CN103732561A - 用废硅泥制造含碳化硅的储热材料的方法 - Google Patents

用废硅泥制造含碳化硅的储热材料的方法 Download PDF

Info

Publication number
CN103732561A
CN103732561A CN201280025868.6A CN201280025868A CN103732561A CN 103732561 A CN103732561 A CN 103732561A CN 201280025868 A CN201280025868 A CN 201280025868A CN 103732561 A CN103732561 A CN 103732561A
Authority
CN
China
Prior art keywords
silicon
silicon carbide
mud
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280025868.6A
Other languages
English (en)
Inventor
李贤宰
权禹泽
金令姬
金寿龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENBLON Co Ltd
Korea Institute of Ceramic Engineering and Technology KICET
Original Assignee
ENBLON Co Ltd
Korea Institute of Ceramic Engineering and Technology KICET
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENBLON Co Ltd, Korea Institute of Ceramic Engineering and Technology KICET filed Critical ENBLON Co Ltd
Publication of CN103732561A publication Critical patent/CN103732561A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/165Ceramic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种含碳化硅的储热材料的制造方法,包括以下步骤:提供从硅晶圆切削工艺产生的硅泥;在非氧化氛围中对所述硅泥进行热处理以去除一部分油;将所述硅泥与粘结剂混合以制备浆料;挤压所述浆料以形成蜂巢式坯块;以及在非氧化氛围中在1300℃至1900℃的温度下将所述蜂巢式坯块进行反应烧结。所述方法的优点在于能够以低成本制造具有高导热性、热积累特性和耐化学性的含碳化硅储热材料。

Description

用废硅泥制造含碳化硅的储热材料的方法
技术领域
本发明涉及一种硅泥的循环利用方法,硅泥是在粉碎硅晶圆时产生的副产品,并且更具体地讲,涉及一种用废硅泥制造含碳化硅的储热材料的方法。
背景技术
硅通常用于制造太阳能电池和半导体晶圆,并且使用线锯将硅锭切片成晶圆形式。当对硅锭切片时,使用的是包含平均粒径为10μm的碳化硅的研磨浆,因此产生了包含硅(主要成分)、碳化硅和其他氧化物的研磨性油泥(sludge)。
以此方式,在硅锭切片的过程中,每年产生的废油泥达10,000吨或更多。据预测,根据太阳能电池晶圆产量增加的计划,2012年硅泥的产量会达到约25,000吨。
过去,由废品处理公司将硅泥埋入地下。然而,最近已经开始从硅泥中回收大量的硅、碳化硅等。
常规的硅泥循环技术的典型实例可以包括再生研磨浆料的技术、分离和回收固体的技术以及合成碳化硅的技术。
例如,韩国未经审查的专利公开No.2003-84528公开了一种循环利用废浆料的方法,其中废浆料与1至20重量百分比的非离子型表面活性剂和2至50重量百分比的溶剂(醇)反应预定的时间(5分钟至10小时),使用离心分离器借助比重差将反应产物分层,然后使用油泵将各层放入容器中,干燥并且根据大小归类。
另外,韩国未经审查的专利公开No.2004-55218公开了一种制备高纯度碳化硅的方法,包括以下步骤:对废浆料进行过滤以分离出例如硅、碳化硅、铜粉、铁粉等固体;使用比重筛选和磁力筛选来去除铜粉和铁粉;在室温下用30%的高浓度盐酸来洗涤所得产物以获得硅粉和碳化硅粉的混合粉末;将所得混合粉末与石墨粉在1600℃或以上的温度下进行混合以获得碳化硅复合物;以及压碎且粉碎碳化硅复合物,并且去除杂质。
然而,该方法的问题在于需要过多的工艺来分离并回收油泥固体,从而减弱了从廉价的废油泥获得碳化硅的效果,并且问题还包括,所获得的碳化硅粉末必须进一步成型并烧结以便形成烧结的碳化硅本体。
同时,储热型燃烧设备包括:燃烧室,用于燃烧并氧化工艺气体;储热层;以及叶轮,用于将工艺气体供应到燃烧室或从燃烧室排出。工艺气体在叶轮作用下穿过储热层,在燃烧室中燃烧,再次穿过储热层,然后在叶轮作用下被排出到外面。在这种方法中,热能被储存在布置在燃烧气体的排出侧的储热层中,并且这种热能用于对借助叶轮引入的工艺气体进行预热。当使用此类储热型燃烧设备时,有害物质可以转变成无害气体然后排出,并且可以使排出无害气体所需的能量消耗最小化。
在传统的储热型燃烧设备中,储热层通常是由堇青石或氧化铝陶瓷制成的。然而,这种储热层不具有充足的导热性、热积累特性和耐化学性。因此,需要使用含碳化硅的储热材料,但是实际上又很难做到使用含碳化硅的储热材料,因为这种材料的生产成本很高。
发明内容
技术问题
因此,本发明意图解决上述问题,并且本发明的目的是通过以下方式以低成本提供一种含碳化硅的储热材料的制造方法:对在半导体晶圆或太阳能电池晶圆的制造工艺中产生的废硅泥进行循环利用。
技术方案
为了实现上述目的,本发明的一方面是提供一种含碳化硅的储热材料的制造方法,包括以下步骤:提供在硅晶圆切削工艺中产生的硅泥;在非氧化氛围中对所述硅泥进行热处理以去除一部分油;将所述硅泥与粘结剂混合以制备浆料;挤压所述浆料以形成蜂巢式坯块;以及在非氧化氛围中在1300℃至1900℃的温度下将所述蜂巢式坯块进行反应烧结。
本发明的另一方面提供了一种含碳化硅的储热材料的制造方法,包括以下步骤:提供在硅晶圆切削工艺中产生的硅泥;在非氧化氛围中对所述硅泥进行热处理以去除一部分油;在非氧化氛围中在1300℃至1900℃的温度下对所述硅泥进行反应烧结以获得碳化硅(SiC)粉末;将所述碳化硅(SiC)粉末与粘结剂混合以制备浆料;挤压所述浆料以形成蜂巢式坯块;以及在非氧化氛围中在1300℃至1900℃的温度下烧结所述蜂巢式坯块。
这里,所述硅泥可以包含碳化硅(SiC)粉末。
另外,对所述硅泥进行热处理以去除油的步骤可以在100℃至600℃的温度下执行。
另外,去除了一部分油的所述硅泥可以包含0.1至10重量百分比的油。
另外,所述粘结剂可以包括无机粘结剂。
另外,所述浆料可以包含碳粉。
有益效果
根据本发明的含碳化硅的储热材料的制造方法的优点在于:能够以低成本用废硅泥制造含碳化硅的储热材料。通过所述方法制造出的含碳化硅的储热材料可以用于形成储热型燃烧设备的储热层,因为该储热材料能够实现碳化硅所特有的导热性、热积累特性和耐热性。
特别地,所述方法可以用于处理所有类型的废硅泥,因为所述方法可以应用于在固体的分离和回收之后弃置的硅泥以及通常的废硅泥。
附图说明
结合附图,从以下详细描述可以更加清晰地理解本发明的上述和其他目的、特征和其他优点,其中:
图1是示意图,示出了本发明的蜂巢式储热材料的外观;
图2示出了根据本发明的实施例的烧结前的坯块和烧结后的烧结体的外观的照片;
图3是示出了根据本发明的实施例的通过改变烧结温度而获得的烧结体的XRD分析结果的曲线图;
图4示出了根据本发明的实施例的通过改变烧结温度接受热处理的粉末的电子显微镜照片;并且
图5是示出了在1450℃制备的粉末的XRD分析结果的曲线图。
具体实施方式
以下,将更加详细地描述本发明的优选实施例。
根据本发明的储热材料的制造方法包括:从硅泥分离固体的过程;从固体去除油的过程;制备浆料的过程;形成坯块的过程;以及烧结坯块的过程。
首先,使用离心机等从晶圆制造厂获得的硅泥中分离出固体和油。固体包含硅、碳化硅(SiC)和少量的杂质。
以下表1给出了对离心后硅泥的固体中所包含的杂质成分的分析。
表1
[表1]
[表]
Na(mg/kg) K(mg/kg) Ca(mg/kg) Fe(mg/kg) Al(mg/kg) Cu(mg/kg)
30 35 48 72 39 13
从表1可以看出,硅泥包含少量的碱金属或金属。在这些金属中,铁(Fe)和铜(Cu)来自切削机。
除这些杂质之外,经离心的硅泥包含油、硅和碳化硅(SiC)粉末。油和碳化硅(SiC)来自切削工艺中的切削油和切削物质。油通常包含乙二醇(EG)、聚乙二醇(PEG)或二甘醇(DEG)。在本发明中,在硅泥固体中的硅的含量,包括硅和碳化硅(SiC),可以千差万别。
例如,从晶圆制造工艺获得的硅泥具有很高的硅含量,而从废水处理厂(其分离出硅固体并将其弃置)获得的硅泥具有很高的碳化硅(SiC)含量。不论硅含量如何变化,硅泥都适用于本发明的方法。如随后所述,本发明的方法的优点在于:可以有效地用不含碳化硅(SiC)的硅泥制造出碳化硅烧结体。
从经离心的硅泥去除油的过程按照如下方式进行。首先,在本发明中,在100℃至600℃的温度下去除油。在非氧化氛围中,优选地在还原氛围中进行除油工艺。还原氛围能够防止硅粉在除油过程中被氧化。当硅粉氧化时,就会由所谓的艾其逊反应(Acheson reaction)引起硅的碳化反应,因此会导致提高碳化反应温度的问题。如随后所述,在本发明中,在还原氛围中进行除油工艺,因此可以在1350℃的低温下进行烧结。在本发明中,为了快速除油,可以和热处理同步进行压制过程(pressing process)。
在本发明中,进行除油过程使得硅泥中油的残余量为0.1至10重量百分比,并且优选为1至10重量百分比。残余的油均匀地分布在硅粉表面上。残余的油在随后的烧结过程中充当碳源。残余的油分布均匀能使硅在较低的温度下被碳化。
随后,制备浆料以便使硅泥形成为所需的形状。该浆料通过将硅泥与水和有机粘结剂混合来制备。有机粘结剂可以是选自由以下各项组成的组的至少一种:聚乙烯基醇、甲基纤维素、乙基纤维素、羧甲基纤维素、聚醋酸乙烯酯和聚乙二醇。有机粘结剂在形成过程中充当粘结剂。在本发明中,优选的是,包含的有机粘结剂的量为2至15重量份,其中以除油过程中产生的硅泥的重量为100份。
本发明的浆料可以进一步包括无机粘结剂。无机粘结剂可以是选自由以下各项组成的组的至少一种:粘土、长石、氧化铝、二氧化硅-氧化铝(silica-alumina)、硅酸铝、钛酸铝和二氧化硅。无机粘结剂在烧结过程中充当烧结剂。在本发明中,优选的是,包含的无机粘结剂的量为2至30重量份,以硅泥的重量为100份计。
同时,在成形过程中可以额外地提供碳源。例如,碳源可以是例如炭黑的碳粉。
硅泥形成为蜂巢式坯块。图1示出了蜂巢式坯块。如图1所示,蜂巢式坯块100包括在长度方向上形成通道的多个单元110,并且单元110被分隔壁120封闭。
在本发明中,蜂巢式坯块可以通过一般的挤压工艺形成。例如,本发明的蜂巢式坯块可以被构造成在150mm x150mm的面积内具有预定数量(20x20、43x43等)的单元。通过将蜂巢式坯块切成合适的大小,蜂巢式坯块可以形成为所需的大小。
以此方式获得的蜂巢式坯块通过一般的干燥方法进行干燥,例如微波干燥、热风干燥、湿法干燥(wet drying)等。
随后,蜂巢式坯块在1300℃至1800℃的温度下进行烧结。在烧结过程中,硅(Si)转化成碳化硅(SiC)。本发明的特征在于:即使在1300℃的低温下,硅(Si)也能转化成碳化硅(SiC)。据推断,这是由于硅泥中包含残余的油造成的。
在常规方法中,当通过对硅进行反应烧结来制备碳化硅(SiC)时,反应烧结一般在1450℃或更高的温度下进行。然而,由于纯硅的熔点是1412℃,在此烧结温度下无法维持硅的型架。因此,首先使用由SiC和/或碳源组成的坯块来形成预成型件,然后将预成型件浸渍在熔融硅中以获得烧结的碳化硅本体。然而,烧结的碳化硅本体的常规形成方法非常复杂且昂贵。
在本发明中,能够制造含碳化硅的储热材料,虽然是通过在没有预成型件的条件下将硅泥与粘结剂混合来形成坯块,但是维持了该储热材料的形状。其原因在于:硅泥中包含的残余的油均匀地分布在硅粉的表面上,因此碳化反应在低于硅熔点的温度下进行。
如上所述,说明了根据本发明的用硅泥直接制造储热材料的方法。然而,本发明的储热材料可以通过以下方式制造:用硅泥制备碳化硅粉末;将碳化硅粉末与上述粘结剂混合,然后对混合物进行成型。
在这种情况下,通过除油工艺获得的硅泥被烧结。如有必要,可以将有机粘结剂和无机粘结剂和碳源添加到硅泥中。随后,如上所述,将粘结剂和溶剂添加到通过烧结硅泥而获得的碳化硅(SiC)中来制备浆料。随后,浆料通过挤压工艺形成为蜂巢式坯块,然后蜂巢式坯块被烧结以制造出含碳化硅的储热材料。在这种情况下,由于需要较高的烧结温度,所以烧结温度必须通过调整无机粘结剂的量来降低。
实施方式
实例1:制备烧结的碳化硅本体
对从国内半导体晶圆制造厂获得的硅泥进行离心以回收硅。上述表1给出了所获得的硅泥的固体中所包含的杂质的成分,即硅泥除了包含硅(Si)之外,还包含杂质。随后,将所获得的硅泥在300℃温度下在还原氛围中热处理120分钟以去除所获得的硅泥上的油。结果,硅泥中剩下的油的含量为5重量百分比。
随后,将硅泥与粒径为1μm的炭黑(由Korea Carbon Black Co.,Ltd.制造)混合以形成小球型坯。在这种情况下,炭黑与硅的摩尔比为1:1。
在真空氛围中,坯在1350℃、1650℃、1750℃和1850℃下烧结1小时。在这种情况下,烧结温度以10℃/分钟的速率增加。观察获得的烧结体的外观,并且使用XRD对烧结体进行拍照。为了将实例1的烧结体的XRD图谱与常规的烧结体的XRD图谱进行比较,Marktech粉末的XRD图谱与实例1的烧结体的XRD图谱一起示出于图2中。
图2A是示出了烧结前的烧结体的形状的照片,并且图2B是示出了在1550℃烧结后的烧结体的形状的照片。
参看图2,可以确认在烧结前和烧结后小球的形状得到准确地保持。也就是说,在本发明的反应烧结中用作原材料的硅泥即使在等于或高于硅熔点的温度下也能保持自身形状。上述结果以以下事实为依据:通过在等于或低于硅熔点的温度下硅的碳化反应而制备的碳化硅(SiC)保持了烧结体的型架。
图3是示出了根据烧结温度的变化而获得的烧结体的XRD分析结果的曲线图。
在图3的曲线图中,“WJ-2”表示原料粉末的XRD分析结果。
参看图3,可以看出,在根据各烧结温度而获得的各烧结体样本中存在SiC相。另外,可以看出,即使在1350℃烧结的样本中也几乎观察不到硅峰值。因此,在本发明的烧结体的情况中,可以看出,即使在非常低的温度下,也非常容易进行硅转化成碳化硅的反应。然而,可以看出,在1350℃烧结的样本中存在少量的碳。由于在其他烧结温度下没有检测出存在碳,所以可以看出,随着烧结温度的增加,硅更容易转化成碳化硅。另外,在根据各烧结温度获得的各烧结体样本中可以确认存在(Fe,Si)C化合物。
实例2:制备碳化硅粉末
将按照与实例1相同的方法获得的硅泥的固体与碳源混合,然后在1450℃至1850℃的温度下热处理1小时。在这种情况下,热处理温度以10℃/分钟的速率增加。按照与实例1相同的方法制备碳化硅(SiC)粉末,不同之处在于碳化硅粉末没有形成为小球的形状。
用电子显微镜来拍摄以此方式制备的碳化硅(SiC)粉末的外观。
图4A至图4D示出了在1450℃、1650℃、1750℃和1850℃热处理过的碳化硅粉末样品的电镜图,图5是示出了在1450℃制备的碳化硅(SiC)粉末的XRD分析结果的曲线图。
从图5可以看出,已经形成了β-SiC粉末(图中为KICET5:5)。图中的“Marktech”和“SIKA”表示以Marktech和SIKA为商标商购的碳化硅粉末的XRD图谱。
虽然出于说明性目的公开了本发明的优选实施例,但是本领域的技术人员会认识到在不脱离由所附权利要求书所公开的本发明的范围和精神的前提下,可以进行多种修改、增设和替换。这些实施例用于说明本发明的技术理念,而不是限制技术理念,并且本发明的范围不限于此。因此,任何和所有的修改、变化或等同布置应当被理解为在本发明的范围内,并且本发明的具体范围由所附权利要求书公开。

Claims (7)

1.一种含碳化硅的储热材料的制造方法,包括以下步骤:
提供从硅晶圆切削工艺产生的硅泥;
在非氧化氛围中对所述硅泥进行热处理以去除一部分油;
将所述硅泥与粘结剂混合以制备浆料;
挤压所述浆料以形成蜂巢式坯块;以及
在非氧化氛围中在1300℃至1900℃的温度下对所述蜂巢式坯块进行反应烧结。
2.一种含碳化硅的储热材料的制造方法,包括以下步骤:
提供从硅晶圆切削工艺产生的硅泥;
在非氧化氛围中对所述硅泥进行热处理以去除一部分油;
在非氧化氛围中在1300℃至1900℃的温度下对所述硅泥进行反应烧结以获得碳化硅(SiC)粉末;
将所述碳化硅(SiC)粉末与粘结剂混合以制备浆料;
挤压所述浆料以形成蜂巢式坯块;以及
在非氧化氛围中在1300℃至1900℃的温度下对所述蜂巢式坯块进行烧结。
3.根据权利要求1或2所述的方法,其中,所述硅泥包含碳化硅(SiC)粉末。
4.根据权利要求1或2所述的方法,其中,对所述硅泥进行热处理以去除油的步骤在100℃至600℃的温度下进行。
5.根据权利要求1或2所述的方法,其中,去除了一部分油的所述硅泥包含0.1至10重量百分比的油。
6.根据权利要求1或2所述的方法,其中,所述粘结剂包括无机粘结剂。
7.根据权利要求1所述的方法,其中,所述浆料进一步包含碳粉。
CN201280025868.6A 2011-05-31 2012-05-30 用废硅泥制造含碳化硅的储热材料的方法 Pending CN103732561A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2011-0052072 2011-05-31
KR1020110052072A KR101257458B1 (ko) 2011-05-31 2011-05-31 실리콘 슬러지로부터 탄화규소 축열재를 제조하는 방법
PCT/KR2012/004230 WO2012165841A2 (en) 2011-05-31 2012-05-30 Method of manufacturing silicon carbide-containing heat storage material from waste silicon sludge

Publications (1)

Publication Number Publication Date
CN103732561A true CN103732561A (zh) 2014-04-16

Family

ID=47260064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280025868.6A Pending CN103732561A (zh) 2011-05-31 2012-05-30 用废硅泥制造含碳化硅的储热材料的方法

Country Status (3)

Country Link
KR (1) KR101257458B1 (zh)
CN (1) CN103732561A (zh)
WO (1) WO2012165841A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107433279A (zh) * 2016-05-27 2017-12-05 成亚资源科技股份有限公司 废硅泥再利用处理方法
CN107673761A (zh) * 2017-10-27 2018-02-09 潍坊华美精细技术陶瓷股份有限公司 一种大规格致密碳化硅陶瓷板的制备方法
CN115417411A (zh) * 2022-08-31 2022-12-02 隆海新材料科技(云南)有限公司 一种颗粒状单晶硅切片硅泥及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101682554B1 (ko) * 2015-06-17 2016-12-05 부산대학교 산학협력단 실리콘 웨이퍼 슬러지에서 발생되는 폐 SiC의 재활용을 위한 단광화 방법 및 그에 의한 주물용 단광 첨가제
KR102067018B1 (ko) * 2019-03-26 2020-01-15 서울대학교산학협력단 태양광 슬러지를 이용한 탄화규소 재활용 방법
KR102372935B1 (ko) 2020-01-14 2022-03-10 김준범 걷기 균형감각 향상, 웨어러블 디바이스 코칭 시스템 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040407A1 (en) * 2000-11-17 2002-05-23 Metallkraft As Method for utilising a waste slurry from silicon wafer production
JP2006256894A (ja) * 2005-03-16 2006-09-28 Oputo:Kk 炭化珪素焼結体用原料およびそれを用いて得られる炭化珪素焼結体
CN101798212A (zh) * 2010-01-29 2010-08-11 王献忠 一种碳化硅-刚玉复合材质蜂窝蓄热体
CN201756979U (zh) * 2010-06-25 2011-03-09 中国矿业大学 煤矿乏风瓦斯氧化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381207B2 (ja) * 2004-03-31 2009-12-09 株式会社東芝 反応焼結炭化ケイ素構造体の製造方法
KR20090048110A (ko) * 2007-11-09 2009-05-13 주식회사 칸세라 비대칭 밀봉으로 배압차를 개선한 허니컴 구조체 및 그제조방법
KR101079311B1 (ko) * 2009-11-30 2011-11-04 한국세라믹기술원 실리콘 슬러지 재활용 및 탄화규소 소결체 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040407A1 (en) * 2000-11-17 2002-05-23 Metallkraft As Method for utilising a waste slurry from silicon wafer production
JP2006256894A (ja) * 2005-03-16 2006-09-28 Oputo:Kk 炭化珪素焼結体用原料およびそれを用いて得られる炭化珪素焼結体
CN101798212A (zh) * 2010-01-29 2010-08-11 王献忠 一种碳化硅-刚玉复合材质蜂窝蓄热体
CN201756979U (zh) * 2010-06-25 2011-03-09 中国矿业大学 煤矿乏风瓦斯氧化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐明扬等: "硅锭线切割回收料制备SiC 多孔陶瓷的研究", 《中国陶瓷》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107433279A (zh) * 2016-05-27 2017-12-05 成亚资源科技股份有限公司 废硅泥再利用处理方法
CN107673761A (zh) * 2017-10-27 2018-02-09 潍坊华美精细技术陶瓷股份有限公司 一种大规格致密碳化硅陶瓷板的制备方法
CN107673761B (zh) * 2017-10-27 2021-05-04 潍坊华美精细技术陶瓷股份有限公司 一种大规格致密碳化硅陶瓷板的制备方法
CN115417411A (zh) * 2022-08-31 2022-12-02 隆海新材料科技(云南)有限公司 一种颗粒状单晶硅切片硅泥及其制备方法

Also Published As

Publication number Publication date
KR101257458B1 (ko) 2013-04-23
WO2012165841A2 (en) 2012-12-06
WO2012165841A3 (en) 2013-03-28
KR20120133439A (ko) 2012-12-11

Similar Documents

Publication Publication Date Title
CN103732561A (zh) 用废硅泥制造含碳化硅的储热材料的方法
CN101528597B (zh) 硅回收装置和回收硅的方法
CN101033066B (zh) 碳化硅微粉回收的方法
KR101079311B1 (ko) 실리콘 슬러지 재활용 및 탄화규소 소결체 제조방법
CN105693250B (zh) 一种用蓝宝石精研磨废料浆制备碳化硼超微粉的方法
CN105293498A (zh) 一种利用多晶硅切割废料制备碳化硅粉的方法
JP2010173916A (ja) シリコン屑から炭化珪素を製造する方法
JP2014047105A (ja) 炭化珪素粉の製造方法
JP5631782B2 (ja) シリコンの回収方法およびシリコンの製造方法
WO2002040407A1 (en) Method for utilising a waste slurry from silicon wafer production
CN102211769A (zh) 光伏电池晶体硅加工废砂浆综合处理新方法
US20130064751A1 (en) Method for producing high purity silicon
CN111004043A (zh) 利用多晶硅废料制备Si-Si3N4-SiC复合材料的方法
KR102641812B1 (ko) 브리켓 및 그 제조 방법
KR102067018B1 (ko) 태양광 슬러지를 이용한 탄화규소 재활용 방법
JP2006256894A (ja) 炭化珪素焼結体用原料およびそれを用いて得られる炭化珪素焼結体
CN103011165A (zh) 固体微粒子回收方法
CN107445614A (zh) 一种复合氧化锆粉体及其制备方法
JP4305044B2 (ja) セラミック混合粉末、セラミック混合粉末の製造方法およびセラミック焼結体の製造方法
KR20040055218A (ko) 폐 반도체 슬러리로부터 고순도 탄화규소를 제조하는방법
CN105924170A (zh) 一种Si-SiC衬底材料及其制备方法
KR20140114628A (ko) 웨이퍼링 폐슬러지로부터 회수한 실리콘의 열산화에 의한 실리카 제조방법
KR101890311B1 (ko) 제강공정에서 이용되는 승열 및 성분조절용 브리켓 제조 방법
CN107399761A (zh) 一种氧化锆废料回收工艺及回收锆粉
KR101362733B1 (ko) 마이크로웨이브 건조를 이용하여 실리콘 슬러지로부터 탄화규소를 합성하는 방법 및 그의 활용 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140416

RJ01 Rejection of invention patent application after publication