CN103803534A - Preparation method of graphene-silicon nanopowder composite material - Google Patents

Preparation method of graphene-silicon nanopowder composite material Download PDF

Info

Publication number
CN103803534A
CN103803534A CN201210475326.0A CN201210475326A CN103803534A CN 103803534 A CN103803534 A CN 103803534A CN 201210475326 A CN201210475326 A CN 201210475326A CN 103803534 A CN103803534 A CN 103803534A
Authority
CN
China
Prior art keywords
graphene
microplate
solution
temperature
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210475326.0A
Other languages
Chinese (zh)
Other versions
CN103803534B (en
Inventor
林朝晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Province Huirui Material Science & Technology Co Ltd
Original Assignee
Fujian Province Huirui Material Science & Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Province Huirui Material Science & Technology Co Ltd filed Critical Fujian Province Huirui Material Science & Technology Co Ltd
Priority to CN201210475326.0A priority Critical patent/CN103803534B/en
Publication of CN103803534A publication Critical patent/CN103803534A/en
Application granted granted Critical
Publication of CN103803534B publication Critical patent/CN103803534B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention is suitable for the technical field of organic semiconductor materials, and provides a preparation method of a graphene-silicon nanopowder composite material. The method comprises the following steps: preparing a graphene microchip; carrying out surface modification on the graphene microchip; mixing the graphene microchip subjected to surface modification with silicon nano particles to prepare a graphene-silicon mixed material; and preparing the graphene-silicon mixed material into the graphene-silicon nanopowder composite material. According to the technical scheme provided by the invention, the method of industrially producing the graphene-silicon nanopowder composite material on a large scale has the advantages of small use level of acids and oxidizing agents, low cost, fewer acids and harmful effluents and environmental friendliness; the lattice of graphite is damaged to a little extent in the surface modification process, and the material is easy to reduce and good in electrical conductivity.

Description

A kind of preparation method of Graphene-silicon nano power powder composite material
Technical field
The invention belongs to organic semiconductor material technical field, relate in particular to a kind of preparation method of Graphene-silicon nano power powder composite material.
Background technology
Graphene is a kind of new carbon of broad research in recent years, is that carbon atom is arranged the Colloidal particles forming according to hexagonal.As monolayer carbon atomic plane material, Graphene can obtain by peeling off graphite material.The thickness of Graphene only has 0.335 nanometer, is not only one the thinnest in known materials, also very firmly hard; As simple substance, it is all faster than known all conductors and semi-conductor that it at room temperature transmits the speed of electronics, and in Graphene, the travelling speed of electronics has reached 1/300 of the light velocity.Meanwhile, as monolayer carbon atomic structure, the theoretical specific surface area of Graphene is up to 2630m2/g, and so high specific surface area makes to become extremely promising energy storage active material based on the material of Graphene.
Mainly prepare graphene powder material and matrix material thereof based on oxidation style (Hummers method) at present, graphite, under the effect of the strong oxidizers such as H2SO4, HNO3, HClO4, or under electrochemistry peroxidation, forms graphite oxide after hydrolysis.Different with graphite, due to the existence of polar group, oxidized graphite flake layer has the characteristic of stronger hydrophilic or polar solvent.Therefore, graphite oxide, in external force, as peeled off in water or in other polar solvent under hyperacoustic effect, forms mono-layer graphite oxide alkene (GrapheneOxide).But Hummers legal system is for being used a large amount of soda acids in graphene oxide process, cost is high, produces a large amount of soda acids simultaneously and dumps thing, unfriendly to environment.
Summary of the invention
The object of the embodiment of the present invention is to overcome problems of the prior art, and the preparation method of a kind of applicable low-cost industrial scale operation, high quality, the poisonous Graphene-silicon nano composite material that dumps thing of minimizing is provided.
The embodiment of the present invention is achieved in that a kind of preparation method of Graphene-silicon nano power powder composite material, said method comprising the steps of: prepare Graphene microplate; Graphene microplate is carried out to surface modification; The Graphene microplate mixing nano silicon particles of surface modification is made to Graphene-silica hybrid material; And Graphene-silica hybrid material is made to Graphene-silicon nano power powder composite material.
In a preferred embodiment, the described Graphene microplate of preparing comprises the following steps: prepare expanded graphite; The expanded graphite obtaining is mixed with organic solvent; Expanded graphite organic solvent mixed solution is carried out to ultrasonic dissociating and obtain Graphene microplate suspension; And extract Graphene microplate from Graphene microplate suspension.
In a preferred embodiment, the described expanded graphite of preparing, for expansible black lead is placed in to metal or ceramic crucible, under protection of inert gas, is heated to 300-900 degree, keeps temperature 10-60 to divide, and realizes fully and expanding, and is then cooled to room temperature.
In a preferred embodiment, the described expanded graphite of preparing is for to be placed in ceramic crucible or glassware by expansible black lead, with 600-1200W microwave heating 10-60 second, realizes fully and expanding, and is then cooled to room temperature.
In a preferred embodiment, described the expanded graphite obtaining and organic solvent are mixed into gained expanded graphite is placed in to container, pour 100-1000ml organic solvent into, stir.
In a preferred embodiment, describedly expanded graphite organic solvent mixed solution is carried out to ultrasonic dissociating obtain Graphene microplate suspension for being the 1-24 hour that vibrates under 300-1200W condition at sonic oscillation power, Heating temperature is 20-150 degree simultaneously, obtains Graphene microplate suspension.
In a preferred embodiment, the described Graphene microplate that extracts from Graphene microplate suspension, for ultrasonic gained Graphene microplate suspension is left standstill to 0.2-5 hour, removes upper strata suspension, removes throw out, after filtration, in 80 degree baking ovens, dries.
In a preferred embodiment, described Graphene microplate is carried out to surface modification for gained Graphene microplate is added in the vitriol oil, keep the temperature of solution lower than 4 ℃, slowly add potassium permanganate, in adding procedure, the temperature of solution does not exceed 10 ℃; After potassium permanganate adds, keep the temperature of solution lower than 10 ℃ of magnetic agitation 90min; Then, the in the situation that of magnetic agitation, slowly add deionized water, guarantee that the temperature of solution is lower than 40 ℃ simultaneously; Add hydrogen peroxide, continue to stir 15min; Last filtering drying obtains surface modified graphite alkene microplate.
In a preferred embodiment, it is that the surface modified graphite alkene microplate of gained is added in deionized water that the described Graphene microplate mixing nano silicon particles by surface modification obtains Graphene-silica hybrid material, keep the temperature of solution lower than 35 ℃, ultrasonic dispersion 10-60min; Nano silicon particles is joined in deionized water to ultrasonic dispersion 30-60min; Nano silicon particles is easily mixed with surface modified graphite alkene solution, keep solution temperature lower than 35 ℃, ultrasonic dispersion 30-60min; Finally, filter out solution, obtain surface modified graphite alkene-silica hybrid material.
In a preferred embodiment, Graphene-silica hybrid material is made to Graphene-silicon nano power powder composite material for 300-1000 ℃ of annealing 0.1-2h under inert atmosphere protection, obtain Graphene-silicon nano power powder composite material.
In an embodiment of the present invention, produce Graphene-silicon nano power powder composite material by technical solution of the present invention large-scale industrialization, have the following advantages: 1, little by acid amount and oxidant content, cost is low; 2. acid and noxious emission are few, environmentally friendly; 3. Process of Surface Modification is little to graphite lattice damage, easily reduction, product good conductivity.
Embodiment
In order to make object of the present invention, technical scheme and advantage clearer, below in conjunction with embodiment, the present invention is further elaborated.Should be appreciated that specific embodiment described herein, only in order to explain the present invention, is not intended to limit the present invention.
In an embodiment of the present invention, by Graphene microplate is carried out to surface modification, then adsorb silicon nanopowder and obtain Graphene-silicon nano power powder composite material.
The implementing procedure of Graphene-silicon nanopowder composite material and preparation method thereof that the embodiment of the present invention provides, details are as follows:
One, prepare Graphene microplate;
1. prepare expanded graphite: expansible black lead is placed in to metal or ceramic crucible, under protection of inert gas, is heated to 300-900 degree, keep temperature 10-60 minute, realize fully and expanding, be then cooled to room temperature.
Or expansible black lead is placed in to ceramic crucible or glassware, with 600-1200W microwave heating 10-60 second, realizes fully and expanding, be then cooled to room temperature.
In specific embodiment, raw material is desirable crystalline flake graphite also.
2. the expanded graphite obtaining is mixed with organic solvent: gained expanded graphite is placed in to container, pours 100-1000ml organic solvent into, described organic solvent is NMP, DMP, toluene, chlorobenzene or trieline, stirs.
3. expanded graphite organic solvent mixed solution is carried out to ultrasonic dissociating and obtain Graphene microplate suspension: be the 1-24 hour that vibrates under 300-1200W condition at sonic oscillation power, heating simultaneously, temperature is 20-150 degree, obtains Graphene microplate suspension.Ultrasonic jitter time is too short in 60 minutes, to such an extent as to the effect that dispersion is dissociated is bad, and the present invention adopts concussion 1-24 hour, can effectively improve dispersion effect.The heating of taking in addition is also conducive to improve dispersion effect.
4. from Graphene microplate suspension, extract Graphene microplate: ultrasonic gained Graphene microplate suspension is left standstill to 0.2-5 hour, get upper strata suspension, remove throw out, after filtration, in 80 degree baking ovens, dry.The present invention, without centrifugal treating, saves fabrication steps, enhances productivity.
Two. Graphene microplate is carried out to surface modification:
Gained Graphene microplate is added in the vitriol oil of 20-100ml, keep the temperature of solution lower than 4 ℃, slowly add the potassium permanganate of 0.5-20g, in adding procedure, the temperature of solution does not exceed 10 ℃.After potassium permanganate adds, keep the temperature of solution lower than 10 ℃ of magnetic agitation 90min.Then, the in the situation that of magnetic agitation, slowly add the deionized water of 150ml, guarantee that the temperature of solution is lower than 40 ℃ simultaneously.Add the hydrogen peroxide of 3ml, continue to stir 15min.Last filtering drying obtains surface modified graphite alkene microplate.
Three. the Graphene microplate mixing nano silicon particles of surface modification is obtained to Graphene-silica hybrid material:
The surface modified graphite alkene microplate of gained is added in 50-500ml deionized water, keep the temperature of solution lower than 35 ℃, ultrasonic dispersion 10-60min.0.5-5g nano silicon particles (30-200nm particle diameter) is joined in 500ml deionized water to ultrasonic dispersion 30-60min.Nano silicon particles solution is mixed with surface modified graphite alkene solution, keep solution temperature lower than 35 ℃, ultrasonic dispersion 30-60min.Finally, filter out solution, obtain surface modified graphite alkene-silica hybrid material.
Four. Graphene-silica hybrid material is made to Graphene-silicon nano power powder composite material: under inert atmosphere protection by surface modified graphite alkene-silica hybrid material 300-1000 ℃ annealing 0.1-2h, obtain Graphene-silicon nano power powder composite material.
Below preferred embodiment of the present invention is described in further detail:
Embodiment mono-
In the present embodiment, the implementing procedure of Graphene-silicon Nano-composite materials method is as follows:
1g50 order expansible black lead is placed in to metal or ceramic crucible, under protection of inert gas, is heated to 900 degree.Gained expanded graphite being placed in to container, pouring 250ml NMP into, stir, is then under 1000W condition, to vibrate 8 hours at sonic oscillation power, heating simultaneously, and Heating temperature is 80 degree.Filtering drying, obtains Graphene microplate.Gained Graphene microplate is added in the vitriol oil of 100ml, keep the temperature of solution lower than 4 ℃, slowly add the potassium permanganate of 0.5g, in adding procedure, the temperature of solution does not exceed 10 ℃.Keep the temperature of solution lower than 10 ℃ of magnetic agitation 90min.Then, the in the situation that of magnetic agitation, slowly add the deionized water of 150ml, guarantee that the temperature of solution is lower than 40 ℃ simultaneously.Add the hydrogen peroxide of 3ml, continue to stir 15min.Filtering drying obtains surface modified graphite alkene microplate.The surface modified graphite alkene microplate of gained is added in 200ml deionized water, keep the temperature of solution lower than 35 ℃, ultrasonic dispersion 10-60min.0.5g nano silicon particles (50nm particle diameter) is joined in 200ml deionized water to ultrasonic dispersion 30min.Nano silicon particles solution is mixed with surface modified graphite alkene solution, keep solution temperature lower than 35 ℃, ultrasonic dispersion 30-60min.Filter out solution, dry and obtain surface modified graphite alkene-silica hybrid material.Under inert atmosphere protection, 800 ℃ of annealing 1h, obtain Graphene-silicon nano power powder composite material.
Embodiment bis-
In the present embodiment, Graphene-silicon composite preparation method's implementing procedure is as follows:
1g expansible black lead is placed in to ceramic crucible or glassware, with 800W microwave heating 30 seconds.Then be cooled to room temperature.Gained expanded graphite being placed in to container, pouring 250ml NMP into, stir, is then under 1000W condition, to vibrate 8 hours at sonic oscillation power, heating simultaneously, and Heating temperature is 80 degree.Filtering drying, obtains Graphene microplate.Gained Graphene microplate is added in the vitriol oil of 100ml, keep the temperature of solution lower than 4 ℃, slowly add the potassium permanganate of 0.5g, in adding procedure, the temperature of solution does not exceed 10 ℃.Keep the temperature of solution lower than 10 ℃ of magnetic agitation 90min.Then, the in the situation that of magnetic agitation, slowly add the deionized water of 150ml, guarantee that the temperature of solution is lower than 40 ℃ simultaneously.Add the hydrogen peroxide of 3ml, continue to stir 15min.Filtering drying obtains surface modified graphite alkene microplate.The surface modified graphite alkene microplate of gained is added in 200ml deionized water, keep the temperature of solution lower than 35 ℃, ultrasonic dispersion 10-60min.0.5g nano silicon particles (50nm particle diameter) is joined in 200ml deionized water to ultrasonic dispersion 30min.Nano silicon particles solution is mixed with surface modified graphite alkene solution, keep solution temperature lower than 35 ℃, ultrasonic dispersion 30-60min.Filter out solution, dry and obtain surface modified graphite alkene-silica hybrid material.Under inert atmosphere protection, 800 ℃ of annealing 1h, obtain Graphene-silicon nano power powder composite material.
Embodiment tri-
In the present embodiment, Graphene-silicon composite preparation method's implementing procedure is as follows:
1g crystalline flake graphite being placed in to container, pouring 100ml NMP into, stir, is then under 1000W condition, to vibrate 8 hours at sonic oscillation power, heating simultaneously, and Heating temperature is 80 degree.Filtering drying, obtains Graphene microplate.Gained Graphene microplate is added in the vitriol oil of 50ml, keep the temperature of solution lower than 4 ℃, slowly add the potassium permanganate of 0.5g, in adding procedure, the temperature of solution does not exceed 10 ℃.Keep the temperature of solution lower than 10 ℃ of magnetic agitation 90min.Then, the in the situation that of magnetic agitation, slowly add the deionized water of 100ml, guarantee that the temperature of solution is lower than 40 ℃ simultaneously.Add the hydrogen peroxide of 3ml, continue to stir 15min.Filtering drying obtains surface modified graphite alkene microplate.The surface modified graphite alkene microplate of gained is added in 200ml deionized water, keep the temperature of solution lower than 35 ℃, ultrasonic dispersion 10-60min.0.5g nano silicon particles (50nm particle diameter) is joined in 200ml deionized water to ultrasonic dispersion 30min.Nano silicon particles solution is mixed with surface modified graphite alkene solution, keep solution temperature lower than 35 ℃, ultrasonic dispersion 30-60min.Filter out solution, dry and obtain surface modified graphite alkene-silica hybrid material.Under inert atmosphere protection, 800 ℃ of annealing 1h, obtain Graphene-silicon nano power powder composite material.
The foregoing is only preferred embodiment of the present invention, not in order to limit the present invention, all any modifications of doing within the spirit and principles in the present invention, be equal to and replace and improvement etc., within all should being included in protection scope of the present invention.

Claims (10)

1. a preparation method for Graphene-silicon nano power powder composite material, is characterized in that, said method comprising the steps of:
Prepare Graphene microplate;
Graphene microplate is carried out to surface modification;
The Graphene microplate mixing nano silicon particles of surface modification is made to Graphene-silica hybrid material; And
Graphene-silica hybrid material is made to Graphene-silicon nano power powder composite material.
2. the method for claim 1, is characterized in that, the described Graphene microplate of preparing comprises the following steps:
Prepare expanded graphite;
The expanded graphite obtaining is mixed with organic solvent;
Expanded graphite organic solvent mixed solution is carried out to ultrasonic dissociating and obtain Graphene microplate suspension; And
From Graphene microplate suspension, extract Graphene microplate.
3. method as claimed in claim 2, is characterized in that, the described expanded graphite of preparing is for to be placed in metal or ceramic crucible by expansible black lead; under protection of inert gas, be heated to 300-900 degree, keep temperature 10-60 to divide; realize fully and expanding, be then cooled to room temperature.
4. method as claimed in claim 2, is characterized in that, the described expanded graphite of preparing is for to be placed in ceramic crucible or glassware by expansible black lead, with 600-1200W microwave heating 10-60 second, realizes fully and expanding, and is then cooled to room temperature.
5. method as claimed in claim 2, is characterized in that, described the expanded graphite obtaining and organic solvent are mixed into gained expanded graphite is placed in to container, pours 100-1000ml organic solvent into, stirs.
6. method as claimed in claim 2, it is characterized in that, describedly expanded graphite organic solvent mixed solution is carried out to ultrasonic dissociating obtain Graphene microplate suspension for being the 1-24 hour that vibrates under 300-1200W condition at sonic oscillation power, Heating temperature is 20-150 degree simultaneously, obtains Graphene microplate suspension.
7. method as claimed in claim 2, it is characterized in that, the described Graphene microplate that extracts from Graphene microplate suspension, for ultrasonic gained Graphene microplate suspension is left standstill to 0.2-5 hour, removes upper strata suspension, remove throw out, after filtration, in 80 degree baking ovens, dry.
8. the method for claim 1, it is characterized in that, described Graphene microplate is carried out to surface modification for gained Graphene microplate is added in the vitriol oil, keep the temperature of solution lower than 4 ℃, slowly add potassium permanganate, in adding procedure, the temperature of solution does not exceed 10 ℃; After potassium permanganate adds, keep the temperature of solution lower than 10 ℃ of magnetic agitation 90min; Then, the in the situation that of magnetic agitation, slowly add deionized water, guarantee that the temperature of solution is lower than 40 ℃ simultaneously; Add hydrogen peroxide, continue to stir 15min; Last filtering drying obtains surface modified graphite alkene microplate.
9. the method for claim 1, it is characterized in that, it is that the surface modified graphite alkene microplate of gained is added in deionized water that the described Graphene microplate mixing nano silicon particles by surface modification obtains Graphene-silica hybrid material, keep the temperature of solution lower than 35 ℃, ultrasonic dispersion 10-60min; Nano silicon particles is joined in deionized water to ultrasonic dispersion 30-60min; Nano silicon particles is easily mixed with surface modified graphite alkene solution, keep solution temperature lower than 35 ℃, ultrasonic dispersion 30-60min; Finally, filter out solution, obtain surface modified graphite alkene-silica hybrid material.
10. the method for claim 1, is characterized in that, described by Graphene-silica hybrid material make Graphene-silicon nano power powder composite material under inert atmosphere protection 300-1000 ℃ annealing 0.1-2h, obtain Graphene-silicon nano power powder composite material.
CN201210475326.0A 2012-11-15 2012-11-15 A kind of preparation method of Graphene silicon nano power powder composite material Active CN103803534B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210475326.0A CN103803534B (en) 2012-11-15 2012-11-15 A kind of preparation method of Graphene silicon nano power powder composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210475326.0A CN103803534B (en) 2012-11-15 2012-11-15 A kind of preparation method of Graphene silicon nano power powder composite material

Publications (2)

Publication Number Publication Date
CN103803534A true CN103803534A (en) 2014-05-21
CN103803534B CN103803534B (en) 2017-06-30

Family

ID=50700986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210475326.0A Active CN103803534B (en) 2012-11-15 2012-11-15 A kind of preparation method of Graphene silicon nano power powder composite material

Country Status (1)

Country Link
CN (1) CN103803534B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923796A (en) * 2015-06-11 2015-09-23 中国石油大学(北京) Method for industrially preparing graphene coated aluminum nanopowders
CN106744857A (en) * 2016-12-30 2017-05-31 尹宗杰 3D printing Graphene metallic composite, preparation method and application
CN107323044A (en) * 2017-06-23 2017-11-07 华娜 A kind of preparation method of conductive paper/glass fiber flame retardant composite
CN108183204A (en) * 2017-12-06 2018-06-19 华南农业大学 A kind of silicon nanometer sheet-graphene nanometer sheet composite material and preparation and application
CN111500005A (en) * 2019-01-30 2020-08-07 家登精密工业股份有限公司 Cycloolefin composition and semiconductor container using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111303A1 (en) * 2009-11-06 2011-05-12 Northwestern University Electrode material comprising graphene composite materials in a graphite network formed from reconstituted graphene sheets
CN102306757A (en) * 2011-08-26 2012-01-04 上海交通大学 Silicon graphene composite anode material of lithium ion battery and preparation method of silicon graphene composite anode material
CN102530931A (en) * 2011-12-14 2012-07-04 天津大学 Graphene-based nano composite material and preparation method thereof
CN102745673A (en) * 2012-06-21 2012-10-24 泰州巨纳新能源有限公司 Method for preparing large-scale graphene in industrial large-scale reaction vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111303A1 (en) * 2009-11-06 2011-05-12 Northwestern University Electrode material comprising graphene composite materials in a graphite network formed from reconstituted graphene sheets
CN102306757A (en) * 2011-08-26 2012-01-04 上海交通大学 Silicon graphene composite anode material of lithium ion battery and preparation method of silicon graphene composite anode material
CN102530931A (en) * 2011-12-14 2012-07-04 天津大学 Graphene-based nano composite material and preparation method thereof
CN102745673A (en) * 2012-06-21 2012-10-24 泰州巨纳新能源有限公司 Method for preparing large-scale graphene in industrial large-scale reaction vessel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONGFA XIANG ET AL.,: "Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability", 《CARBON》 *
YU-SHI HE ET AL.,: "A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries", 《THE ROYAL SOCIETY OF CHEMISTRY ADVANCES》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104923796A (en) * 2015-06-11 2015-09-23 中国石油大学(北京) Method for industrially preparing graphene coated aluminum nanopowders
CN104923796B (en) * 2015-06-11 2017-03-29 中国石油大学(北京) A kind of method of preparation of industrialization graphene coated nanometer aluminium powder
CN106744857A (en) * 2016-12-30 2017-05-31 尹宗杰 3D printing Graphene metallic composite, preparation method and application
CN106744857B (en) * 2016-12-30 2019-03-08 尹宗杰 3D printing graphene-metallic composite, preparation method and application
CN107323044A (en) * 2017-06-23 2017-11-07 华娜 A kind of preparation method of conductive paper/glass fiber flame retardant composite
CN107323044B (en) * 2017-06-23 2019-07-09 过冬 A kind of preparation method of conductive paper/glass fiber flame retardant composite material
CN108183204A (en) * 2017-12-06 2018-06-19 华南农业大学 A kind of silicon nanometer sheet-graphene nanometer sheet composite material and preparation and application
CN111500005A (en) * 2019-01-30 2020-08-07 家登精密工业股份有限公司 Cycloolefin composition and semiconductor container using the same

Also Published As

Publication number Publication date
CN103803534B (en) 2017-06-30

Similar Documents

Publication Publication Date Title
CN111799464B (en) MXene/graphene composite nanosheet, preparation method and application thereof, electrode plate and application thereof
Yang et al. Ultrafast delamination of graphite into high‐quality graphene using alternating currents
CN102694171B (en) Hydrothermal preparation method for composite material of single-layer WS2 and graphene
CN106882796B (en) Preparation method of three-dimensional graphene structure/high-quality graphene
CN104916826B (en) A kind of graphene coated silicium cathode material and preparation method thereof
JP6353075B2 (en) Method for producing graphene and graphene oxide using anthracite
EP3085665B1 (en) Large-scale preparation method for graphene quantum dots
CN103145120B (en) A kind of preparation method of porous graphene
CN102167311B (en) Method for preparing graphene on large scale
CN102698774B (en) Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material
CN103803534A (en) Preparation method of graphene-silicon nanopowder composite material
WO2014032399A1 (en) Method for low-temperature preparation of graphene and of graphene-based composite material
CN106744841B (en) Preparation method of three-dimensional porous graphene film constructed by single-layer graphene
CN103811721B (en) A kind of preparation method of lithium battery cathode plate
CN104401948A (en) Preparation method for single-layer graphite-type carbon nitride nanosheet solution
KR20130015719A (en) A complex comprising a mesoporous silicon oxide and a graphene, and method for preparing the same
CN103950923A (en) New method for preparing high-quality graphene
KR101572671B1 (en) Method of manufacturing of large-area graphene oxide and the large-area graphene oxide thereby
CN102786045A (en) Method for preparing oxidized graphene
CN104174422A (en) High nitrogen doped graphene and fullerene-like molybdenum selenide hollow-ball nanocomposite and preparation method thereof
CN107555423B (en) Stripping solution for preparing two-dimensional nano material and application thereof
CN110589812A (en) Method for preparing porous graphene by recovering graphite cathode material from waste power battery
CN104118867A (en) Preparation method of graphite oxide
TWI474975B (en) Method for fabricating reduced graphene oxide
CN108557813B (en) Method for preparing oversized single-layer graphene oxide by one-step method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant