CN102698774B - Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material - Google Patents

Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material Download PDF

Info

Publication number
CN102698774B
CN102698774B CN201210187871.XA CN201210187871A CN102698774B CN 102698774 B CN102698774 B CN 102698774B CN 201210187871 A CN201210187871 A CN 201210187871A CN 102698774 B CN102698774 B CN 102698774B
Authority
CN
China
Prior art keywords
graphene
individual layer
mos
deionized water
sodium molybdate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210187871.XA
Other languages
Chinese (zh)
Other versions
CN102698774A (en
Inventor
陈卫祥
黄国创
王臻
马琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210187871.XA priority Critical patent/CN102698774B/en
Publication of CN102698774A publication Critical patent/CN102698774A/en
Application granted granted Critical
Publication of CN102698774B publication Critical patent/CN102698774B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a hydrothermal preparation method for single-layer MoS2 and a graphene composite nano material. The composite material is formed by compounding the single-layer MoS2 and graphene, wherein a molar ratio of the single-layer MoS2 to the graphene is (1:1)-(1:4). The preparation method comprises the following steps of: performing ultrasonic dispersion on graphene oxide in deionized water, stirring, adding a cation surfactant, and adding L-cysteine and sodium molybdate sequentially; transferring the mixed dispersed system into a hydrothermal reaction kettle, performing hydrothermal reaction at the temperature of between 220 and 250 DEG C for 24 hours, and cooling naturally; centrifuging and collecting a solid product, washing the product by using deionized water, drying, and performing heat treatment under mixed atmosphere of nitrogen/hydrogen. The method has the advantages of simplicity and convenience, and an organic solvent is not required.

Description

A kind of individual layer MoS 2hydrothermal preparing process with Graphene composite nano materials
Technical field
The present invention relates to the preparation method of composite nano materials, relate in particular to individual layer MoS 2with the hydrothermal preparing process of graphene composite material, belong to inorganic composite nano material technology field.
Background technology
Recently, the research of individual layer two-dimensional nano material has caused people's very big interest.As everyone knows, Graphene is current maximum individual layer two-dimensional nano materials of research, and Graphene has the performances such as physics, chemistry and mechanics of numerous uniquenesses with its unique two-dimensional nano chip architecture, has important scientific research meaning and application prospect widely.Graphene has high specific area, high conduction and heat conductivility, high charge mobility, excellent mechanical property.Graphene is with a wide range of applications as the electrode material of micro-nano electronic device, new forms of energy battery, kollag and novel catalyst carrier.The discovery of Graphene and application study thereof have excited the research interest of people to other inorganic individual layer two-dimensional nano materials, as have the transition metal dichalcogenide MoS of single layer structure 2and WS 2.
MoS 2the typical layered structure with similar graphite.MoS 2layer structure is the layer structure of sandwich, and in its layer, (S-Mo-S) is very strong covalent bonds, and interlayer is weak Van der Waals force, easily peels off between layers.MoS 2there is good anisotropy and lower friction factor, MoS 2can be attached to well metal surface performance lubricating function, particularly under the conditions such as high temperature, high vacuum, still have lower coefficient of friction, be a kind of good kollag.MoS 2also be a kind of catalyst carrier of good catalytic desulfurization.The MoS with layer structure 2as material of main part, by insertion, react, object atom or molecule can be inserted in and between body layer, form intercalation compound.Due to MoS 2lamellar compound be by weak Van der Waals force combination between layers, therefore can allow at interlayer, to introduce external atom or molecule by intercalation.Therefore, MoS 2lamellar compound is a kind of up-and-coming electrochemical lithium storage and storage Development of Magnesium Electrode Materials.But as the electrode material of electrochemical reaction, MoS 2electric conductivity poor.
The inorganic compound of layer structure, but its number of plies is when less (5 layers are following), and its Electronic Performance and its number of plies have substantial connection.Research recently discloses to be compared with body phase material, the MoS of single layer structure 2and WS 2there are uncommon physical chemistry and photoelectric properties, as: the MoS of single layer structure 2raman spectrum have obvious variation and significantly strengthen fluorescence quantum efficiency, the MoS of single layer structure 2the transistor of preparation has high on-off ratio.The MoS of single layer structure 2as lithium ion battery negative material, also shown good performance.But due to MoS 2be semi-conducting material in essence, its electronic conductivity is not high enough, as the application of electrode material, need to strengthen its electric conductivity.
Due to individual layer MoS 2have similar two-dimensional nano sheet pattern with Graphene, both have good similitude on microscopic appearance and crystal structure.Individual layer MoS 2can apply as electrode material and catalyst with graphene nanometer sheet.If by individual layer MoS 2composite with the compound preparation of graphene nanometer sheet, the high conduction performance of graphene nanometer sheet can further improve the electric conductivity of composite, strengthen the electronics transmission in electrochemical electrode reaction and catalytic reaction process, can further improve chemical property and the catalytic performance of composite.Individual layer MoS in addition 2compound with graphene nanometer sheet, the large Π key of graphene nanometer sheet can with MoS 2the interaction of Electronic Structure, further strengthens the ability of electronics transmission and charge migration.Therefore, this individual layer MoS 2the performance that has a wide range of applications and strengthen as electrode material and catalyst carrier etc. with the composite nano materials of graphene nanometer sheet.
But, up to the present, individual layer MoS 2preparation be mainly the insertion based on lithium ion and the method peeled off, there is following shortcoming in this method: responsive to environment highs such as air, moisture, need to consume a large amount of organic solvents, time that need to be longer.From large-scale application, consider, research and develop a kind of individual layer MoS for preparing simply and easily 2with the method for graphene composite material be still a job with challenge and novelty.
The present invention adopts cationic surfactant, and graphene oxide and sodium molybdate are raw material, by hydro-thermal reaction easily, prepares individual layer MoS 2composite with Graphene.But so far, this method yet there are no open report.
Summary of the invention
The object of the present invention is to provide oneplant individual layer MoS 2hydrothermal preparing process with graphene composite material.
Individual layer MoS 2with the hydrothermal preparing process of Graphene composite nano materials, this composite is by individual layer MoS 2with the compound formation of Graphene, individual layer MoS 2and the ratio of the amount between Graphene is 1:1-1:4, and its preparation process is as follows:
(1) be dispersed in deionized water graphene oxide is ultrasonic, then add cationic surfactant, and fully stir;
(2) Cys and sodium molybdate are added in the mixed system of step (1) successively, and constantly stir Cys and sodium molybdate are dissolved completely, the ratio of the amount of Cys and sodium molybdate consumption is 5:1, sodium molybdate with the ratio of the amount of graphene oxide at 1:1-1:4;
(3) mixed dispersion step (2) being obtained is transferred in hydrothermal reaction kettle, and add deionized water to adjust volume to 80% of hydrothermal reaction kettle nominal volume, cationic surfactant concentration is 0.02-0.05 M, the content of graphene oxide is 31.25-62.5 mmol/L, this reactor is put in constant temperature oven, at 220-250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and by deionized water, fully wash vacuum drying at 100 ℃;
(4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, in mist, the volume ratio of hydrogen is 10%, obtains individual layer MoS 2composite nano materials with Graphene.
In the present invention, described cationic surfactant is softex kw, DTAB, eight alkyl trimethyl ammonium bromides or tetra-n-butyl ammonium bromide.
Above-mentioned graphene oxide can adopt improved Hummers method preparation.
Hydrothermal method with cationic surfactant assistance of the present invention is prepared individual layer MoS 2have the following advantages with the method for Graphene composite nano materials: graphene oxide surface and edge with a lot of oxygen-containing functional groups (as hydroxyl, carbonyl, carboxyl), these oxygen-containing functional groups are more easily dispersed in water or organic liquid graphene oxide, but these oxygen-containing functional groups make graphene oxide surface with negative electrical charge, make graphene oxide with the MoS of negative electrical charge 4 2-ion is incompatible, and the present invention is first adsorbed onto cationic surfactant graphene oxide surface by electrostatic interaction, and make it with part positive charge, and then mix with ammonium thiomolybdate, due to electrostatic interaction, MoS 4 2-ion just easily interacts and combines with the graphene oxide that has adsorbed cationic surfactant, more just prepares individual layer MoS by hydro-thermal reaction and heat treatment subsequently 2with graphene composite material.Method of the present invention has technique feature simply and easily, does not consume organic solvent.
Accompanying drawing explanation
Fig. 1 is individual layer MoS 2the XRD diffraction pattern of/graphene composite material, in figure, * is individual layer MoS 2with individual layer MoS 2between interlamellar spacing, # is individual layer MoS 2and the interlamellar spacing between Graphene.
Curve (a) is the individual layer MoS of embodiment 1 preparation 2/ graphene composite material;
Curve (b) is the individual layer MoS of embodiment 3 preparations 2/ graphene composite material;
fig. 2the simple MoS preparing for comparative example 2xRD diffraction pattern;
fig. 3the individual layer MoS of embodiment 1 preparation 2/ graphene composite material SEM pattern;
fig. 4the individual layer MoS of embodiment 1 preparation 2/ graphene composite material HRTEM figure.
The specific embodiment
Below in conjunction with embodiment, further illustrate the present invention.
Graphene oxide in following example adopts improved Hummers method preparation: 0 ounder C ice bath, 5.0-10.0 mmol (0.06-0.12 g) graphite powder dispersed with stirring, in the 30 mL concentrated sulfuric acids, is slowly added to KMnO under constantly stirring 4, institute adds KMnO 4quality be 4 times of graphite powder, stir 50 minutes, when temperature rises to 35 ℃, slowly add 50 ml deionized waters, then stir 30 minutes, add the H of 15 ml mass concentrations 30% 2o 2, stir 30 minutes, through centrifugation, successively with obtaining graphene oxide after mass concentration 5%HCl solution, deionized water and acetone cyclic washing.
Embodiment 1.
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, then add 1.6 mmol softex kw cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 240 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, its XRD is shown in Fig. 1 curve (a), SEM is shown in Fig. 3, HRTEM is shown in Fig. 4, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:2 with Graphene amount.
Comparative example, does not add cationic surfactant and graphene oxide in preparation process, by above-mentioned similar approach, prepared simple MoS 2, concrete preparation process is as follows:
In 60 mL deionized waters, add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely, resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 240 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃, by resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, in mist, the volume ratio of hydrogen is 10%, prepare individual layer MoS 2with the composite nano materials of Graphene, its XRD diffraction pattern is shown in Fig. 2, and XRD characterizes and shows prepared simple MoS 2there is very strong (002) face XRD diffraction maximum, the simple MoS that surface is prepared 2for sandwich construction, its average number of plies is 21 layers.
Embodiment 2.
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, then add 2.4 mmol softex kw cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 230 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:2 with Graphene amount.
Embodiment 3.
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, then add 4.0 mmol softex kw cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, its XRD is shown in Fig. 1 curve (b), characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:2 with Graphene amount.
Embodiment 4.
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, then add 4.0 mmol softex kw cationic surfactants, and fully stir;
2) then add successively 1.50g (12.38 mmol) Cys and 0.6 g (2.48 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:1 with Graphene amount.
Embodiment 5.
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, then add 4.0 mmol DTAB cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 245 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:2 with Graphene amount.
Embodiment 6.
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, then add 4.0 mmol eight alkyl trimethyl ammonium bromide cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 240 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:2 with Graphene amount.
Embodiment 7.
1) be dispersed in 60 mL deionized waters 3.75 mmol graphene oxides are ultrasonic, then add 3.2 mmol softex kw cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 235 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:3 with Graphene amount.
Embodiment 8.
1) be dispersed in 60 mL deionized waters 5.0 mmol graphene oxides are ultrasonic, then add 1.6 mmol softex kw cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:4 with Graphene amount.
Embodiment 9.
1) be dispersed in 60 mL deionized waters 2.5 mmol graphene oxides are ultrasonic, then add 2.4 mmol tetra-n-butyl ammonium bromide cationic surfactants, and fully stir;
2) then add successively 0.75g (6.19 mmol) Cys and 0.3 g (1.24 mmol) sodium molybdate (Na 2moO 42H 2o), and constantly stir Cys and sodium molybdate are dissolved completely;
3) resulting mixed liquor is transferred in the hydrothermal reaction kettle of 100 mL, and add deionized water to adjust volume to 80 mL, this reactor is put in constant temperature oven, at 250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and fully wash by deionized water, vacuum drying at 100 ℃;
4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, prepare individual layer MoS 2with the composite nano materials of Graphene, in mist, the volume ratio of hydrogen is 10%.
With XRD, SEM and HRTEM to heat treatment after resulting end product characterize, characterization result shows that obtaining product after heat treatment is individual layer MoS 2/ graphene composite material, wherein MoS 2ratio=1:2 with Graphene amount.

Claims (1)

1. oneplant individual layer MoS 2with the hydrothermal preparing process of Graphene composite nano materials, this composite nano materials is by individual layer MoS 2with the compound formation of Graphene, individual layer MoS 2and the ratio of the amount of substance between Graphene is 1:1-1:4, and its preparation process is as follows:
(1) be dispersed in deionized water graphene oxide is ultrasonic, then add cationic surfactant, and fully stir, described cationic surfactant is softex kw, DTAB, eight alkyl trimethyl ammonium bromides or tetra-n-butyl ammonium bromide;
(2) Cys and sodium molybdate are added in the mixed system of step (1) successively, and constantly stir Cys and sodium molybdate are dissolved completely, the ratio of the amount of Cys and sodium molybdate consumption is 5:1, sodium molybdate with the ratio of the amount of graphene oxide at 1:1-1:4;
(3) mixed dispersion step (2) being obtained is transferred in hydrothermal reaction kettle, and add deionized water to adjust volume to 80% of hydrothermal reaction kettle nominal volume, cationic surfactant concentration is 0.02-0.05 M, the content of graphene oxide is 31.25-62.5 mmol/L, this reactor is put in constant temperature oven, at 220-250 ℃ after hydro-thermal reaction 24 h, allow it naturally cool to room temperature, with centrifugation, collect solid product, and by deionized water, fully wash vacuum drying at 100 ℃;
(4) by above-mentioned resulting solid product in nitrogen/hydrogen mixed gas atmosphere at 800 ℃ heat treatment 2h, in mist, the volume ratio of hydrogen is 10%, obtains individual layer MoS 2composite nano materials with Graphene.
CN201210187871.XA 2012-06-08 2012-06-08 Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material Expired - Fee Related CN102698774B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210187871.XA CN102698774B (en) 2012-06-08 2012-06-08 Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210187871.XA CN102698774B (en) 2012-06-08 2012-06-08 Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material

Publications (2)

Publication Number Publication Date
CN102698774A CN102698774A (en) 2012-10-03
CN102698774B true CN102698774B (en) 2014-04-09

Family

ID=46891996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210187871.XA Expired - Fee Related CN102698774B (en) 2012-06-08 2012-06-08 Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material

Country Status (1)

Country Link
CN (1) CN102698774B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506142B (en) * 2013-10-08 2016-01-27 江苏大学 A kind of Molybdenum disulfide/silver phosphate composite visible light photocatalytic material and preparation method thereof
CN103551173A (en) * 2013-11-06 2014-02-05 上海电力学院 Silver phosphate/molybdenum disulfide compound visible-light-driven photocatalyst and preparation method thereof
CN104091925B (en) * 2014-07-17 2016-08-17 浙江大学 Multiple edge MoS2nanometer sheet/Graphene electrochemistry storage magnesium combination electrode and preparation method
CN104226337B (en) * 2014-09-16 2016-05-04 吉林大学 A kind of graphene-supported sheet molybdenum disulfide nano compound and preparation method thereof
CN104525185B (en) * 2014-12-26 2016-07-13 清华大学 A kind of carbon-based composite fuel battery negative pole oxygen reduction catalyst and preparation method thereof
CN106629984B (en) * 2016-12-29 2019-06-25 苏州科技大学 Molybdenum sulfide cooperates with azepine grapheme material and the application near infrared light denitrogenation
CN107140624A (en) * 2017-06-05 2017-09-08 江苏大学 A kind of surfactant regulates and controls MoS2The method of/RGO nano composite material patterns
CN107321367B (en) * 2017-07-25 2019-09-06 洛阳理工学院 A kind of MoS2The synthetic method of/SnS nano heterojunction
CN111233040A (en) * 2018-11-29 2020-06-05 中国科学院大连化学物理研究所 Method for preparing nano molybdenum disulfide by solvothermal method, catalyst and application
CN109647444B (en) * 2019-01-17 2021-09-03 广州大学 Metal organic composite multiphase Fenton catalyst, and preparation method and application thereof
CN109759031B (en) * 2019-03-11 2019-12-03 乐清市芮易经济信息咨询有限公司 A kind of material and its production technology with high-effective dust-removing function
CN114289037B (en) * 2020-09-23 2023-07-14 天津理工大学 S-doped Te vacancy type 2H MoTe 2 Preparation method and application of electrocatalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142537B (en) * 2011-02-25 2015-03-25 浙江大学 Graphene/MoS2 compound nano material lithium ion battery electrode and preparation method thereof
CN102142548B (en) * 2011-02-25 2014-01-01 浙江大学 Compound nano material of graphene and MoS2 and preparation method thereof
CN102142538B (en) * 2011-02-25 2014-04-09 浙江大学 Lithium ion battery electrode made of graphene/ MoS2 and amorphous carbon and preparation method
CN102142551B (en) * 2011-02-25 2014-02-19 浙江大学 Graphene nano sheet/MoS2 composite nano material and synthesis method thereof

Also Published As

Publication number Publication date
CN102698774A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102698774B (en) Hydrothermal preparation method for single-layer MoS2 and graphene composite nano material
CN102694171B (en) Hydrothermal preparation method for composite material of single-layer WS2 and graphene
CN102683647B (en) Preparation method of graphene-like MoS2/graphene combined electrode of lithium ion battery
CN102701192B (en) Method for preparing monolayer MoS2 and graphene compounded nano material
CN102683648B (en) Preparation method of few-layer MoS2/graphene electrochemical storage lithium composite electrode
CN102142558B (en) Graphene/MoS2 graphene and amorphous carbon composite material and preparation method thereof
CN103145120B (en) A kind of preparation method of porous graphene
CN102709559B (en) MoS2 nanobelt and graphene composite nanometer material and preparation method of composite nanometer material
CN102142549B (en) Graphene nano sheet and SnS2 composite nano material and synthesis method thereof
CN102723463B (en) Preparation method of single-layer MoS2/grapheme combined electrode of lithium ion battery
CN104916826A (en) Silicon cathode material coated with graphene and preparation method thereof
WO2014032399A1 (en) Method for low-temperature preparation of graphene and of graphene-based composite material
CN104103829B (en) MoS2Nanometer sheet/graphene composite nano material with holes and preparation method
CN104174422A (en) High nitrogen doped graphene and fullerene-like molybdenum selenide hollow-ball nanocomposite and preparation method thereof
CN104091931A (en) Multi-edge MoS2 nano piece/graphene composite nanomaterial and preparation method thereof
CN102694172B (en) Preparation method of composite nano material of single-layer WS2 and graphene
CN104124434A (en) Multi-edge MoS2 nanosheet/graphene electrochemical lithium storage composite electrode and preparation method thereof
CN105789628B (en) A kind of azepine graphene and manganese dioxide hybrid aerogel and its preparation method and application
CN104091933A (en) Mo0.5W0.5S2 nanotile and graphene composite nanomaterial and preparation method thereof
CN105772035A (en) Hierarchical structure MoS2@rGO preparing method
CN104091932A (en) Porous WS2 nanosheet and graphene composite nanomaterial and preparation method thereof
CN104103814A (en) Mo0.5W0.5S2 nano tile/graphene electrochemical lithium storage composite electrode and preparation method
CN104091936A (en) MoS2 nanotile and graphene composite nanomaterial and preparation method thereof
CN102709520B (en) MoS2 nanoribbon and graphene composite electrode for lithium ion battery and preparation method for composite electrode
CN104091915A (en) Electrochemical sodium storage composite electrode with high capacity and cycle stability and preparation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

Termination date: 20190608

CF01 Termination of patent right due to non-payment of annual fee