制造设备和方法
CN107530901A (zh) * 2015-03-17 2018-01-02 辛特印刷有限公司 反应性增材制造
CN108260348A (zh) * 2015-10-14 2018-07-06 西门子股份公司 用于通过生成式制造来制造工件的方法,相应的工件
CN108480629A (zh) * 2018-03-23 2018-09-04 山东矿机集团股份有限公司 一种汽轮机空心叶片的激光增材制造方法
CN108788144A (zh) * 2017-04-28 2018-11-13 戴弗根特技术有限公司 增材制造中的散射减少
CN108941560A (zh) * 2018-07-27 2018-12-07 中南大学 一种消除Renè104镍基高温合金激光增材制造裂纹的方法
CN109093106A (zh) * 2017-06-21 2018-12-28 通用电气公司 用于增材制造中的粉末预处理的***和方法
CN109562452A (zh) * 2016-08-10 2019-04-02 瑞尼斯豪公司 关于增材制造的方法和***以及增材制造的制品
CN109641387A (zh) * 2016-10-25 2019-04-16 惠普发展公司,有限责任合伙企业 构建托盘模型分配和所制作的零件分类
CN109641443A (zh) * 2016-08-30 2019-04-16 伟尔集团Ip有限公司 形成旋转部件
CN111097907A (zh) * 2019-12-28 2020-05-05 同济大学 一种铁基材料的取向方法
CN111168221A (zh) * 2019-12-13 2020-05-19 航天海鹰(哈尔滨)钛业有限公司 一种k417高温合金蒙皮骨架结构扩散连接工艺方法
CN111215629A (zh) * 2014-11-24 2020-06-02 添加剂工业有限公司 用于通过增材制造生产物品的设备和校准设备的方法
CN112828307A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种粗化沉淀强化镍基高温合金晶粒的激光粉床熔融成形方法
CN112916875A (zh) * 2021-01-22 2021-06-08 上海科技大学 一种基于选区激光熔化技术的隔热板结构及其成型方法
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
US11267052B2 (en) 2014-11-21 2022-03-08 Renishaw Plc Additive manufacturing apparatus and methods
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method
CN117066527A (zh) * 2023-09-13 2023-11-17 之江实验室 通过层间取向诱导调控机器人脚关节耐磨性的打印方法

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2772329A1 (en) 2013-02-28 2014-09-03 Alstom Technology Ltd Method for manufacturing a hybrid component
US20160263712A1 (en) * 2014-01-24 2016-09-15 United Technologies Corporation Additive repair for combutster liner panels
US9896944B2 (en) * 2014-04-18 2018-02-20 Siemens Energy, Inc. Forming a secondary structure directly onto a turbine blade
US9486878B2 (en) 2014-06-20 2016-11-08 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
WO2016026706A1 (en) 2014-08-20 2016-02-25 Etxe-Tar, S.A. Method and system for additive manufacturing using a light beam
JP2016053198A (ja) * 2014-09-04 2016-04-14 株式会社コイワイ 金属成形体および金属成形体用金属粉末
CN104475728B (zh) * 2014-12-13 2017-01-25 广东汉邦激光科技有限公司 一种用于3d打印扫描的控制方法和控制装置
DE102015202347A1 (de) * 2015-02-10 2016-08-11 Trumpf Laser- Und Systemtechnik Gmbh Bestrahlungseinrichtung, Bearbeitungsmaschine und Verfahren zum Herstellen einer Schicht eines dreidimensionalen Bauteils
DE102015202417A1 (de) * 2015-02-11 2016-08-11 Ksb Aktiengesellschaft Stömungsführendes Bauteil
US20160279735A1 (en) * 2015-03-27 2016-09-29 Arcam Ab Method for additive manufacturing
JP6030186B1 (ja) 2015-05-13 2016-11-24 株式会社ダイヘン 銅合金粉末、積層造形物の製造方法および積層造形物
CN105252000B (zh) * 2015-10-08 2017-09-19 湖南顶立科技有限公司 一种超高压惰性气体保护下金属粉末增材制造方法
KR102562730B1 (ko) 2015-10-30 2023-08-01 쇠라 테크널러지스 인코포레이티드 적층식 제조 시스템 및 방법
CN108367498A (zh) 2015-11-06 2018-08-03 维洛3D公司 Adept三维打印
US10071422B2 (en) * 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
WO2017132664A1 (en) 2016-01-28 2017-08-03 Seurat Technologies, Inc. Additive manufacturing, spatial heat treating system and method
EP3362238B1 (en) 2016-01-29 2021-12-29 Seurat Technologies, Inc. Method of additive manufacturing
US10610931B2 (en) 2016-02-16 2020-04-07 Board Of Regents, The University Of Texas System Method and system for producing functionally graded structures in powder bed fusion processing
WO2017143077A1 (en) 2016-02-18 2017-08-24 Velo3D, Inc. Accurate three-dimensional printing
DE102016203785A1 (de) 2016-03-08 2017-09-14 MTU Aero Engines AG Verfahren zum Herstellen einer Schaufel für eine Strömungsmaschine
EP3248715A4 (en) * 2016-03-09 2018-04-25 Technology Research Association for Future Additive Manufacturing 3d additive manufacturing system, 3d additive manufacturing method, additive manufacturing control device, and control method and control program for additive manufacturing control device
JP6767699B2 (ja) * 2016-03-23 2020-10-14 国立大学法人大阪大学 β型チタン合金を含有する構造物の製造方法
WO2017180116A1 (en) * 2016-04-13 2017-10-19 Gkn Aerospace North America Inc. System and method of additive manufacturing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
WO2018005439A1 (en) 2016-06-29 2018-01-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
CN107877852B (zh) * 2016-09-28 2021-05-11 上海普利生机电科技有限公司 光固化型三维打印方法
WO2018063221A1 (en) * 2016-09-29 2018-04-05 Gkn Aerospace Newington Llc Manufacturing method for cylindrical parts
AT519177B1 (de) * 2016-10-06 2019-04-15 Trotec Laser Gmbh Verfahren zum Gravieren, Markieren und/oder Beschriften eines Werkstückes mit
EP3305444A1 (en) 2016-10-08 2018-04-11 Ansaldo Energia IP UK Limited Method for manufacturing a mechanical component
WO2018079304A1 (ja) 2016-10-25 2018-05-03 株式会社ダイヘン 銅合金粉末、積層造形物の製造方法および積層造形物
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US20180186082A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
GB201700170D0 (en) * 2017-01-06 2017-02-22 Rolls Royce Plc Manufacturing method and apparatus
US10549345B2 (en) 2017-01-10 2020-02-04 General Electric Company Control system of additive manufacturing systems for controlling movement of sintering devices and related program products
US10920595B2 (en) 2017-01-13 2021-02-16 General Electric Company Turbine component having multiple controlled metallic grain orientations, apparatus and manufacturing method thereof
US11187105B2 (en) * 2017-02-09 2021-11-30 General Electric Company Apparatus with thermal break
US10369629B2 (en) 2017-03-02 2019-08-06 Veo3D, Inc. Three-dimensional printing of three-dimensional objects
US10695865B2 (en) 2017-03-03 2020-06-30 General Electric Company Systems and methods for fabricating a component with at least one laser device
US10668534B2 (en) * 2017-03-06 2020-06-02 General Electric Company Leg elimination strategy for hatch pattern
US10828700B2 (en) * 2017-03-06 2020-11-10 General Electric Company Triangle hatch pattern for additive manufacturing
US20180281284A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US10906132B2 (en) 2017-03-31 2021-02-02 General Electric Company Scan strategies for efficient utilization of laser arrays in direct metal laser melting (DMLM)
KR102453653B1 (ko) 2017-05-11 2022-10-11 쇠라 테크널러지스 인코포레이티드 적층 가공을 위한 패턴화된 광의 스위치야드 빔 라우팅
US11465356B2 (en) * 2017-06-20 2022-10-11 Toray Engineering Co., Ltd. Method for predicting strength of structure, method for modeling structure, support method for additive manufacturing of structure, and recording medium
EP3441162A1 (en) * 2017-08-11 2019-02-13 Siemens Aktiengesellschaft Method of additively manufacturing a structure on a pre-existing component out of the powder bed
JP6349449B1 (ja) * 2017-09-19 2018-06-27 三菱日立パワーシステムズ株式会社 タービン翼の製造方法、及びタービン翼
EP3459654B1 (en) 2017-09-22 2020-02-19 SLM Solutions Group AG Method and apparatus for producing a single-crystalline workpiece
EP3482853A1 (en) * 2017-11-13 2019-05-15 Renishaw PLC Additive manufacturing apparatus and methods
WO2019063999A1 (en) * 2017-09-29 2019-04-04 Renishaw Plc APPARATUS AND METHODS OF ADDITIVE MANUFACTURE
DE102017219333A1 (de) 2017-10-27 2019-05-02 Siemens Aktiengesellschaft Verfahren zur Modifikation von Bauteilen unter Einsatz additiver Fertigung
JP7361332B2 (ja) * 2017-12-06 2023-10-16 株式会社プロテリアル 金属積層造形物の製造方法及び金属積層造形物
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
EP3995293B1 (en) * 2018-01-24 2023-07-19 Concept Laser GmbH Method for additively manufacturing at least one three-dimensional object
EP3552802A1 (en) * 2018-04-13 2019-10-16 CL Schutzrechtsverwaltungs GmbH Method for operating at least one apparatus for additively manufacturing three-dimensional objects
EP3569330A1 (en) 2018-05-15 2019-11-20 Rolls-Royce Corporation Additive manufactured alloy components
DE102018210797A1 (de) * 2018-06-29 2020-01-02 Volkswagen Aktiengesellschaft Verfahren zur Herstellung von Bauteilen, insbesondere von Bauteilen für die Verwendung in der Fahrzeugindustrie, im metallischen 3D-Druck mit zumindest einem Sensorbereich sowie ein solches Bauteil
US11313243B2 (en) 2018-07-12 2022-04-26 Rolls-Royce North American Technologies, Inc. Non-continuous abradable coatings
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US12011873B2 (en) 2018-12-14 2024-06-18 Seurat Technologies, Inc. Additive manufacturing system for object creation from powder using a high flux laser for two-dimensional printing
SG11202106043WA (en) 2018-12-19 2021-07-29 Seurat Technologies Inc Additive manufacturing system using a pulse modulated laser for two-dimensional printing
CA3148849A1 (en) 2019-07-26 2021-02-04 Velo3D, Inc. Quality assurance in formation of three-dimensional objects
US11462344B2 (en) 2019-07-30 2022-10-04 General Electric Company Method of heat-treating additively-manufactured ferromagnetic components
CN110722159B (zh) * 2019-09-30 2021-07-27 鑫精合激光科技发展(北京)有限公司 一种3d打印的切片方法、方法、产品及设备
CN110744055A (zh) * 2019-09-30 2020-02-04 鑫精合激光科技发展(北京)有限公司 一种薄壁零件的激光扫描路径规划方法及3d打印方法
EP3822004A1 (en) 2019-11-14 2021-05-19 Rolls-Royce Corporation Fused filament fabrication of abradable coatings
KR102331997B1 (ko) * 2019-11-18 2021-12-01 단국대학교 산학협력단 광원 회전을 이용한 3d 프린팅 장치 및 이의 운용방법
GB202007591D0 (en) 2020-05-21 2020-07-08 Renishaw Plc Additive manufacturing methods and apparatus for forming objects from a nickel-based supperally in a layer-by-layer manner
JP2022066847A (ja) 2020-10-19 2022-05-02 日鉄ケミカル&マテリアル株式会社 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池
US11794250B2 (en) 2021-03-25 2023-10-24 Rolls-Royce Corporation Fused filament fabrication with elongated particles
CN113814416B (zh) * 2021-08-11 2022-09-23 上海工程技术大学 一种电子束增材制造全等轴晶金属构件的方法
KR102545931B1 (ko) * 2021-09-02 2023-06-21 경상국립대학교산학협력단 열처리 공정조건 제어로 인해 우수한 인장특성을 갖는 Mar-M247 합금 적층 조형물 제조방법 및 이를 이용한 Mar-M247 합금 적층 조형물
CN114042933A (zh) * 2021-10-29 2022-02-15 浙江意动科技股份有限公司 一种基于slm的旋转零件对称扫描方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155324A (en) * 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
JP2001277368A (ja) * 2000-03-28 2001-10-09 Matsushita Electric Works Ltd 立体形状物体の造形方法
US20030127436A1 (en) * 2001-07-31 2003-07-10 3D Systems, Inc. Selective laser sintering with optimized raster scan direction
US20050242473A1 (en) * 2004-04-28 2005-11-03 3D Systems, Inc. Uniform thermal distribution imaging
CN1729068A (zh) * 2002-12-19 2006-02-01 阿卡姆股份公司 用于制造三维物体的装置
US20080241392A1 (en) * 2007-03-27 2008-10-02 Eos Gmbh Electro Optical Systems Method and Device for Manufacturing a Three-Dimensional Object
US20110135952A1 (en) * 2009-12-04 2011-06-09 Honeywell International Inc. Turbine components for engines and methods of fabricating the same

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2010913B (en) * 1977-12-23 1982-06-23 Fiat Spa Process for sintering silicon nitride compacts
US4497669A (en) * 1983-07-22 1985-02-05 Inco Alloys International, Inc. Process for making alloys having coarse, elongated grain structure
US4944817A (en) * 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
ATE116179T1 (de) * 1986-10-17 1995-01-15 Univ Texas Verfahren und vorrichtung zur herstellung von formkörpern durch teilsinterung.
US4863538A (en) * 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
JPH0698506B2 (ja) * 1986-12-08 1994-12-07 トヨタ自動車株式会社 金属基体上への分散合金層の形成方法
US5609813A (en) * 1988-04-18 1997-03-11 3D Systems, Inc. Method of making a three-dimensional object by stereolithography
DE3820960A1 (de) * 1988-06-22 1989-12-28 Starck Hermann C Fa Feinkoernige hochreine erdsaeuremetallpulver, verfahren zu ihrer herstellung sowie deren verwendung
US5156697A (en) * 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
US5352405A (en) * 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
DE4408304A1 (de) * 1994-03-11 1995-09-14 Basf Ag Sinterteile aus sauerstoffempfindlichen, nicht reduzierbaren Pulvern und ihre Herstellung über Spritzgießen
DE19516972C1 (de) * 1995-05-09 1996-12-12 Eos Electro Optical Syst Vorrichtung zum Herstellen eines dreidimensionalen Objektes mittels Lasersintern
US5837960A (en) * 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
ATE223300T1 (de) * 1995-09-27 2002-09-15 3D Systems Inc Formungsverfahren durch selektiven materialabsatz und vorrichtung zur formung von dreidimensionalen gegenständen mit stützstruktur
US5980604A (en) * 1996-06-13 1999-11-09 The Regents Of The University Of California Spray formed multifunctional materials
DE19624056A1 (de) * 1996-06-17 1997-12-18 Abb Research Ltd Nickel-Basis-Superlegierung
US6429402B1 (en) * 1997-01-24 2002-08-06 The Regents Of The University Of California Controlled laser production of elongated articles from particulates
FR2764904B1 (fr) * 1997-06-18 1999-07-16 Seva Procede de fabrication d'un article en alliage renforce par dispersion d'oxydes
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
CA2284759C (en) * 1998-10-05 2006-11-28 Mahmud U. Islam Process for manufacturing or repairing turbine engine or compressor components
EP1001055B1 (en) * 1998-11-10 2004-02-25 ALSTOM Technology Ltd Gas turbine component
AT409235B (de) * 1999-01-19 2002-06-25 Boehler Edelstahl Verfahren und vorrichtung zur herstellung von metallpulver
US6459951B1 (en) * 1999-09-10 2002-10-01 Sandia Corporation Direct laser additive fabrication system with image feedback control
JP2003518193A (ja) * 1999-11-16 2003-06-03 トリトン・システムズ・インコーポレイテツド 不連続強化金属基複合材料のレーザー加工
SE521124C2 (sv) * 2000-04-27 2003-09-30 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
WO2001091924A1 (en) * 2000-06-01 2001-12-06 Board Of Regents, The University Of Texas System Direct selective laser sintering of metals
US6495793B2 (en) * 2001-04-12 2002-12-17 General Electric Company Laser repair method for nickel base superalloys with high gamma prime content
EP1340583A1 (en) * 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
US20040021256A1 (en) * 2002-07-25 2004-02-05 Degrange Jeffrey E. Direct manufacture of aerospace parts
EP1396556A1 (en) * 2002-09-06 2004-03-10 ALSTOM (Switzerland) Ltd Method for controlling the microstructure of a laser metal formed hard layer
JP4388263B2 (ja) * 2002-09-11 2009-12-24 日鉱金属株式会社 珪化鉄スパッタリングターゲット及びその製造方法
EP1419836B2 (de) * 2002-11-07 2011-10-19 CL Schutzrechtsverwaltungs GmbH Verfahren zur Herstellung eines Formkörpers durch Metallpulverschmelzverfahren
DE60220930T2 (de) * 2002-11-29 2008-03-13 Alstom Technology Ltd. Verfahren zur Herstellung, Modifizierung oder Reparatur von einkristallinen oder gerichtet erstarrten Körpern
SE524467C2 (sv) * 2002-12-13 2004-08-10 Arcam Ab Anordning för framställande av en tredimensionell produkt, där anordningen innefattar ett hölje
SE524421C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524432C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524420C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
ATE375841T1 (de) * 2003-08-27 2007-11-15 Alstom Technology Ltd Adaptive automatisierte bearbeitung von überfüllten kanälen
DE102004009127A1 (de) * 2004-02-25 2005-09-15 Bego Medical Ag Verfahren und Vorrichtung zum Herstellen von Produkten durch Sintern und/oder Schmelzen
US7261542B2 (en) * 2004-03-18 2007-08-28 Desktop Factory, Inc. Apparatus for three dimensional printing using image layers
DE602006012482D1 (de) * 2005-06-27 2010-04-08 Leuven K U Res & Dev Verfahren zur herstellung von gesinterten porösen materialien
ES2381854T3 (es) * 2006-07-14 2012-06-01 Avioprop S.r.l. Producción en serie de artículos tridimensionales hechos de compuestos intermetálicos
JP4630251B2 (ja) * 2006-09-11 2011-02-09 株式会社神戸製鋼所 圧粉磁心および圧粉磁心用の鉄基粉末
US8884182B2 (en) * 2006-12-11 2014-11-11 General Electric Company Method of modifying the end wall contour in a turbine using laser consolidation and the turbines derived therefrom
EP2292357B1 (en) * 2009-08-10 2016-04-06 BEGO Bremer Goldschlägerei Wilh.-Herbst GmbH & Co KG Ceramic article and methods for producing such article
DE102010008960A1 (de) * 2010-02-23 2011-08-25 EOS GmbH Electro Optical Systems, 82152 Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts, das sich insbesondere für den Einsatz in der Mikrotechnik eignet
CN102905821B (zh) * 2010-05-25 2015-06-17 松下电器产业株式会社 粉末烧结层叠用金属粉末、使用了其的三维形状造型物的制造方法以及所得三维形状造型物
EP2616229B1 (en) * 2010-09-17 2019-09-04 Stratasys, Inc. Extrusion-based additive manufacturing method
DE102010046468B4 (de) * 2010-09-24 2016-04-07 MTU Aero Engines AG Generatives Herstellverfahren und Pulver hierzu
US9447484B2 (en) * 2013-10-02 2016-09-20 Honeywell International Inc. Methods for forming oxide dispersion-strengthened alloys
EP2893994B1 (en) * 2014-01-14 2020-07-15 General Electric Technology GmbH Method for manufacturing a metallic or ceramic component by selective laser melting additive manufacturing
EP3061546A1 (en) * 2015-02-25 2016-08-31 General Electric Technology GmbH Method for manufacturing a part by means of an additive manufacturing technique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155324A (en) * 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
JP2001277368A (ja) * 2000-03-28 2001-10-09 Matsushita Electric Works Ltd 立体形状物体の造形方法
US20030127436A1 (en) * 2001-07-31 2003-07-10 3D Systems, Inc. Selective laser sintering with optimized raster scan direction
CN1729068A (zh) * 2002-12-19 2006-02-01 阿卡姆股份公司 用于制造三维物体的装置
US20050242473A1 (en) * 2004-04-28 2005-11-03 3D Systems, Inc. Uniform thermal distribution imaging
US20080241392A1 (en) * 2007-03-27 2008-10-02 Eos Gmbh Electro Optical Systems Method and Device for Manufacturing a Three-Dimensional Object
US20110135952A1 (en) * 2009-12-04 2011-06-09 Honeywell International Inc. Turbine components for engines and methods of fabricating the same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11478856B2 (en) 2013-06-10 2022-10-25 Renishaw Plc Selective laser solidification apparatus and method
US11123799B2 (en) 2013-06-11 2021-09-21 Renishaw Plc Additive manufacturing apparatus and method
US10807163B2 (en) 2014-07-14 2020-10-20 Raytheon Technologies Corporation Additive manufactured surface finish
CN105258159B (zh) * 2014-07-14 2019-12-17 联合工艺公司 增材制造的表面终饰
CN105258159A (zh) * 2014-07-14 2016-01-20 联合工艺公司 增材制造的表面终饰
CN104148636B (zh) * 2014-08-29 2017-10-31 中国科学院重庆绿色智能技术研究院 一种控制金属零件增材制造热变形的扫描路径生成方法
CN104148636A (zh) * 2014-08-29 2014-11-19 中国科学院重庆绿色智能技术研究院 一种控制金属零件增材制造热变形的扫描路径生成方法
US11267052B2 (en) 2014-11-21 2022-03-08 Renishaw Plc Additive manufacturing apparatus and methods
CN111215629A (zh) * 2014-11-24 2020-06-02 添加剂工业有限公司 用于通过增材制造生产物品的设备和校准设备的方法
CN105642890A (zh) * 2014-11-28 2016-06-08 通用电器技术有限公司 使用添加式制造工艺制造构件的方法
CN105642890B (zh) * 2014-11-28 2019-12-31 安萨尔多能源英国知识产权有限公司 使用添加式制造工艺制造构件的方法
CN105710365A (zh) * 2014-12-19 2016-06-29 通用电器技术有限公司 用于生产金属构件的方法
CN107530901B (zh) * 2015-03-17 2021-03-12 元件3D有限公司 反应性增材制造
CN107530901A (zh) * 2015-03-17 2018-01-02 辛特印刷有限公司 反应性增材制造
CN107438488A (zh) * 2015-03-30 2017-12-05 瑞尼斯豪公司 增材制造设备和方法
US11446863B2 (en) 2015-03-30 2022-09-20 Renishaw Plc Additive manufacturing apparatus and methods
CN107438488B (zh) * 2015-03-30 2019-11-01 瑞尼斯豪公司 增材制造设备和方法
US10479018B2 (en) 2015-03-30 2019-11-19 Renishaw Plc Additive manufacturing apparatus and methods
US11780161B2 (en) 2015-03-30 2023-10-10 Renishaw Plc Additive manufacturing apparatus and methods
CN105108142A (zh) * 2015-06-18 2015-12-02 航星利华(北京)科技有限公司 一种激光3d打印制备单晶和定向凝固零件的方法
CN108260348A (zh) * 2015-10-14 2018-07-06 西门子股份公司 用于通过生成式制造来制造工件的方法,相应的工件
CN105537590A (zh) * 2016-02-01 2016-05-04 合肥中加激光技术有限公司 一种金属slm三维打印减小热堆积影响的方法
CN109562452A (zh) * 2016-08-10 2019-04-02 瑞尼斯豪公司 关于增材制造的方法和***以及增材制造的制品
CN109641443A (zh) * 2016-08-30 2019-04-16 伟尔集团Ip有限公司 形成旋转部件
CN109641387A (zh) * 2016-10-25 2019-04-16 惠普发展公司,有限责任合伙企业 构建托盘模型分配和所制作的零件分类
CN109641387B (zh) * 2016-10-25 2021-01-01 惠普发展公司,有限责任合伙企业 构建托盘模型分配和所制作的零件分类
CN108788144A (zh) * 2017-04-28 2018-11-13 戴弗根特技术有限公司 增材制造中的散射减少
CN109093106A (zh) * 2017-06-21 2018-12-28 通用电气公司 用于增材制造中的粉末预处理的***和方法
CN109093106B (zh) * 2017-06-21 2022-02-25 通用电气公司 用于增材制造中的粉末预处理的***和方法
CN108480629A (zh) * 2018-03-23 2018-09-04 山东矿机集团股份有限公司 一种汽轮机空心叶片的激光增材制造方法
CN108941560A (zh) * 2018-07-27 2018-12-07 中南大学 一种消除Renè104镍基高温合金激光增材制造裂纹的方法
CN111168221A (zh) * 2019-12-13 2020-05-19 航天海鹰(哈尔滨)钛业有限公司 一种k417高温合金蒙皮骨架结构扩散连接工艺方法
CN111097907B (zh) * 2019-12-28 2021-09-03 同济大学 一种铁基材料的取向方法
CN111097907A (zh) * 2019-12-28 2020-05-05 同济大学 一种铁基材料的取向方法
CN112828307A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种粗化沉淀强化镍基高温合金晶粒的激光粉床熔融成形方法
CN112916875A (zh) * 2021-01-22 2021-06-08 上海科技大学 一种基于选区激光熔化技术的隔热板结构及其成型方法
CN112916875B (zh) * 2021-01-22 2023-02-28 上海科技大学 一种基于选区激光熔化技术的隔热板结构及其成型方法
CN117066527A (zh) * 2023-09-13 2023-11-17 之江实验室 通过层间取向诱导调控机器人脚关节耐磨性的打印方法
CN117066527B (zh) * 2023-09-13 2024-06-07 之江实验室 通过层间取向诱导调控机器人脚关节耐磨性的打印方法

Also Published As

Publication number Publication date
CN103846437B (zh) 2017-05-10
CA2833890C (en) 2017-02-21
AU2013263783A1 (en) 2014-06-19
CA2833890A1 (en) 2014-06-01
KR20140071907A (ko) 2014-06-12
EP2737965A1 (en) 2014-06-04
RU2013151901A (ru) 2015-05-27
US20140154088A1 (en) 2014-06-05
KR20160100883A (ko) 2016-08-24
AU2013263783B2 (en) 2017-12-21
JP5933512B2 (ja) 2016-06-08
JP2014129597A (ja) 2014-07-10

Similar Documents

Publication Publication Date Title
CN103846437A (zh) 通过增材激光制造来制造金属部件的方法
RU2590431C2 (ru) Способ изготовления гибридного компонента
RU2566117C2 (ru) Способ изготовления трехмерного изделия
Arısoy et al. Influence of scan strategy and process parameters on microstructure and its optimization in additively manufactured nickel alloy 625 via laser powder bed fusion
JP6723285B2 (ja) 金属構成要素の加法的製造および修復
CN103088275B (zh) 高温合金组件或配件的生产方法
CN105828983A (zh) 用于基于粉末的增材制造过程的γ’沉淀增强镍基超合金
CN107790717A (zh) 一种实现镍基合金晶体学织构调控的准连续激光金属3d打印方法
Spranger et al. Build-up strategies for additive manufacturing of three dimensional Ti-6Al-4V-parts produced by laser metal deposition
Thanumoorthy et al. A study on the effect of process parameters and scan strategies on microstructure and mechanical properties of laser directed energy deposited IN718
RU2574536C2 (ru) Способ изготовления металлического компонента посредством аддитивного лазерного изготовления
Guo et al. The influence of process parameters and heat treatment on γ′ precipitates of selective electron beam melted Ni-based single-crystal superalloy
Kittel et al. Advanced method for manufacturing hybrid nickel based components by combining single crystal (SX) subcomponents with polycrystalline (PX) structures generated by laser metal deposition (LMD)
Swaminathan et al. Multi-Variate Analysis of Laser Powder Bed Fusion with 90-μm Layer Thickness of Ni-Based Superalloy Haynes 282
Fergani et al. Microstructure Analysis of Hybrid Laser Powder Bed Fusion and TIG Welding of Ni-based Superalloys
CN116441564A (zh) 一种激光增材制造镍基高温合金的原位热处理方法及装置
Edouard et al. Additive Manufacturing of Inconel 625 Superalloy Produced by Electron Beam Melting
Müller et al. Enabling Tailored Microstructures by Hybrid Directed Energy Deposition Processing of a Nickel Based Superalloy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Baden, Switzerland

Applicant after: ALSTOM TECHNOLOGY LTD

Address before: Baden, Switzerland

Applicant before: Alstom Technology Ltd.

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171207

Address after: London, England

Patentee after: Security energy UK Intellectual Property Ltd

Address before: Baden, Switzerland

Patentee before: ALSTOM TECHNOLOGY LTD

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170510

Termination date: 20181129

CF01 Termination of patent right due to non-payment of annual fee