CN103693966A - 一种低温共烧陶瓷材料及其制备方法 - Google Patents

一种低温共烧陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN103693966A
CN103693966A CN201310681146.2A CN201310681146A CN103693966A CN 103693966 A CN103693966 A CN 103693966A CN 201310681146 A CN201310681146 A CN 201310681146A CN 103693966 A CN103693966 A CN 103693966A
Authority
CN
China
Prior art keywords
glass
burning
powder
obtains
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310681146.2A
Other languages
English (en)
Other versions
CN103693966B (zh
Inventor
李在映
杨晓战
雒文博
刘明龙
杜富贵
江林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Yuntianhua hanen New Material Development Co Ltd
Yunnan Yuntianhua Co Ltd
Original Assignee
Yunnan Yuntianhua Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Yuntianhua Co Ltd filed Critical Yunnan Yuntianhua Co Ltd
Priority to CN201310681146.2A priority Critical patent/CN103693966B/zh
Publication of CN103693966A publication Critical patent/CN103693966A/zh
Application granted granted Critical
Publication of CN103693966B publication Critical patent/CN103693966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供了一种低温共烧陶瓷材料,由以下组分组成:79wt%~95wt%的陶瓷,5wt%~21wt%的助烧玻璃。与现有陶瓷材料相比,本发明以BaO、ZnO与TiO2组分为陶瓷原料,BaO与TiO2形成的陶瓷具有优异的微波介电性能,但烧结温度较高,ZnO的加入可明显降低陶瓷的烧结温度.,得到介电性能较好且烧结温度较低的陶瓷;助烧玻璃具有较低的烧结温度,且助烧玻璃中的部分原子与陶瓷基体中的部分原子相同或相近;同时通过控制陶瓷与助烧玻璃的含量,从而得到具有中介电常数的低温共烧陶瓷材料。

Description

一种低温共烧陶瓷材料及其制备方法
技术领域
本发明涉及电子器件技术领域,尤其涉及一种低温共烧陶瓷材料及其制备方法。
背景技术
现代移动通讯经过30年的发展,逐渐朝着小型化、集成化、高可靠性和低成本方向发展,因此对以微波介质陶瓷为基的微波电路元器件也提出了更高的要求。为满足移动通信终端便携化与微型化的要求,除了减小谐振电路的尺寸,高介电常数、高Q值和近零温度的微波介质材料成为研究的热点。
低温共烧陶瓷(LTCC)技术是将低温烧结陶瓷粉制成厚度精确而且致密的生瓷带,在生瓷带上利用激光打孔、微孔注浆、精密导体浆料印刷等工艺制出所需要的电路图形,并将多个无源元件埋入其中,然后叠压在一起,在900℃烧结,制成三维电路网络的无源集成组件,也可制成内置无源元件的三维电路基板,在其表面可以贴装IC和有源器件,制成无源/有源集成的功能模块。低温共烧陶瓷以其优异的电子、机械、电力特性等已成为多芯片组件集成化、模块化的首选方式,广泛用于基板、封装及微波器件等领域。采用LTCC工艺制造微波元器件,需要微波介质材料能与高电导率的金属电极Au、Cu、Ag等共烧。从经济性和环境角度考虑,使用熔点较低的Ag、Cu等金属作为电极材料最为理想。
由于银电极等烧结特性的要求,陶瓷材料的烧结温度要求在800~930℃左右。通常降低陶瓷材料烧结温度的方法有:添加氧化物或低熔点玻璃助烧剂、引入化学合成方法、超细粉体原料、微晶玻璃或非晶玻璃等。化学合成和超细粉体工艺复杂,产量低、成本高、不易量产,因此,添加低熔点氧化物或者玻璃相是常用的降低陶瓷材料烧结温度的方法,但是会导致陶瓷性能恶化。
发明内容
本发明解决的技术问题在于提供一种中介电常数的低温共烧陶瓷材料。
有鉴于此,本发明提供了一种低温共烧陶瓷材料,由以下组分组成:
79wt%~95wt%的陶瓷,5wt%~21wt%的助烧玻璃;
所述陶瓷由BaO、ZnO与TiO2组成;
所述助烧玻璃为Zn-B玻璃、Zn-B-Si玻璃、Ba-B-Si玻璃、Bi-B-Si玻璃、Ba-Zn-B-Si玻璃与Bi-Zn-B-Si玻璃中的一种或多种。
优选的,所述BaO、ZnO与TiO2的摩尔比按照式(I)中各元素的摩尔比确定;
BaZnxTiyO1+x+2y    (I);
其中,0.15≤x≤0.6,2.5≤y≤4.5。
优选的,所述Zn-B玻璃由20wt%~70wt%的ZnO与30wt%~80wt%的B2O3组成。
优选的,所述Zn-B-Si玻璃由10wt%~60wt%的ZnO、20wt%~75wt%的B2O3与10wt%~40wt%的SiO2组成。
优选的,所述Ba-B-Si玻璃由20wt%~50wt%的BaO、40wt%~65wt%的B2O3与10wt%~20wt%的SiO2组成。
优选的,所述Bi-B-Si玻璃由30wt%~70wt%的Bi2O3、20wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成。
优选的,所述Ba-Zn-B-Si玻璃由10wt%~45wt%的Ba2O3、10wt%~50wt%的ZnO、10wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成。
优选的,所述Bi-Zn-B-Si玻璃由10wt%~40wt%的Bi2O3、10wt%~50wt%的ZnO、10wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成。
本发明还提供了一种低温共烧陶瓷材料的制备方法,包括以下步骤:
将BaO、ZnO与TiO2混合,球磨后预烧,得到陶瓷烧块,将所述陶瓷烧块粉碎,得到陶瓷粉;
将ZnO与B2O3混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Zn-B助烧玻璃粉;
将ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Zn-B-Si助烧玻璃粉;
将BaO、Bi2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Ba-B-Si助烧玻璃粉;
将Bi2O3、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Bi-B-Si助烧玻璃粉;
将Ba2O3、ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Ba-Zn-B-Si助烧玻璃粉;
将Bi2O3、ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Bi-Zn-B-Si助烧玻璃粉;
将所述Zn-B助烧玻璃、Zn-B-Si助烧玻璃、Ba-B-Si助烧玻璃、Bi-B-Si助烧玻璃、Ba-Zn-B-Si助烧玻璃与Bi-Zn-B-Si助烧玻璃中的一种或多种与所述陶瓷粉混合,得到低温共烧陶瓷材料。
优选的,在制备陶瓷粉的步骤中,所述球磨的时间为6~24h,预烧的温度为950~1200℃,时间为2~6h。
本发明提供了一种低温共烧陶瓷材料,由以下组分组成:79wt%~95wt%的陶瓷,5wt%~21wt%的助烧玻璃;所述陶瓷由BaO、ZnO与TiO2组成;所述助烧玻璃为Zn-B玻璃、Zn-B-Si玻璃、Ba-B-Si玻璃、Bi-B-Si玻璃、Ba-Zn-B-Si玻璃与Bi-Zn-B-Si玻璃中的一种或多种。与现有陶瓷材料相比,本发明以BaO、ZnO与TiO2组分为陶瓷原料,BaO与TiO2形成的陶瓷具有优异的微波介电性能,但烧结温度较高,ZnO的加入可明显降低陶瓷的烧结温度.,得到介电性能较好且烧结温度较低的陶瓷;助烧玻璃具有较低的烧结温度,且助烧玻璃中的部分原子与陶瓷基体中的部分原子相同或相近;同时通过控制陶瓷与助烧玻璃的含量,从而得到具有中介电常数的低温共烧陶瓷材料。
实验结果表明,本发明制备的低温共烧陶瓷粉可以在850~930℃实现致密成瓷,介电常数为30~45,损耗正切小于0.008,谐振频率温度系数小于±50ppm/℃,能够实现与Cu、Ag电极的共烧。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种低温共烧陶瓷材料,由以下组分组成:
79wt%~95wt%的陶瓷,5wt%~21wt%的助烧玻璃;
所述陶瓷由BaO、ZnO与TiO2组成;
所述助烧玻璃为Zn-B玻璃、Zn-B-Si玻璃、Ba-B-Si玻璃、Bi-B-Si玻璃、Ba-Zn-B-Si玻璃与Bi-Zn-B-Si玻璃中的一种或多种。
本发明的低温共烧陶瓷材料主要是与银电极共烧,所述银电极的共烧温度一般在850℃左右,因此低温共烧陶瓷材料的烧结温度则为850℃~950℃。本领域技术人员熟知的:绝大多数具有中介电常数的陶瓷烧结温度较高;而玻璃相的介电性能较差,主要表现在介电损耗偏大,因此本申请通过陶瓷与助烧玻璃的选择和含量调整,达到LTCC技术对材料的要求。
按照本发明,所述陶瓷的含量为79wt%~95wt%,优选为85wt%~95wt%,更优选为85wt%~93wt%。若陶瓷的含量过高,则难以满足烧结温度的要求,若陶瓷温度过低则会使陶瓷材料的介电常数急剧降低。所述助烧玻璃的含量为5wt%~21wt%,优选为7~20wt%,更优选为7wt%~18wt%,更优选为7wt%~15wt%,最优选为10wt%~15wt%。若所述助烧玻璃的含量过高,则严重恶化陶瓷的介电性能,若助烧玻璃的含量过低,则造成烧结温度达不到要求。
本发明中所述陶瓷是由BaO、ZnO与TiO2组成,BaO与TiO2形成的陶瓷具有优异的微波介电性能,但烧结温度较高,ZnO的加入可明显降低陶瓷的烧结温度,并且其和TiO2形成的陶瓷材料也具有较好的微波介电特性,三者相互掺杂,得到介电性能较好且烧结温度较低的陶瓷。所述陶瓷是低温共烧陶瓷材料的基础相。作为优选方案,所述BaO、ZnO与TiO2的摩尔比按照表达式BaZnxTiyO1+x+2y各元素的摩尔比确定。
所述助烧玻璃为Zn-B玻璃、Zn-B-Si玻璃、Ba-B-Si玻璃、Bi-B-Si玻璃、Ba-Zn-B-Si玻璃与Bi-Zn-B-Si玻璃中的一种或多种。
其中,所述Zn-B玻璃为本领域技术人员熟知的Zn-B玻璃即可,并无特殊的限制,本发明中优选由20wt%~70wt%的ZnO与30wt%~80wt%的B2O3组成。所述ZnO优选为30wt%~60wt%,更优选为45wt%~55wt%;所述B2O3优选为40wt%~70wt%,更优选为45wt%~55wt%。
所述Zn-B-Si玻璃优选由10wt%~60wt%的ZnO、20wt%~75wt%的B2O3与10wt%~40wt%的SiO2组成。所述ZnO优选为15wt%~50wt%,更优选为25wt%~40wt%;所述B2O3优选为30wt%~65wt%,更优选为50wt%~60wt%;所述SiO2优选为10wt%~30wt%,更优选为10wt%~20wt%。
所述Ba-B-Si玻璃优选由20wt%~50wt%的BaO、40wt%~65wt%的B2O3与10wt%~20wt%的SiO2组成。其中,所述BaO优选为30wt%~50wt%,更优选为40wt%~50wt%;所述B2O3优选为40wt%~60wt%,更优选为40wt%~65wt%;所述SiO2优选为10wt%~15wt%。
所述Bi-B-Si玻璃优选由30wt%~70wt%的Bi2O3、20wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成;所述Bi2O3的含量优选为35wt%~60wt%,更优选为40wt%~50wt%;所述B2O3优选为30wt%~45wt%,更优选为30wt%~40wt%;所述SiO2优选为15wt%~25wt%,更优选为20wt%~25wt%。
所述Ba-Zn-B-Si玻璃优选由10wt%~45wt%的Ba2O3、10wt%~50wt%的ZnO、10wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成;所述Ba2O3优选为20wt%~40wt%,更优选为25wt%~35wt%;所述ZnO优选为20wt%~40wt%,更优选为25wt%~35wt%;所述B2O3优选为20wt%~40wt%,更优选为20wt%~30wt%;所述SiO2优选为10wt%~20wt%,更优选为15wt%~20wt%。
所述Bi-Zn-B-Si玻璃优选由10wt%~40wt%的Bi2O3、10wt%~50wt%的ZnO、10wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成;所述Bi2O3优选为20wt%~40wt%,更优选为30wt%~40wt%;所述ZnO优选为20wt%~40wt%;更优选为30wt%~40wt%;所述B2O3优选为15wt%~40wt%,更优选为18wt%~30wt%;所述SiO2优选为10wt%~20wt%,更优选为10wt%~15wt%。
本发明选择Zn-B玻璃、Zn-B-Si玻璃、Ba-B-Si玻璃、Bi-B-Si玻璃、Ba-Zn-B-Si玻璃与Bi-Zn-B-Si玻璃中的一种或多种为助烧玻璃,一方面是由于上述玻璃具有较低的烧结温度,另一方面由于上述助烧玻璃中的部分原子与陶瓷基体中的部分原子相同或相近,则助烧玻璃烧结后的晶体结构与陶瓷基体具有一定的相似性、相容性,最重要的是,上述助烧玻璃对陶瓷基体具有良好的降温效果。
本发明提供了一种低温共烧陶瓷材料,由以下组分组成:79wt%~95wt%的陶瓷,5wt%~21wt%的助烧玻璃;所述陶瓷由BaO、ZnO与TiO2组成;所述助烧玻璃为Zn-B玻璃、Zn-B-Si玻璃、Ba-B-Si玻璃、Bi-B-Si玻璃、Ba-Zn-B-Si玻璃与Bi-Zn-B-Si玻璃中的一种或多种。BaO与TiO2形成的陶瓷具有优异的微波介电性能,但烧结温度较高,ZnO的加入可明显降低陶瓷的烧结温度,并且其和TiO2形成的陶瓷材料也具有较好的微波介电特性,三者相互掺杂,得到介电性能较好且烧结温度较低的陶瓷,并且助烧玻璃具有较低的烧结温度,且助烧玻璃中的部分原子与陶瓷基体中的部分原子相同或相近;同时通过控制陶瓷与助烧玻璃的含量,从而使得最终得到的低温共烧他陶瓷材料具有中介电常数。
本发明还提供了上述低温共烧陶瓷材料的制备方法,包括以下步骤:
将BaO、ZnO与TiO2混合,球磨后预烧,得到陶瓷烧块,将所述陶瓷烧块粉碎,得到陶瓷粉;
将ZnO与B2O3混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Zn-B助烧玻璃粉;
将ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Zn-B-Si助烧玻璃粉;
将BaO、Bi2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Ba-B-Si助烧玻璃粉;
将Bi2O3、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Bi-B-Si助烧玻璃粉;
将Ba2O3、ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Ba-Zn-B-Si助烧玻璃粉;
将Bi2O3、ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Bi-Zn-B-Si助烧玻璃粉;
将所述Zn-B助烧玻璃、Zn-B-Si助烧玻璃、Ba-B-Si助烧玻璃、Bi-B-Si助烧玻璃、Ba-Zn-B-Si助烧玻璃与Bi-Zn-B-Si助烧玻璃中的一种或多种与所述陶瓷粉混合,得到低温共烧陶瓷材料。
按照本发明,在制备低温共烧陶瓷材料的过程中,首先制备了陶瓷粉与助烧玻璃粉,然后将陶瓷粉与助烧玻璃粉混合,即得到低温共烧陶瓷粉。
本发明中上述陶瓷粉与助烧玻璃粉的制备顺序本发明没有特别的限制,可以先制备陶瓷粉也可以先制备助烧玻璃粉。在制备陶瓷粉的过程中,按照下述方法进行制备:
将BaO、ZnO与TiO2混合,球磨后预烧,得到陶瓷烧块,将所述陶瓷烧块粉碎,得到陶瓷粉。
在制备陶瓷粉的过程中,所述BaO、ZnO与TiO2的摩尔比优选按照式(I)中各元素的摩尔比确定;
BaZnxTiyO1+x+2y    (I);
其中,0.15≤x≤0.6,2.5≤y≤4.5。
所述球磨的时间优选为6~24h,更优选为10~20h,在球磨后,将球磨得到的混合粉末优选进行烘干,以去除球磨过程中的油性溶剂。然后将烘干后的粉末进行预烧,得到陶瓷烧块。所述预烧的温度优选为950~1200℃,更优选为1100~1200℃;所述预烧的时间优选为2~6h,更优选为4~6h。最后将所述陶瓷烧块粉碎,即得到陶瓷粉。所述陶瓷粉的粒径优选为0.5~3μm,更优选为0.5~2μm。
按照本发明,所述Zn-B助烧玻璃粉、Zn-B-Si助烧玻璃粉、Ba-B-Si助烧玻璃粉、Bi-B-Si助烧玻璃粉、Ba-Zn-B-Si助烧玻璃粉与Bi-Zn-B-Si助烧玻璃粉的制备方法相同,只是原料不同;其中所述Zn-B助烧玻璃粉的原料为ZnO与B2O3;所述Zn-B-Si助烧玻璃粉的原料为ZnO、B2O3与SiO2;所述Ba-B-Si助烧玻璃粉的原料为BaO、Bi2O3与SiO2;所述Bi-B-Si助烧玻璃粉的原料为Bi2O3、B2O3与SiO2;所述Ba-Zn-B-Si的原料为Ba2O3、ZnO、B2O3与SiO2;所述Bi-Zn-B-Si助烧玻璃粉的原料为Bi2O3、ZnO、B2O3与SiO2。以Zn-B助烧玻璃粉的制备方法为例,其制备过程为:
将ZnO与B2O3混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Zn-B助烧玻璃粉。
在制备Zn-B助烧玻璃粉的过程中,所述球磨的时间优选为6~24h,更优选为10~15h。将球磨后的混合粉末烘干后进行预烧,得到烧块,所述预烧的温度优选为450~650℃,更优选为500~650℃;所述预烧的时间优选为1~6h,更优选为3~5h。然后将所述烧块熔化后得到玻璃液滴;所述熔化的温度优选为1450℃~1550℃。最后将所述玻璃液滴冷淬、粉碎后即得到Zn-B助烧玻璃粉。所述助烧玻璃粉的粒径优选为0.5~3μm,更优选为0.5~2μm。
在分别制备陶瓷粉与助烧玻璃粉后,则Zn-B助烧玻璃、Zn-B-Si助烧玻璃、Ba-B-Si助烧玻璃、Bi-B-Si助烧玻璃、Ba-Zn-B-Si助烧玻璃与Bi-Zn-B-Si助烧玻璃中的一种或多种与所述陶瓷粉混合,得到低温共烧陶瓷材料。
本发明提供了一种低温共烧陶瓷材料的制备方法。在制备低温共烧陶瓷材料的过程中,分别制备了陶瓷粉与助烧玻璃粉,然后将所述陶瓷粉与助烧玻璃粉混合,即得到低温共烧陶瓷材料。实验结果表明,本发明制备的低温共烧陶瓷粉可以在850~930℃实现致密成瓷,介电常数为30~45,损耗正切小于0.008,谐振频率温度系数小于±50ppm/℃,能够实现与Cu、Ag电极的共烧。
为了进一步理解本发明,下面结合实施例对本发明提供的低温共烧陶瓷材料进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
将1mol的BaO粉、0.25mol的ZnO粉与2.75mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷快破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉;
将50g的ZnO粉与50g的B2O3粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的玻璃粉;
将87wt%的所述陶瓷粉与13wt%的所述玻璃粉装入混料机,混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例2
将1mol的BaO粉、0.25mol的ZnO粉与2.75mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷快破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉;
将40g的Bi2O3粉、35g的B2O3粉与25g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的玻璃粉。
将89wt%的所述陶瓷粉与11wt%的所述玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例3
将1mol的BaO粉、0.25mol的ZnO粉与4mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷块破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉;
将30g的BaO粉、30g的ZnO粉、25g的B2O3粉与15g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的玻璃粉。
将91wt%的所述陶瓷粉与9wt%的所述玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例4
将1mol的BaO粉、0.5mol的ZnO粉与4mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷块破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉。
将45g的BaO粉、45g的B2O3粉与10g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的玻璃粉。
将88wt%的所述陶瓷粉与12wt%的所述玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例5
将1mol的BaO粉、0.5mol的ZnO粉与4.3mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷块破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉。
将30g的ZnO粉、55g的B2O3粉与15g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的玻璃粉。
将93wt%的所述陶瓷粉与7wt%的所述玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例6
将1mol的BaO粉、0.5mol的ZnO粉与4.3mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷快破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉;
将50g的ZnO粉与50g的B2O3粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Zn-B玻璃粉
将40g的Bi2O3粉、35g的B2O3粉与25g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Bi-B-Si玻璃粉。
将89wt%的所述陶瓷粉、9wt%的所述Zn-B玻璃粉与2wt%的所述Bi-B-Si玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例7
将1mol的BaO粉、0.5mol的ZnO粉与4.3mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷快破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉;
将40g的Bi2O3粉、35g的B2O3粉与25g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Bi-B-Si玻璃粉;
将30g的BaO粉、30g的ZnO粉、25g的B2O3粉与15g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Ba-Zn-B-Si玻璃粉。
将88wt%的所述陶瓷粉、9wt%的Bi-B-Si玻璃粉与2wt%的所述Ba-Zn-B-Si玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例8
将1mol的BaO粉、0.25mol的ZnO粉与2.75mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷快破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉;
将50g的ZnO粉与50g的B2O3粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Zn-B玻璃粉;
将40g的Bi2O3粉、35g的B2O3粉与25g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Bi-B-Si玻璃粉;
将35g的Bi2O3粉、35g的ZnO粉、20g的B2O3粉与10g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Bi-Zn-B-Si玻璃粉;
将85wt%的所述陶瓷粉、2wt%的所述Zn-B玻璃粉、8wt%的所述Bi-B-Si玻璃粉与5wt%的所述Bi-Zn-B-Si玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
实施例9
将1mol的BaO粉、0.5mol的ZnO粉与4mol的TiO2粉混合,再加入占上述粉末总质量80%的去离子水,混合均匀后进行行星球磨,球磨时间为6h,得到混合粉末;将所述混合粉末烘干后在1100℃预烧6h,得到陶瓷块。将所述陶瓷块破碎,行星球磨球磨介质为异丙醇,得到0.5~3μm的陶瓷粉。
将40g的Bi2O3粉、35g的B2O3粉与25g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Bi-B-Si玻璃粉;
将30g的BaO粉、30g的ZnO粉、25g的B2O3粉与15g的SiO2粉混合,加入异丙醇及氧化锆球,湿法球磨12h;球磨后的玻璃原料出料后于120℃烘干,于650℃预烧4h后成为瓷料;将所述瓷料加入温度为1500℃的坩埚中,快速熔化成玻璃液滴到冷辊上。经冷淬后得到粒径为15~500μm的非晶玻璃瓷料。将所述非晶玻璃瓷料经过流化床气流磨粉碎,得到分散性良好,粒径为0.5~2μm的Ba-Zn-B-Si玻璃粉。
将86wt%的所述陶瓷粉、11wt%的所述Bi-B-Si玻璃粉与3wt%的所述Ba-Zn-B-Si玻璃粉装入混料机中混合2h后得到低温共烧陶瓷粉。
将本实施例制备的低温共烧陶瓷粉进行性能检测,检测结果如表1所示,表1为实施例1~9制备的低温共烧陶瓷材料的性能数据表。
表1实施例1~9制备的低温共烧陶瓷材料的性能数据表
Figure BDA0000437132420000151
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种低温共烧陶瓷材料,由以下组分组成:
79wt%~95wt%的陶瓷,5wt%~21wt%的助烧玻璃;
所述陶瓷由BaO、ZnO与TiO2组成;
所述助烧玻璃为Zn-B玻璃、Zn-B-Si玻璃、Ba-B-Si玻璃、Bi-B-Si玻璃、Ba-Zn-B-Si玻璃与Bi-Zn-B-Si玻璃中的一种或多种。
2.根据权利要求1所述的低温共烧陶瓷材料,其特征在于,所述BaO、ZnO与TiO2的摩尔比按照式(I)中各元素的摩尔比确定;
BaZnxTiyO1+x+2y    (I);
其中,0.15≤x≤0.6,2.5≤y≤4.5。
3.根据权利要求1所述的低温共烧陶瓷材料,其特征在于,所述Zn-B玻璃由20wt%~70wt%的ZnO与30wt%~80wt%的B2O3组成。
4.根据权利要求1所述的低温共烧陶瓷材料,其特征在于,所述Zn-B-Si玻璃由10wt%~60wt%的ZnO、20wt%~75wt%的B2O3与10wt%~40wt%的SiO2组成。
5.根据权利要求1所述的低温共烧陶瓷材料,其特征在于,所述Ba-B-Si玻璃由20wt%~50wt%的BaO、40wt%~65wt%的B2O3与10wt%~20wt%的SiO2组成。
6.根据权利要求1所述的低温共烧陶瓷材料,其特征在于,所述Bi-B-Si玻璃由30wt%~70wt%的Bi2O3、20wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成。
7.根据权利要求1所述的低温共烧陶瓷材料,其特征在于,所述Ba-Zn-B-Si玻璃由10wt%~45wt%的Ba2O3、10wt%~50wt%的ZnO、10wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成。
8.根据权利要求1所述的低温共烧陶瓷材料,其特征在于,所述Bi-Zn-B-Si玻璃由10wt%~40wt%的Bi2O3、10wt%~50wt%的ZnO、10wt%~45wt%的B2O3与10wt%~25wt%的SiO2组成。
9.一种低温共烧陶瓷材料的制备方法,包括以下步骤:
将BaO、ZnO与TiO2混合,球磨后预烧,得到陶瓷烧块,将所述陶瓷烧块粉碎,得到陶瓷粉;
将ZnO与B2O3混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Zn-B助烧玻璃粉;
将ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Zn-B-Si助烧玻璃粉;
将BaO、Bi2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Ba-B-Si助烧玻璃粉;
将Bi2O3、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Bi-B-Si助烧玻璃粉;
将Ba2O3、ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Ba-Zn-B-Si助烧玻璃粉;
将Bi2O3、ZnO、B2O3与SiO2混合,球磨后预烧,得到烧块,将所述烧块熔化后得到玻璃液滴,将所述玻璃液滴冷淬后粉碎,得到Bi-Zn-B-Si助烧玻璃粉;
将所述Zn-B助烧玻璃、Zn-B-Si助烧玻璃、Ba-B-Si助烧玻璃、Bi-B-Si助烧玻璃、Ba-Zn-B-Si助烧玻璃与Bi-Zn-B-Si助烧玻璃中的一种或多种与所述陶瓷粉混合,得到低温共烧陶瓷材料。
10.根据权利要求9所述的制备方法,其特征在于,在制备陶瓷粉的步骤中,所述球磨的时间为6~24h,预烧的温度为950~1200℃,时间为2~6h。
CN201310681146.2A 2013-12-13 2013-12-13 一种低温共烧陶瓷材料及其制备方法 Active CN103693966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310681146.2A CN103693966B (zh) 2013-12-13 2013-12-13 一种低温共烧陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310681146.2A CN103693966B (zh) 2013-12-13 2013-12-13 一种低温共烧陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103693966A true CN103693966A (zh) 2014-04-02
CN103693966B CN103693966B (zh) 2016-02-17

Family

ID=50355661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310681146.2A Active CN103693966B (zh) 2013-12-13 2013-12-13 一种低温共烧陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103693966B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725036A (zh) * 2015-02-10 2015-06-24 景德镇陶瓷学院 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法
CN106187184A (zh) * 2016-07-22 2016-12-07 广东风华高新科技股份有限公司 热敏电阻生料及其制备方法和应用
CN107141792A (zh) * 2017-05-16 2017-09-08 盐城申源塑胶有限公司 一种包覆型耐高温阻燃材料及其制备方法
CN107176793A (zh) * 2016-03-11 2017-09-19 上海卡翱投资管理合伙企业(有限合伙) Ltcc陶瓷材料及其制备方法
CN109796202A (zh) * 2019-03-25 2019-05-24 电子科技大学 一种高性能低温烧结叠层片式压敏电阻材料
CN110143812A (zh) * 2019-06-09 2019-08-20 杭州电子科技大学 一种低介电常数低温共烧陶瓷材料及制备方法
CN110950658A (zh) * 2018-09-27 2020-04-03 湖南嘉业达电子有限公司 一种可低温烧结的功率型压电陶瓷制备方法
CN112028491A (zh) * 2020-08-11 2020-12-04 安徽蓝讯新材料科技有限公司 一种基于高温共烧陶瓷的线阵图像传感器封装方法
CN113045314A (zh) * 2019-12-27 2021-06-29 奇力新电子股份有限公司 具薄型化适用高频组件的陶瓷粉末

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613200A (zh) * 2009-07-21 2009-12-30 西安交通大学 一种低温烧结微波介质陶瓷材料及其制备方法
CN101671165A (zh) * 2009-08-28 2010-03-17 广东风华高新科技股份有限公司 一种低温烧结陶瓷介质材料及所得mlcc电容器的制备方法
CN101962265A (zh) * 2009-07-22 2011-02-02 比亚迪股份有限公司 一种玻璃组合物及其制备方法以及这种玻璃组合物的应用
CN102838347A (zh) * 2012-09-06 2012-12-26 北京元六鸿远电子技术有限公司 微波介质陶瓷粉末及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101613200A (zh) * 2009-07-21 2009-12-30 西安交通大学 一种低温烧结微波介质陶瓷材料及其制备方法
CN101962265A (zh) * 2009-07-22 2011-02-02 比亚迪股份有限公司 一种玻璃组合物及其制备方法以及这种玻璃组合物的应用
CN101671165A (zh) * 2009-08-28 2010-03-17 广东风华高新科技股份有限公司 一种低温烧结陶瓷介质材料及所得mlcc电容器的制备方法
CN102838347A (zh) * 2012-09-06 2012-12-26 北京元六鸿远电子技术有限公司 微波介质陶瓷粉末及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104725036A (zh) * 2015-02-10 2015-06-24 景德镇陶瓷学院 一种高温低损耗钛酸锶钡基储能陶瓷及其制备方法
CN107176793A (zh) * 2016-03-11 2017-09-19 上海卡翱投资管理合伙企业(有限合伙) Ltcc陶瓷材料及其制备方法
CN107176793B (zh) * 2016-03-11 2020-02-14 上海卡翱投资管理合伙企业(有限合伙) Ltcc陶瓷材料及其制备方法
CN106187184A (zh) * 2016-07-22 2016-12-07 广东风华高新科技股份有限公司 热敏电阻生料及其制备方法和应用
CN106187184B (zh) * 2016-07-22 2019-06-07 广东风华高新科技股份有限公司 热敏电阻生料及其制备方法和应用
CN107141792A (zh) * 2017-05-16 2017-09-08 盐城申源塑胶有限公司 一种包覆型耐高温阻燃材料及其制备方法
CN110950658A (zh) * 2018-09-27 2020-04-03 湖南嘉业达电子有限公司 一种可低温烧结的功率型压电陶瓷制备方法
CN109796202A (zh) * 2019-03-25 2019-05-24 电子科技大学 一种高性能低温烧结叠层片式压敏电阻材料
CN110143812A (zh) * 2019-06-09 2019-08-20 杭州电子科技大学 一种低介电常数低温共烧陶瓷材料及制备方法
CN113045314A (zh) * 2019-12-27 2021-06-29 奇力新电子股份有限公司 具薄型化适用高频组件的陶瓷粉末
CN112028491A (zh) * 2020-08-11 2020-12-04 安徽蓝讯新材料科技有限公司 一种基于高温共烧陶瓷的线阵图像传感器封装方法

Also Published As

Publication number Publication date
CN103693966B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN103693966B (zh) 一种低温共烧陶瓷材料及其制备方法
CN106187141B (zh) 一种cbs系ltcc材料及其制备方法
CN103467099B (zh) 一种低温共烧陶瓷材料及其制备方法
CN103803956B (zh) 一种具有高频低介电损耗的低温共烧陶瓷材料及其制备方法和应用
CN107602088B (zh) 一种与高温导电银浆高匹配的低温共烧陶瓷材料及其制备方法
CN103482985B (zh) 一种低温共烧陶瓷生带材料及其制备方法和应用
CN102875159B (zh) 低温共烧介质陶瓷制备方法及其材料和烧结助剂
CN102875148B (zh) 可低温烧结的微波介电陶瓷LiCa3(Mg1-xZnx) V3O12及制备方法
CN107986774B (zh) 低温烧结高介电常数微波介质陶瓷材料及其制备方法
CN101362647A (zh) 锂基低温烧结微波介质陶瓷材料及其制备
CN102432280B (zh) 一种低温共烧陶瓷基板材料及其制备方法
CN103030394B (zh) V基低温烧结微波介质陶瓷材料及其制备方法
CN107176834B (zh) 中高介电常数的ltcc陶瓷材料及其制备方法
CN110171963A (zh) 一种低温共烧陶瓷微波与毫米波介电粉末
CN104230329A (zh) 一种低温烧结微波陶瓷材料及其制备方法
CN104402419A (zh) 一种具有较低烧结温度的低介电常数微波介质陶瓷及其制备方法
CN108218406A (zh) 低介电常数低损耗的低温共烧陶瓷材料及其制备方法
CN103664163B (zh) 一种高介晶界层陶瓷电容器介质及其制备方法
CN106045498A (zh) 一种bme瓷介电容器陶瓷材料及其制备方法
CN107176793B (zh) Ltcc陶瓷材料及其制备方法
CN103601494A (zh) 一种钨酸盐低温共烧陶瓷材料及其制备方法
CN103420670A (zh) 一种低温烧结微波陶瓷材料及其制备方法
CN104387057B (zh) 一种温度稳定型钛基尖晶石微波介质陶瓷及其低温制备方法
JP2000272960A (ja) マイクロ波用誘電体磁器組成物およびその製造方法ならびにマイクロ波用誘電体磁器組成物を用いたマイクロ波用電子部品
CN103524127B (zh) 一种高频晶界层陶瓷电容器介质及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161021

Address after: 401220 Changshou District of Chongqing economic and Technological Development Zone United Road No. 22

Patentee after: Chongqing Yuntianhua hanen New Material Development Co Ltd

Patentee after: Yutianhua Co., Ltd., Yunnan

Address before: 650228 Dianchi Road, Yunnan, China, No. 1417, No.

Patentee before: Yutianhua Co., Ltd., Yunnan