CN103700832B - 锂离子电池正极复合材料 - Google Patents

锂离子电池正极复合材料 Download PDF

Info

Publication number
CN103700832B
CN103700832B CN201210369027.9A CN201210369027A CN103700832B CN 103700832 B CN103700832 B CN 103700832B CN 201210369027 A CN201210369027 A CN 201210369027A CN 103700832 B CN103700832 B CN 103700832B
Authority
CN
China
Prior art keywords
lithium ion
ion battery
positive active
composite material
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210369027.9A
Other languages
English (en)
Other versions
CN103700832A (zh
Inventor
李亚栋
陆君
刘向文
彭卿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201210369027.9A priority Critical patent/CN103700832B/zh
Priority to TW101138001A priority patent/TWI600201B/zh
Priority to US13/691,518 priority patent/US9246165B2/en
Publication of CN103700832A publication Critical patent/CN103700832A/zh
Application granted granted Critical
Publication of CN103700832B publication Critical patent/CN103700832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种锂离子电池正极复合材料,其包括正极活性物质及包覆于该正极活性物质表面的包覆层,该正极活性物质为尖晶石型锂-镍锰复合氧化物,该包覆层的材料为具有单斜晶系结构、空间群为C2/c的锂-金属复合氧化物。

Description

锂离子电池正极复合材料
技术领域
本发明涉及一种锂离子电池正极复合材料。
背景技术
锂离子电池是一种新型的绿色化学电源,与传统的镍镉电池、镍氢电池相比具有电压高、寿命长、容量和能量密度大、体积小、自放电率低等优点。自1990年初次进入市场以来,使用范围越来越广,已经被广泛用于各种便携式电子设备。随着新能源汽车的兴起,锂离子电池以其优异的特性,被认为是新能源汽车理想的储能设备之一。
目前,锂离子电池的制约因素在于其循环过程中伴随的容量衰减,以及由此导致的较差的循环寿命。容量衰减的原因一方面是正极活性物质的本征结构随着循环的进行逐渐发生不可逆改变,另外一方面是当正极活性物质脱锂时,氧化性增强,容易与有机电解液发生反应,从而使正极活性物质损失,导致容量衰减。因此,如何提高正极活性物质在电池循环过程中的稳定性,降低电极副反应程度,是提高锂离子电池循环寿命的关键。
对锂离子电池正极活性物质的颗粒表面采用其它材料包覆,是现有技术中对正极活性物质进行改性的常用方法。例如,在磷酸铁锂的颗粒表面包覆一层碳可以有效解决磷酸铁锂导电性较差的问题,使包覆有碳层的磷酸铁锂具有较好的导电性。然而,现有技术中对尖晶石二元活性材料LiNi0.5Mn1.5O4在电池循环过程中的稳定性的改进问题并没有得到很好的解决。
发明内容
有鉴于此,确有必要提供一种具有较好的循环稳定性的锂离子电池正极复合材料。
一种锂离子电池正极复合材料,其包括正极活性物质及包覆于该正极活性物质表面的包覆层,该正极活性物质为尖晶石型锂-镍锰复合氧化物,该包覆层的材料为具有单斜晶系结构、空间群为C2/c的锂-金属复合氧化物。
一种锂离子电池正极复合材料,其包括正极活性物质及包覆于该正极活性物质表面的包覆层,该正极活性物质为尖晶石型锂-镍锰复合氧化物,该包覆层的材料为Li2TiO3、Li2MnO3、Li2SnO3、Li2PbO3、Li2TeO3、Li2RuO3、Li2HfO3及Li2ZrO3中的至少一种。
相较于现有技术,本发明提供的正极复合材料中,该正极活性物质为尖晶石型锂-镍锰复合氧化物,该包覆层的材料为具有单斜晶系结构、空间群为C2/c的锂-金属复合氧化物,该包覆层的氧化物是一个层状结构的化合物,层间具有二维的锂离子通道,并且在晶体C轴方向上存在一维的锂离子通道,因此具有良好的锂离子传导能力,从而可以使该正极复合材料具有较好的倍率性能。另外,由于该锂-金属复合氧化物的化学性质稳定,不与锂离子电池电解液反应,从而阻断了尖晶石型锂-镍锰复合氧化物和电解液的直接接触,抑制电池循环过程中副反应的发生,使锂离子电池具有较好的循环稳定性和电池寿命。
附图说明
图1为本发明实施例正极复合材料的结构示意图。
图2为本发明实施例正极复合材料的制备方法的过程示意图。
图3为本发明实施例复合前驱体的制备方法的过程示意图。
图4为本发明实施例1包覆有Ni离子掺杂Li2TiO3的LiNi0.5Mn1.5O4的XRD图谱。
图5为本发明实施例1的电池倍率性能测试图。
图6为本发明对比例包覆有Ni离子掺杂Li2TiO3的LiNi0.5Mn1.5O4的电池倍率性能测试图。
主要元件符号说明
正极复合材料 10
正极活性物质 12
包覆层 14
复合前驱体 100
正极活性物质前驱体 120,120’
包覆层前驱体 140
包覆试剂 144
锂源化合物 160
结晶水 180
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的锂离子电池正极复合材料作进一步的详细说明。
请参阅图1,本发明实施例提供一种锂离子电池正极复合材料10,其包括正极活性物质12及包覆于该正极活性物质12表面的包覆层14。
【正极活性物质】
该正极活性物质12为锂-镍锰复合氧化物,该锂-镍锰复合氧化物为尖晶石结构,化学式为LixNii-nMnj-mLnRmO4。其中0.1≤x≤1.1,i+j=2,0≤m<0.2,0≤n<0.2,0<i-n<2,0<j-m<2。其中,L和R为掺杂元素,选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种,优选地,L和R选自Co、Ni、Mn、Cr、V、Ti、Sn、Cu、Al、Fe、B、Sr、Ca、Nd、Ga及Mg中的至少一种。
更为优选地,该正极活性物质12为LiNi0.5Mn1.5O4
【包覆层】
该包覆层14的材料为具有单斜晶系结构、空间群为C2/c的锂-金属复合氧化物,通式可以是Li2AO3,其中A为具有+4价的金属元素,优选为Ti、Sn、Mn、Pb、Te、Ru、Hf及Zr中的至少一种,如Li2TiO3、Li2MnO3、Li2SnO3、Li2PbO3、Li2TeO3、Li2RuO3、Li2HfO3及Li2ZrO3
另外,该锂-金属复合氧化物也可以是掺杂的Li2AO3,归一化通式可以写作[Li1-2aMaa][Li1/3-2b-cMbN3cA2/3-2cb]O2,其中M及N为掺杂元素,“”代表Li+位空穴,0≤2a<1,0≤2b+c<1/3,且0≤2c<2/3。该归一化通式中Li1-2aMaa位于层间八面***点,Li1/3-2b-cMbN3cA2/3-2cb位于层内八面***点。具体来说,未掺杂的Li2AO3归一化通式可以写作[Li]α[Li1/3A2/3]βO2,[ ]α表示[ ]内的元素位于层间的八面***点,为Li+所占据;[ ]β表示[ ]内的元素位于层内的八面***点,被Li+和A4+占据,且比例为1:2。当掺杂元素M取代一定量层间和层内的Li+时,同时还产生等量的空穴。这些空穴有助于锂离子在该包覆层14中迁移。另外,掺杂元素N可以同时取代一定量层内的Li+和A4+
具体地,M及N优选为碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种,进一步优选地,M及N选自Co、Ni、Mn、Cr、V、Ti、Sn、Cu、Al、Fe、B、Sr、Ca、Nd、Ga及Mg中的至少一种。
另外,该掺杂的Li2AO3中的掺杂元素M及N中的至少一个可以来自该锂-镍锰复合氧化物,即M及N中的至少一个可以为Mn或Ni。举例来说,当M=Ni时,该归一化通式可以为[Li1-2aNiaa][Li1/3-2bNibA2/3b]O2。其中,层间和层内的Li+均可被Ni2+所取代,并同时得到等量的锂离子空穴。
该包覆层14优选为连续的锂-金属复合氧化物层。更为优选地,该包覆层14具有均匀的厚度。在本实施例中,该包覆层14为原位生成在该正极活性物质12表面,具有均匀厚度的连续的锂-金属复合氧化物层。
该包覆层14在该正极复合材料10中的质量百分含量为0.05%至7%,优选地,为1%至7%,更为优选为5%。该包覆层14的厚度为2纳米至20纳米,优选地,该厚度为2纳米至10纳米。可以理解,锂离子电池的正极中可以包括大量该正极活性物质12,该包覆层14为单独包覆在该单个正极活性物质12的表面。在优选的实施例中,在锂离子电池的正极中,每个正极活性物质12的表面均包覆有该包覆层14。该包覆层14优选为完整的包覆在该正极活性物质12的整个表面。该正极活性物质12的粒径不限,可根据需要进行选择,优选为1微米至500微米。该正极活性物质12的形状不限,可以为球状、棒状、针状、片状、不规则形状或它们的组合。该包覆层14单独包覆在该正极活性物质12表面,从而使该正极复合材料10仍然对应的具有球状、棒状、针状、片状、不规则形状等与该正极活性物质12相同或相似的形状。
【正极复合材料的制备方法】
本发明实施例提供一种正极复合材料的制备方法,其包括以下步骤:
S1,制备一复合前驱体,该复合前驱体包括正极活性物质前驱体及包覆于该正极活性物质前驱体表面的包覆层前驱体;
S2,将该复合前驱体与锂源化合物反应,使该复合前驱体中的包覆层前驱体及正极活性物质前驱体同时锂化,从而生成该正极复合材料。
该正极活性物质前驱体为可以与该锂源化合物反应生成所述尖晶石型锂-镍锰复合氧化物的化合物,具体可以是含镍和锰的化合物,优选为镍锰的含氧化合物。该镍锰的含氧化合物具体可以选自镍锰的氢氧化物、含氧酸盐及氧化物中的至少一种。该镍锰的含氧酸盐可以举例为草酸盐、乙酸盐、碳酸盐及碱式氧化物中的至少一种。该镍锰的含氧化合物可进一步带有结晶水。所述含镍和锰的化合物可通过将含镍的化合物以及含锰的化合物作为原料,采用固相法(球磨法)、共沉淀法、溶胶凝胶法或喷雾热解法制备获得。
该包覆层前驱体可以是具有+4价的金属元素的金属氧化物或金属氢氧化物,具体可以举例为二氧化钛(TiO2)、二氧化锡(SnO2)、二氧化锰(MnO2)、二氧化铅(PbO2)、二氧化锝(TeO2)、二氧化钌(RuO2)、二氧化铪(HfO2)及二氧化锆(ZrO2)中的至少一种。
该锂源化合物可选择为氢氧化锂、氯化锂、硫酸锂、硝酸锂、磷酸二氢锂及醋酸锂中的一种或多种。
具体地,请参阅图2,该复合前驱体100包括包覆层前驱体140及正极活性物质前驱体120。包覆层前驱体140是可以与锂源化合物反应生成该包覆层14的前驱体。也就是说,该包覆层前驱体140是可以与该锂源化合物反应生成具有单斜晶系结构、空间群为C2/c的锂-金属复合氧化物的化合物。该正极活性物质前驱体120是可以与锂源化合物反应生成该正极活性物质12的前驱体。该包覆层前驱体140为原位生成在该正极活性物质前驱体120表面的连续层状结构。该锂源化合物160同时与该正极活性物质前驱体120及该包覆层前驱体140反应,生成该正极活性物质12及该包覆于该正极活性物质12表面的包覆层14。该包覆层前驱体140优选为单独包覆在单个含镍和锰的化合物的表面。
在本实施例中,该步骤S1可以包括以下步骤:
S11,将该正极活性物质前驱体分散于一液相溶剂,以形成一固液混合物,且该正极活性物质前驱体不溶于该液相溶剂;
S12,向该固液混合物中加入一包覆试剂;
S13,通过加热该加入有包覆试剂的固液混合物,使该包覆试剂在该正极活性物质前驱体表面生成该包覆层前驱体,得到该复合前驱体。
在本实施例中,当该镍锰的含氧化合物选自氢氧化物及含氧酸盐中的至少一种,或者该镍锰的含氧化合物进一步带有结晶水时,该液相溶剂可以仅为有机溶剂。该氢氧化物、含氧酸盐或带有的结晶水可通过加热缓慢释放出水,与该包覆试剂进行反应。该有机溶剂可以选择为甲醇、乙醇、丙醇、异丙醇、乙二醇、丙酮、二氯乙烷或氯仿等常用有机溶剂。
该包覆试剂优选为液态或溶液,或者可溶于该液相溶剂。该包覆试剂可以包括金属卤化物及金属有机酯中的至少一种,具体可以是具有+4价的金属元素的金属卤化物或金属有机酯,具体可以举例为钛酸四乙酯、钛酸四丁酯、锆酸四丁酯、锡酸四丁酯、铪酸四丁酯、四氯化钛、四氯化锆、四氯化锡、四氯化铪、四氯化铅、四氯化锝、四氯化钌及四氯化锰。
在该步骤S11中,可以通过超声振荡或机械搅拌等方法,将正极活性物质前驱体均匀分散于该液相溶剂中。
在该步骤S12中,该包覆试剂加入的摩尔量优选为该正极活性物质前驱体的0.1%至20%。该包覆试剂加入该固液混合物后可进一步包括一将该包覆试剂与该固液混合物均匀混合的步骤。具体可以通过超声振荡或机械搅拌的方式,使该包覆试剂与该固液混合物充分均匀混合。
在该步骤S13中,该加入有包覆试剂的固液混合物可直接在开放环境中加热或放入水热釜中进行加热。该水热釜可以为一密封高压釜,在该加热反应过程中提供大于1个大气压的压力。该加热温度根据压力条件及包覆试剂的不同而变化,可以选择为80℃至200℃。该加热时间根据加热温度及包覆试剂的量而变化,可以选择为10分钟至12小时。在该步骤S13的加热过程中,该包覆试剂发生水解反应,在该正极活性物质前驱体表面生成该包覆层前驱体。
请参阅图3,当该正极活性物质前驱体120含有结晶水180时,该加热步骤使该结晶水180逐渐脱出,并与该包覆试剂144发生反应,形成包覆层前驱体140包覆在结晶水脱出的正极活性物质前驱体120表面。
通过采用无水的液相溶剂,仅靠正极活性物质前驱体提供水,使包覆试剂发生反应,可以使反应易于控制且生成形貌更好,更为均匀的包覆层前驱体。
在另一实施例中,该步骤S1可包括以下步骤:
S11’,将该正极活性物质前驱体分散于一液相溶剂,以形成一固液混合物,且该正极活性物质前驱体不溶于该液相溶剂;
S12’,向该固液混合物中加入一包覆试剂;
S13’,使该包覆试剂与水反应并发生分解,在该正极活性物质前驱体表面生成该包覆层前驱体,得到该复合前驱体。
上述步骤S11’-S13’与S11-S13基本相同,区别仅在当该正极活性物质前驱体120本身不带结晶水或为氧化物时,可通过外加水的步骤使该包覆试剂与水反应产生分解。具体地,该液相溶剂可为有机溶剂和少量水形成的混合溶剂。当该液相溶剂中仅含有有机溶剂时,该步骤S13’中可进一步包括一向该固液混合物中加入水的步骤。该加入的水的量可以由该包覆试剂的加入量加以确定。总之,该固液混合物中可以有少量水,该固液混合物中水与有机溶剂的体积比优选小于或等于1:10,更为优选小于1:50。另外,该固液混合物中水的量可以由该包覆试剂的加入量加以确定。
在该步骤S2中,该复合前驱体与该锂源化合物可进行高温固相反应,具体可以先将该复合前驱体与该锂源化合物均匀混合形成固相混合物,再将该固相混合物在固相反应温度下加热。具体地,该复合前驱体与该锂源化合物可先通过机械搅拌或球磨的方式均匀混合。该高温固相反应的温度可以根据该复合前驱体的材料而定,具体可以为600℃至900℃,反应时间可以为2至12小时。另外,在将该固相混合物在该高温固相反应温度下加热之前,可预先将该固相混合物在一较低温度下预烧结,以使复合前驱体充分分解,该较低温度可以为350℃至400℃,时间可以为0.5小时至1小时。在预烧结之后,可不经过降温,直接将温度升至该高温固相反应温度。该锂源化合物与该复合前驱体的比例可以根据该正极活性物质前驱体及该包覆层前驱体分别生成正极活性物质及包覆层所需要的锂的量加以确定,另外,由于锂在高温加热时易挥发,因此该锂源化合物相对于该复合前驱体可以为化学计量比过量,例如该锂源化合物与该复合前驱体的化学计量比可以大于1:2并小于1:1。在正极活性物质前驱体锂化并生成正极活性物质的同时,该锂源化合物也和该包覆层前驱体反应,直接在该正极活性物质表面生成该包覆层,由于该高温固相反应过程中该包覆层前驱体与该正极活性物质前驱体共同进行高温处理,且均形成锂化物,因此该生成的正极活性物质及包覆层之间存在较强的化学键合力,从而使该包覆层结构致密连续,且厚度均匀。
可以理解,该包覆试剂可以含有不止一种该+4价的金属元素,从而可以最终形成具有多种锂-金属复合氧化物混合的包覆层14。
本发明实施例提供的正极复合材料中,该包覆层的材料为具有单斜晶系结构、空间群为C2/c的锂-金属复合氧化物,在晶体C轴方向上存在一维的锂离子通道,因此具有良好的锂离子传导能力,从而可以使该正极复合材料具有较好的倍率性能。另外,由于该锂-金属复合氧化物的化学性质稳定,不与锂离子电池电解液反应,从而阻断了尖晶石型锂-镍锰复合氧化物和电解液的直接接触,抑制电池循环过程中副反应的发生。
进一步地,本发明实施例通过先制备一核-壳结构的前驱体,再将该核-壳结构的前驱体的核及壳同时锂化,一次形成该正极复合材料。上述原位包覆的方法形成的包覆层并非将包覆材料松散的堆积在正极活性物质表面,而是连续的包覆材料层,具有均匀的厚度和连续的晶体结构,包覆层和尖晶石型锂-镍锰复合氧化物之间的结合牢固致密,有效的减少了晶错,提高了锂离子在包覆层中的迁移率,从而使该正极复合材料具有较好的循环稳定性。
【实施例】
实施例1
称取0.25克Ni0.5Mn1.5(OH)4超声分散或搅拌分散于10mL乙醇中,得到固液混合物。向该固液混合物中加入钛酸四丁酯,加入的钛酸四丁酯的摩尔量为Ni0.5Mn1.5(OH)4的5%。继续超声振荡或搅拌后,将该固液混合物转入干洁的水热釜中,在150℃下加热3小时后取出,得到均匀的非晶TiO2层形成于Ni0.5Mn1.5(OH)4表面。将该复合前驱体与化学计量比的LiOH∙H2O混合,并使乙醇完全蒸干,然后以3℃/分钟的升温速率升温至800℃,并在800℃下焙烧5小时,自然降温,得到产物为包覆有Li2TiO3的LiNi0.5Mn1.5O4。请参阅图4,将该产物进行XRD测试,显示得到了纯相的尖晶石型LiMn2O4和LixNiO2。而所有Li2TiO3特征峰消失,这可能是由Ni离子掺杂Li2TiO3所造成。进一步地,对该产物进行XPS分析,XPS测试结果得到的Ti的含量为11.2%,该结果远远大于加入量5%,说明Ti主要存在于产物的表面。进一步计算可以得出,Ti元素仅存在于XPS可探测的10nm的产物的表面层内。此外,Ni元素的含量为41%,该结果也明显高于Ni元素在LiNi0.5Mn1.5O4中的摩尔含量(25%),表明部分Ni离子掺杂于所述Li2TiO3包覆层。
将该实施例1制备的正极复合材料与导电剂、粘结剂混合设置在正极集流体表面,形成正极,负极采用金属锂,将正极及负极通过隔膜间隔并以电解液浸润组装成锂离子电池,进行充放电性能测试。
作为与实施例1的对比,采用未包覆的LiNi0.5Mn1.5O4替换上述正极复合材料,其它条件不变,组装锂离子电池,进行充放电性能测试。
请参阅图5以及图6,将上述两种电池以不同倍率的电流进行倍率性能测试,从图5可以看到,未包覆的LiNi0.5Mn1.5O4的锂离子电池以0.5C、1C、2C、3C、4C、5C、7C及10C倍率进行恒流充放电,随着电流倍率逐渐提高,比容量迅速衰减,到10C电流时放电比容量仅有约40mAh/g。请参阅图6,而采用Ni离子掺杂Li2TiO3的LiNi0.5Mn1.5O4的锂离子电池以0.5C、1C、2C、3C、4C、5C、7C及10C倍率进行恒流充放电,随着电池倍率的提高,比容量下降缓慢,10C时电池的放电比容量仍然可以达到约60mAh/g,表明包覆有Li2TiO3的LiNi0.5Mn1.5O4具有较好的容量保持率以及倍率性能。
实施例2
与实施例1条件完全相同,区别仅在于将该钛酸四丁酯替换为锆酸四丁酯,得到的产物为包覆有Ni离子掺杂Li2ZrO3的LiNi0.5Mn1.5O4
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (16)

1.一种锂离子电池正极复合材料,其包括正极活性物质,该正极活性物质为尖晶石型锂-镍锰复合氧化物,其特征在于,进一步包括包覆于该正极活性物质表面的包覆层,该包覆层的材料为具有单斜晶系结构、空间群为C2/c的锂-金属复合氧化物,该包覆层的材料的通式为[Li1-2aMaa][Li1/3-2b-cMbN3cA2/3-2cb]O2,其中A为具有+4价的金属元素,M及N为掺杂元素,“□”代表Li+位空穴,0≤2a<1,0<2b+c<1/3,且0<2c<2/3。
2.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该金属元素A为Ti、Sn、Mn、Pb、Te、Ru、Hf及Zr中的至少一种。
3.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该M及N为碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种。
4.如权利要求3所述的锂离子电池正极复合材料,其特征在于,该掺杂元素M及N选自Co、Ni、Mn、Cr、V、Ti、Sn、Cu、Al、Fe、B、Sr、Ca、Nd、Ga及Mg中的至少一种。
5.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该掺杂元素M及N中的至少一个来自该正极活性物质。
6.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该包覆层厚度均匀且连续。
7.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该包覆层为原位生成在该正极活性物质表面。
8.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该包覆层在该正极复合材料中的质量百分含量为0.05%至7%。
9.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该包覆层的厚度为2纳米至20纳米。
10.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该包覆层为单独包覆在单个该正极活性物质的表面。
11.如权利要求10所述的锂离子电池正极复合材料,其特征在于,该包覆层为完整的包覆在该正极活性物质的整个表面。
12.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该正极活性物质的粒径为1微米至500微米。
13.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该正极活性物质的形状为球状、棒状、针状、片状或它们的组合。
14.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该正极复合材料对应的具有与该正极活性物质相同的形状。
15.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该尖晶石型锂-镍锰复合氧化物的化学式为LixNii-nMnj-mLnRmO4,其中0.1≤x≤1.1,i+j=2,0≤m<0.2,0≤n<0.2,0<i-n<2,0<j-m<2,其中,L和R为掺杂元素,选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种。
16.如权利要求1所述的锂离子电池正极复合材料,其特征在于,该包覆层与正极活性物质之间通过化学键合力结合。
CN201210369027.9A 2012-09-27 2012-09-27 锂离子电池正极复合材料 Active CN103700832B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210369027.9A CN103700832B (zh) 2012-09-27 2012-09-27 锂离子电池正极复合材料
TW101138001A TWI600201B (zh) 2012-09-27 2012-10-15 鋰離子電池正極複合材料
US13/691,518 US9246165B2 (en) 2012-09-27 2012-11-30 Cathode composite material and lithium ion battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210369027.9A CN103700832B (zh) 2012-09-27 2012-09-27 锂离子电池正极复合材料

Publications (2)

Publication Number Publication Date
CN103700832A CN103700832A (zh) 2014-04-02
CN103700832B true CN103700832B (zh) 2016-06-15

Family

ID=50339170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210369027.9A Active CN103700832B (zh) 2012-09-27 2012-09-27 锂离子电池正极复合材料

Country Status (3)

Country Link
US (1) US9246165B2 (zh)
CN (1) CN103700832B (zh)
TW (1) TWI600201B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413930B (zh) * 2013-07-30 2015-09-09 南京航空航天大学 锂离子导体Li2MO3(M=Ti、Si、Zr)包覆改性的LiNi1/2Mn3/2O4正极材料及制备方法
CN103840153B (zh) * 2014-03-05 2016-10-05 芜湖凯尔电气科技有限公司 一种高镍基锂电池正极材料及其制备方法
JP6470070B2 (ja) * 2014-08-25 2019-02-13 株式会社東芝 正極及び非水電解質電池
TWI570635B (zh) * 2016-03-08 2017-02-11 和碩聯合科技股份有限公司 圖像辨識方法及執行該方法之電子裝置、電腦可讀取記錄媒體
CN108878795B (zh) 2017-05-15 2021-02-02 宁德时代新能源科技股份有限公司 改性正极活性材料及其制备方法及电化学储能装置
CN107946551B (zh) * 2017-10-20 2020-07-17 合肥国轩高科动力能源有限公司 掺杂镍锰酸锂材料、改性镍锰酸锂正极材料及其制备方法
KR20210008362A (ko) * 2018-05-09 2021-01-21 할도르 토프쉐 에이/에스 도핑된 리튬 양극 활성 물질 및 그것의 제조 방법
CN114641874A (zh) * 2019-11-13 2022-06-17 株式会社Lg新能源 锂二次电池用正极活性材料及其制备方法
TWI735366B (zh) * 2020-10-29 2021-08-01 國立成功大學 高熵複合氧化物及其製法、及使用其之陽極材料
CN114292088B (zh) * 2021-12-30 2022-10-11 安徽大学 一种氚-中子复合增殖剂铅酸锂共晶陶瓷球粒及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787254A (zh) * 2004-12-09 2006-06-14 比亚迪股份有限公司 一种锂离子电池正极活性材料及其制备方法
CN101997113A (zh) * 2009-08-17 2011-03-30 北京当升材料科技股份有限公司 一种锂离子电池用多层包覆结构的多元材料及其制备方法
CN102201573A (zh) * 2011-04-13 2011-09-28 北京工业大学 一种核壳结构锂离子电池富锂正极材料及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869547B2 (en) * 1996-12-09 2005-03-22 Valence Technology, Inc. Stabilized electrochemical cell active material
US7135251B2 (en) 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
JP4061648B2 (ja) * 2003-04-11 2008-03-19 ソニー株式会社 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
FR2890241B1 (fr) * 2005-08-25 2009-05-22 Commissariat Energie Atomique Materiau d'electrode positive haute tension de structure spinelle a base de nickel et de manganese pour accumulateurs au lithium
CN101541684A (zh) 2006-09-12 2009-09-23 住友化学株式会社 锂复合金属氧化物及非水电解质二次电池
US20080067972A1 (en) * 2006-09-15 2008-03-20 Norio Takami Power supply system and motor car
JP5470751B2 (ja) 2008-02-13 2014-04-16 Tdk株式会社 活物質及び電極の製造方法、活物質及び電極
KR101711221B1 (ko) * 2008-11-24 2017-02-28 내셔널 유니버시티 오브 싱가포르 높은 전류밀도에서 향상된 사이클 성능을 갖는 전지의 양극 재료
CN102623694A (zh) 2012-03-19 2012-08-01 宁德新能源科技有限公司 一种高电压锂离子电池及其正极材料
CN102664253A (zh) 2012-05-09 2012-09-12 奇瑞汽车股份有限公司 富锂材料及其制备方法、含该材料的锂离子电池
CN103700827B (zh) * 2012-09-27 2016-04-27 清华大学 锂离子电池正极复合材料及锂离子电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787254A (zh) * 2004-12-09 2006-06-14 比亚迪股份有限公司 一种锂离子电池正极活性材料及其制备方法
CN101997113A (zh) * 2009-08-17 2011-03-30 北京当升材料科技股份有限公司 一种锂离子电池用多层包覆结构的多元材料及其制备方法
CN102201573A (zh) * 2011-04-13 2011-09-28 北京工业大学 一种核壳结构锂离子电池富锂正极材料及其制备方法

Also Published As

Publication number Publication date
TWI600201B (zh) 2017-09-21
US9246165B2 (en) 2016-01-26
CN103700832A (zh) 2014-04-02
TW201414062A (zh) 2014-04-01
US20140087259A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
CN103700833B (zh) 锂离子电池正极复合材料
CN103700834B (zh) 锂离子电池正极复合材料的制备方法
CN103700850B (zh) 锂离子电池正极复合材料
CN103700843B (zh) 锂离子电池正极复合材料
CN103700832B (zh) 锂离子电池正极复合材料
CN103700827B (zh) 锂离子电池正极复合材料及锂离子电池
CN105449197B (zh) 一种锂离子电池正极材料及其制备方法
CN104364946B (zh) 钠电池用正极材料及其制造方法
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
CN104835950B (zh) 正极活性物质、其制备方法以及可再充电锂电池
US6489060B1 (en) Rechargeable spinel lithium batteries with greatly improved elevated temperature cycle life
Lu et al. Spinel cathodes for advanced lithium ion batteries: a review of challenges and recent progress
CN106684323A (zh) 一种活性氧化物多重改善锂离子电池三元正极材料及其制备方法
CN103700828B (zh) 锂离子电池正极复合材料
CN108807926A (zh) 一种Co/B共包覆镍钴锰锂离子正极材料及其制备方法
CN108140820A (zh) 锂二次电池用正极活性材料及其制备方法
CN102484249A (zh) 具有高比容量和优异循环的层层富含锂的复合金属氧化物
CN108321367B (zh) 一种双金属氧化物包覆掺氟三元正极材料及其制备方法
CN104425809A (zh) 锂离子电池正极材料及其制备方法、含有该材料的锂离子电池
CN104835955A (zh) 一种锂离子电池镍钴锰酸锂复合正极材料及其制备方法
CN108550802A (zh) 一种Y/La掺杂Co/B共包覆的镍钴锰三元正极材料及制备方法
Zhang et al. Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1. 2Mn0. 54Ni0. 13Co0. 13O2 as cathode materials for Li-ion batteries
CN104681808A (zh) 一种锶盐掺杂镍锰酸锂的锂离子电池正极材料制备方法
KR101130318B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN102593459A (zh) 一种锂离子电池正极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant