CN103683050B - 一种室内变压器/电抗器隔音降温装置 - Google Patents

一种室内变压器/电抗器隔音降温装置 Download PDF

Info

Publication number
CN103683050B
CN103683050B CN201310647839.XA CN201310647839A CN103683050B CN 103683050 B CN103683050 B CN 103683050B CN 201310647839 A CN201310647839 A CN 201310647839A CN 103683050 B CN103683050 B CN 103683050B
Authority
CN
China
Prior art keywords
heat
indoor
gas
transformer
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310647839.XA
Other languages
English (en)
Other versions
CN103683050A (zh
Inventor
倪裕康
凌驾政
王金云
李宗耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Shanghai Electric Power Co Ltd
Original Assignee
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Shanghai Electric Power Co Ltd filed Critical State Grid Shanghai Electric Power Co Ltd
Priority to CN201310647839.XA priority Critical patent/CN103683050B/zh
Publication of CN103683050A publication Critical patent/CN103683050A/zh
Application granted granted Critical
Publication of CN103683050B publication Critical patent/CN103683050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种室内变压器/电抗器隔音降温装置,属变、配电领域。其在变压器/电抗器室的墙壁上设置矩形框状壳体;在矩形框状壳体中设置气—气热交换器,其气—气热交换器为带有散热翅片的热管束构成的热交换器;在矩形框状壳体室内侧和室外侧分别设置循环通风换热通道,当室内高温气体和室外低温气体分别同时在各自的通道中流过时,热管束热交换器将室内高温气体的热量传给室外的低温气体,藉此实现在隔音/隔尘模式下变压器/电抗器室的隔音降温。其采用内循环吸热技术在不进行内外换气的状况下将变压器/电抗器室内的热量传递至室外环境,能保持室内的清洁/隔音,可解决一般变配电站变压器/电抗器/电容器室内运行中温度过高,噪音扰民及尘埃问题。

Description

一种室内变压器/电抗器隔音降温装置
技术领域
本发明属于变、配电领域,尤其涉及一种用于供、配电用的配电盘、变电站或开关装置的冷却降温装置。
背景技术
随着城市建设的飞速发展,城市用电量呈现快速增加的态势,城市中心用电负荷密度增大,建在市区内或居民小区中的变电站越来越多,变压器或电抗器作为变电站中的重要设备,也越来越多地被安装、设置在市区内或居民小区中。
现有变电站建筑物中变压器或电抗器的发热量,主要是通过其自带的油冷却***传至室外环境进行冷却;同时,这些设备表面发出的热量均散发至变电站的配电室或变压器的室内环境中。
在现有变电站的常规设计中,通常是通过安装排风机和进风百叶窗的方式对变电站建筑物的室内环境进行通风、散热,在日常运行中仍然有很大的噪声传出户外,经常引起周围居民的投诉。
而且,排风机在运行时会从周边环境吸入大量含有尘埃的补充空气(业内称为“补风”),致使变压器、电抗器室内富集了很多尘埃,当尘埃富集到一定程度后,会导致带电运行设备的“安全绝缘距离”降低,在实际设备运行过程中,经常由此引起设备局部“爬电”、“窜弧”等放电/击穿故障的发生。
为了减少噪音扰民,目前很多变压器和电抗器室被迫采用封闭式结构设计,取消了进风百叶窗或排风机;在高温和高负荷季节,变压器和电抗器室内温度可达60℃以上,尽管现在的变配电设备均能在80℃以上的温度下运行,但是变压器/电抗器室内的辅助装置和测量装置由于长期在高温下运行,造成工作不稳定、误告警故障频发、设备运行寿命缩短、设备老化程度加快的现象。
授权公告日为2013年8月14日,授权公告号为CN203129708U的中国实用新型专利,公开了“一种用于露天变电站的声屏障”,其所述的声屏障由多根H型的型钢立柱和位于各型钢立柱之间的板状的吸声隔声屏体,组成轻钢结构的吸声隔声屏障;所述H型的型钢立柱固定在地面基础上;所述的吸声隔声屏体竖向***H型型钢立柱两侧的凹槽中;经紧固件与H型型钢立柱固接为一体;所述H型型钢立柱和吸声隔声屏体所构成的轻钢结构吸声隔声屏障,设置在露天变电站或露天变电站主变压器的周围,或者,设置在露天变电站与居民住宅之间。其通过在变电站与居民住宅之间设置吸声隔声屏体的方式来阻隔变电站运行噪音的直线传播,只适用于对变电站周围环境的消声降噪,不能解决变电站建筑物内的降温问题,也无法避免“补风”含尘的问题以及由此引起的设备局部“爬电”、“窜弧”等故障的发生。
发明内容
本发明所要解决的技术问题是提供一种室内变压器/电抗器隔音降温装置,其采用内循环吸热技术,在不进行室内、外直接换气的状况下,将变压器/电抗器室内的热量传递至室外环境,使室内温度趋于户外环境温度;既能使设备散热,又能保持室内的清洁和隔音;也将彻底解决一般变配电站变压器/电抗器/电容器室内运行中温度过高,噪音扰民及尘埃富集问题以及由此引起的各种设备故障。
本发明的技术方案是:提供一种室内变压器/电抗器隔音降温装置,其特征是:在所述变压器/电抗器室的墙壁上,设置至少一个矩形框状壳体;在矩形框状壳体中,设置气—气热交换器,用于吸收变压器/电抗器室内的空气热源;所述的气—气热交换器为带有散热翅片的热管束构成的热交换器;所述的热交换器采用隔音/隔尘的传热模式,将室内的空气热源传导排放至室外;其中,所述的矩形框状壳体贯穿所述变压器/电抗器室与室外相邻的墙壁设置;在所述的矩形框状壳体中设置一个隔热挡板,用于对室内、外环境进行隔离,起到室内、外空间之间的隔音/隔尘作用,并对所述的热管束进行支撑/固定;在所述的隔热挡板上,贯穿设置有由多个热管组成的热管束,作为热传导部件;在所述矩形框状壳体的室内侧和室外侧,分别设置循环通风换热通道,形成室内高温气体循环通道和室外低温气体循环通道;当所述的室内高温气体和室外低温气体分别同时在各自的通道中流过时,所述的热管束热交换器将室内高温气体的热量传给室外的低温气体,从而实现两种气体的热交换,藉此实现在隔音/隔尘模式下变压器/电抗器室的隔音降温。
具体的,其所述的隔热挡板与所述变压器/电抗器室与室外相邻的墙壁同轴线设置。
在位于所述隔热挡板两侧的热管两端,设置有多组散热翅片,分别构成热管束换热装置的热端和冷端,其所述热管束换热装置的热端,位于矩形框状壳体的室内侧,所述热管束换热装置的冷端,位于矩形框状壳体的室外侧,所述热管束换热装置的热端和冷端之间,通过所述的隔热挡板进行隔音和隔尘。
进一步的,所述的室内高温气体循环通道和室外低温气体循环通道为强制风冷却换热通道。
其所述的室内高温气体循环通道按照“上进下出”的气体流向设置;所述的室外低温气体循环通道按照“下进上出”的气体流向设置。
更进一步的,其所述变压器/电抗器室室内的空气热源按照下述表达式确定:
Q=λ×(ti-to)×(X×h+A);
其中Q为室内热源负荷,λ为围护结构散热率,ti为室内温度,to为室外温度,X为建筑围墙边长,h为建筑高度,A为建筑面积。
其所述气—气热交换器的换热面积按照下述表达式进行确定:
换热面积=室内热源负荷÷换热系数经验值÷换热平均温差
其中,换热系数经验值取20W/㎡.k;换热平均温差=室外温度-室内要求温度。
其所述气—气热交换器中单根热管的相关参数按照下述参数确定:
单根热管的直径为12.5mm;
单根热管的总长度=H1×2+H2,其中,H1为单根热管在隔热板两侧的单侧有效长度,H2为隔热挡板的厚度;
各单根热管之间的单排间距为50mm;
管排数为6排。
其所述气—气热交换器中散热翅片的相关参数按照下述参数确定:
单片散热翅片的换热面积a=0.0342㎡/片;各个单片散热翅片之间的片间距b为2.5mm;
总散热片数=气—气热交换器的换热面积÷a,其a为单片散热翅片的换热面积;
单列管排片层数=H1÷b,其中H1为单根热管在隔热板两侧的单侧有效长度,b为单片散热翅片之间的片间距。
其所述室内高温气体循环通道和室外低温气体循环通道的风机运行点为32Nm3/min、压降为240Pa。
与现有技术比较,本发明的优点是:
1.在不进行室内、外直接“换气”的状况下,采用空气热交换装置(气—气热交换器)来吸收变压器/电抗器室内的空气热源,利用热传导部件将热源排放至户外,既实现了隔墙传热,又有利于节能/降噪;
2.采用隔热挡板结构,避免了尘埃进入室内,保持室内的清洁,可大大改善变压器、电抗器的运行环境,提高设备的使用寿命;
3.可彻底解决一般变配电站变压器/电抗器/电容器室内运行中温度过高,噪音扰民及尘埃富集问题以及由此引起的各种设备故障。
附图说明
图1是本发明热交换器的结构示意图;
图2是本发明热交换器的工作原理示意图;
图3是本发明热交换器换热原理示意图;
图4是散热翅片结构示意图。
图中1为矩形框状壳体,2为隔热挡板,3为热管,4为散热翅片,5为室内高温气体循环通道,6为室外低温气体循环通道,7为室内热空气,8为室内冷空气,9为室外热空气,10为室外冷空气。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
图1中,本发明的技术方案提供了一种室内变压器/电抗器隔音降温装置,其在所述变压器/电抗器室的墙壁上,设置至少一个矩形框状壳体1,在矩形框状壳体中,设置气—气热交换器,用于吸收变压器/电抗器室内的空气热源。
其气—气热交换器为带有散热翅片4的一束热管3构成的热交换器。
本技术方案中的热交换器,采用隔音/隔尘的传热模式,将室内的空气热源传导排放至室外。
具体的,所述的矩形框状壳体贯穿所述变压器/电抗器室与室外相邻的墙壁设置。
在所述的矩形框状壳体中,设置一个隔热挡板2,用于对室内、外环境进行隔离,起到室内、外空间之间的隔音/隔尘作用,并对所述的热管束进行支撑/固定。
在隔热挡板上,贯穿设置有由多个热管3组成的热管束,作为热传导部件。
在所述矩形框状壳体的室内侧和室外侧,分别设置循环通风换热通道,形成室内高温气体循环通道5和室外低温气体循环通道6。
当所述的室内高温气体和室外低温气体分别同时在各自的通道中流过时,所述的热管束热交换器将室内高温气体的热量传给室外的低温气体,从而实现两种气体的热交换,藉此实现在隔音/隔尘模式下变压器/电抗器室的隔音降温。
进一步的,所述的隔热挡板与所述变压器/电抗器室与室外相邻的墙壁同轴线设置。
在位于所述隔热挡板两侧的热管两端,设置有多组散热翅片4,分别构成热管束换热装置的热端和冷端,其所述热管束换热装置的热端,位于矩形框状壳体的室内侧,所述热管束换热装置的冷端,位于矩形框状壳体的室外侧,所述热管束换热装置的热端和冷端之间,通过所述的隔热挡板进行隔音和隔尘。
所述的室内高温气体循环通道和室外低温气体循环通道为强制风冷却换热通道,其强制通风的动力源为轴流风机(图中未示出)。
由图可知,其所述的热管,“内低外高”地贯穿设置在隔热挡板上,即热管的蒸发端(位于室内侧)的位置低于其冷凝端(位于室外侧)。
热管与隔热挡板之间的夹角(俗称倾角)α小于90°,设置于同一隔热挡板上的各个热管共用一组散热翅片。
热管倾角α主要有两个作用:(1)热管采用一定倾角后,有利于热管冷凝端中冷凝后的液体工质迅速回到蒸发段,实现高效传热;(2)热管采用一定倾角后,可增大散热片与换热风之间的迎风面积,改善散热性能。
热管传热技术在电子器件(如CPU等各种集成电路芯片或大功率可控硅元件等)冷却领域的应用已相当成熟,自冷和风冷的热管散热器已实现了系列化和商品化。
热管按照内部工质回流方式可分为吸液芯热管和热虹式热管。
吸液芯热管由管壳、吸液芯和端盖组成,热管内部被抽成负压状态,并充入适当的液体,这种液体通常为相变材料,其沸点低,容易挥发。其管壁有吸液芯,其由毛细多孔材料构成。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸汽在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。
热虹式热管与吸液芯热管工作原理相同,唯一不同的地方在于热管内部没有吸液芯或者工质不具备较强的毛细吸力,工质回流主要依靠重力,因此热管通常在垂直放置时才起作用。
热管传热技术充分利用了热传导原理与制冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。
采用热管传热技术,使得散热装置即便采用低转速、低风量电机,同样可以得到满意的散热效果。
图2中,在所述矩形框状壳体的室内侧和室外侧,分别设置有一个上风口和一个下风口,各自与矩形框状壳体和隔热挡板相配合,构成一个循环通风换热通道。位于矩形框状壳体室内侧的第一循环通风换热通道称之为室内高温气体循环通道5,位于矩形框状壳体室外侧的第二循环通风换热通道称之为室外低温气体循环通道6。
所述的室内高温气体循环通道按照“上进下出”的气体流向设置,即采用上风口为进风口,下风口为出风口的循环气体流向;则室内热空气7经过循环通风换热通道5的热交换后,变为室内冷空气8输出。
所述的室外低温气体循环通道按照“下进上出”的气体流向设置,即采用上风口为出风口,下风口为进风口的循环气体流向;则室外冷空气10经过循环通风换热通道6的热交换后,变为室外热空气9输出。
上述气体循环通道气体流向设置的依据是基于两种不同温度的介质之间进行热交换的原理,其与采用循环冷却水换热装置对发热设备进行水冷却的工作原理相类似,在此不再详述。
在进行整个隔音降温装置的设计或参数确定时,按照下列表达式或参数进行:
A、所述变压器/电抗器室室内的空气热源按照下述表达式确定:
Q=λ×(ti-to)×(X×h+A);
其中Q为室内热源负荷,λ为围护结构散热率,ti为室内温度,to为室外温度,X为建筑围墙边长,h为建筑高度,A为建筑面积。
B、所述气—气热交换器的换热面积按照下述表达式进行确定:
换热面积=室内热源负荷÷换热系数经验值÷换热平均温差
其中,换热系数经验值取20W/㎡.k;换热平均温差=室外温度-室内要求温度。
C、所述气—气热交换器中单根热管的相关参数按照下述参数确定:
单根热管的直径为12.5mm;
单根热管的总长度=H1×2+H2,其中,H1为单根热管在隔热板两侧的单侧有效长度,H2为隔热挡板的厚度;
各单根热管之间的单排间距为50mm;
管排数为6排。
D、所述气—气热交换器中散热翅片的相关参数按照下述参数确定:
单片散热翅片的换热面积a=0.0342㎡/片;各个单片散热翅片之间的片间距b为2.5mm;
总散热片数=气—气热交换器的换热面积÷a,其a为单片散热翅片的换热面积;
单列管排片层数=H1÷b,其中H1为单根热管在隔热板两侧的单侧有效长度,b为单片散热翅片之间的片间距。
E、所述室内高温气体循环通道和室外低温气体循环通道(即前述的热交换器冷端及热端)的风机运行点为32Nm3/min、压降为240Pa。
热交换器设计实施例:
1、设计前提:
室外温度40℃,建筑层高4m,室内为约边长7m的方形空间,室内无制冷设备情况下,室内温度55℃。
2、室内热负荷计算:
根据无制冷设备情况下,室内围护结构的散热率推算室内热负荷:
假设围护结构为250mm厚无抹灰空心砖墙,查手册可得围护结构散热率:1.5W/㎡.k(参见《HVAC暖通空调设计指南》(陆耀庆主编),中国建筑工业出版社,1996年5月;第二章,附录3-建筑物围护结构传热系数及热阻,P93~P94)。
室内负荷:外墙散热率+屋顶散热率=1.5W/㎡.k×(55-40)℃×(28×4+50)㎡=3645W
围护结构散热率:λ=1.5W/㎡.k
室内温度:ti=55℃
室外温度:to=40℃
建筑围墙边长:X=28m
建筑高度:h=4m
建筑面积:A=50㎡
室内负荷:Q=传热系数×换热温差×围护结构面积=λ×(ti-to)×(X×h+A)=1.5W/㎡.k×(55-40)℃×(28×4+50)㎡=3645W;
根据以上计算可近似估算室内热负荷为3500W。
理想状态下,设备向室内的发热量是通过围护结构向室外散发出去的,因此围护结构的散热量(室内负荷)即为设备向室内的发热量。
3、工况假设:
根据室外温度40℃,室内温度要求50℃,室内热负荷3500W的设计要求,可设计热交换器换热工况如下:
表1.热交换器工况
室内温度(℃) 50 换热量(W) 3500
室外温度(℃) 40 热端风量(Nm3/min) 32
热端出口(℃) 45 冷端风量(Nm3/min) 32
冷端出口(℃) 45 迎面风速(m/s) 3
4、热交换器设计:
热交换器换热原理图如3所示。
换热系数经验值:取20W/㎡.k;
换热平均温差:50℃-45℃=5℃;
换热面积估算值:3500W÷5℃÷20W/㎡.k=35㎡;
热交换器体积:W×L×H=450mm×500mm×900mm;
压降估算:240Pa。
5、散热器计算:
选择如图4所示尺寸的散热片,单片面积(长×宽×厚),可以得到单片散热片的面积a=0.0342㎡/片。
热管与隔热挡板成夹角15°倾斜安装,下端(室内端)为加热端,上端(室外端)为冷却端,进行散热器的设计;
迎风面宽W=380mm+安装间隙≈450mm
散热片数:35㎡÷a=1024片
取热管单侧有效长度H1=430mm
热交换器长度H=2×H1+隔热挡板厚度=860+38≈900mm
散热片间距设置为2.5mm
单列管排片层数:430÷2.5=172
管排数:1024÷172≈6排
设单排间距50mm(45mm片宽+5mm安装间距)
换热芯体尺寸:L1=50mm×6排=300mm
假设轴流风机安装宽度:L2=200mm
热交换器宽度:L=L1+L2=200mm+300mm=500mm
则热交换器体积为:W×L×H=450mm×500mm×900mm。
6、风机选择:
根据如上计算可得,热交换器冷端及热端的风机运行点为32Nm3/min,240Pa。
本装置采用内循环吸热技术在不进行内外换气的状况下将变压器/电抗器室内的热量传递至室外环境使室内温度趋于户外环境温度。既能使设备散热,又能保持室内的清洁/隔音。也将彻底解决一般变配电站变压器/电抗器/电容器室内运行中温度过高,噪音扰民及尘埃问题。
本发明可广泛用于变压器/电抗器室的暖通设计及供电运行领域。

Claims (7)

1.一种室内变压器/电抗器隔音降温装置,包括气—气热交换器,用于吸收变压器/电抗器室内的空气热源;所述的气—气热交换器为带有散热翅片的热管束构成的热管束热交换器;所述的气—气热交换器设置在矩形框状壳体中,所述的矩形框状壳体设置在变压器/电抗器室的墙壁上;所述的矩形框状壳体贯穿所述变压器/电抗器室与室外相邻的墙壁设置;在矩形框状壳体中设置一个隔热挡板,用于对室内、外环境进行隔离,起到室内、外空间之间的隔音或隔尘作用,并对所述的热管束进行支撑或固定;所述的隔热挡板与所述变压器/电抗器室与室外相邻的墙壁同轴线设置;在所述的隔热挡板上,贯穿设置有由多个热管组成的热管束热交换器,作为热传导部件;其特征是:
在所述矩形框状壳体的室内侧和室外侧,分别设置循环通风换热通道,形成室内高温气体循环通道和室外低温气体循环通道;
所述的热管束热交换器采用隔音或隔尘的传热模式,将室内的空气热源传导排放至室外;
当所述的室内高温气体和室外低温气体分别同时在各自的通道中流过时,所述的热管束热交换器将室内高温气体的热量传给室外的低温气体,从而实现两种气体的热交换,藉此实现在隔音或隔尘模式下变压器/电抗器室的隔音降温;
所述变压器/电抗器室室内的空气热源按照下述表达式确定:
Q=λ×(ti-to)×(X×h+A);
其中,Q为室内热源负荷,λ为围护结构散热率,ti为室内温度,to为室外温度,X为建筑围墙边长,h为建筑高度,A为建筑面积;
所述气—气热交换器的换热面积按照下述表达式进行确定:
换热面积=室内热源负荷÷换热系数经验值÷换热平均温差
其中,换热系数经验值取20W/㎡·k;换热平均温差=室外温度-室内要求温度。
2.按照权利要求1所述的室内变压器/电抗器隔音降温装置,其特征是在位于所述隔热挡板两侧的热管两端,设置有多组散热翅片,分别构成热管束热交换器的热端和冷端,其所述热管束热交换器的热端,位于矩形框状壳体的室内侧,所述热管束热交换器的冷端,位于矩形框状壳体的室外侧,所述热管束热交换器的热端和冷端之间,通过所述的隔热挡板进行隔音和隔尘。
3.按照权利要求1所述的室内变压器/电抗器隔音降温装置,其特征是所述的室内高温气体循环通道和室外低温气体循环通道为强制风冷却换热通道。
4.按照权利要求1所述的室内变压器/电抗器隔音降温装置,其特征是所述的室内高温气体循环通道按照“上进下出”的气体流向设置;所述的室外低温气体循环通道按照“下进上出”的气体流向设置。
5.按照权利要求1所述的室内变压器/电抗器隔音降温装置,其特征是所述气—气热交换器中单根热管的相关参数按照下述参数确定:
单根热管的直径为12.5mm;
单根热管的总长度=H1×2+H2,其中,H1为单根热管在隔热挡板两侧的单侧有效长度,H2为隔热挡板的厚度;
各单根热管之间的单排间距为50mm;
管排数为6排。
6.按照权利要求1所述的室内变压器/电抗器隔音降温装置,其特征是所述气—气热交换器中散热翅片的相关参数按照下述参数确定:
单片散热翅片的换热面积a=0.0342㎡/片;各个单片散热翅片之间的片间距b为2.5mm;
总散热片数=气—气热交换器的换热面积÷a,其a为单片散热翅片的换热面积;
单列管排片层数=H1÷b,其中H1为单根热管在隔热挡板两侧的单侧有效长度,b为单片散热翅片之间的片间距。
7.按照权利要求1所述的室内变压器/电抗器隔音降温装置,其特征是所述室内高温气体循环通道和室外低温气体循环通道的风机运行点为32Nm3/min、压降为240Pa。
CN201310647839.XA 2013-12-04 2013-12-04 一种室内变压器/电抗器隔音降温装置 Active CN103683050B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310647839.XA CN103683050B (zh) 2013-12-04 2013-12-04 一种室内变压器/电抗器隔音降温装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310647839.XA CN103683050B (zh) 2013-12-04 2013-12-04 一种室内变压器/电抗器隔音降温装置

Publications (2)

Publication Number Publication Date
CN103683050A CN103683050A (zh) 2014-03-26
CN103683050B true CN103683050B (zh) 2017-03-22

Family

ID=50319741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310647839.XA Active CN103683050B (zh) 2013-12-04 2013-12-04 一种室内变压器/电抗器隔音降温装置

Country Status (1)

Country Link
CN (1) CN103683050B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944085B (zh) * 2014-04-23 2016-05-11 国网上海市电力公司 一种箱式变压器低压室的散热装置
CN107565407A (zh) * 2016-09-06 2018-01-09 张荟芬 恒温干燥电力配电柜
CN109510088A (zh) * 2018-12-11 2019-03-22 国网新疆电力有限公司乌鲁木齐供电公司 直流充电屏防尘散热柜
CN109725689A (zh) * 2018-12-25 2019-05-07 东南大学 机箱组合散热装置及其控制方法
CN111600222B (zh) * 2020-06-16 2022-03-29 河南里程碑科技有限公司 高效散热型配电自动化监控终端
CN112380751B (zh) * 2020-11-20 2022-11-08 三峡大学 一种电抗器隔音装置与遮雨帽的设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2365564Y (zh) * 1998-12-11 2000-02-23 徐志强 一种带热交换器的空气交换机
CN202040933U (zh) * 2010-08-05 2011-11-16 迟永江 一种相变自然对流式热交换器
CN102287880A (zh) * 2011-06-17 2011-12-21 北京工业大学 一种带有加湿段的分体式空气-空气换热机组
CN202434925U (zh) * 2011-12-28 2012-09-12 上海一开电气集团有限公司 变压器室热交换***
CN102759159A (zh) * 2012-08-01 2012-10-31 北京德能恒信科技有限公司 一种热管热泵复合***
CN203218754U (zh) * 2013-05-08 2013-09-25 梅勒电气(武汉)有限公司 利用自然空气能调节温度的户外电控柜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2365564Y (zh) * 1998-12-11 2000-02-23 徐志强 一种带热交换器的空气交换机
CN202040933U (zh) * 2010-08-05 2011-11-16 迟永江 一种相变自然对流式热交换器
CN102287880A (zh) * 2011-06-17 2011-12-21 北京工业大学 一种带有加湿段的分体式空气-空气换热机组
CN202434925U (zh) * 2011-12-28 2012-09-12 上海一开电气集团有限公司 变压器室热交换***
CN102759159A (zh) * 2012-08-01 2012-10-31 北京德能恒信科技有限公司 一种热管热泵复合***
CN203218754U (zh) * 2013-05-08 2013-09-25 梅勒电气(武汉)有限公司 利用自然空气能调节温度的户外电控柜

Also Published As

Publication number Publication date
CN103683050A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN103683050B (zh) 一种室内变压器/电抗器隔音降温装置
Sugarman HVAC fundamentals
Liu et al. Energy savings of hybrid dew-point evaporative cooler and micro-channel separated heat pipe cooling systems for computer data centers
US9832911B2 (en) Air handling unit and method of operating the same
US11479493B2 (en) Automatic constant-temperature dehumidification device
RU2442209C2 (ru) Способы охлаждения и устройства
US6539738B2 (en) Compact solar-powered air conditioning systems
WO2018121488A1 (zh) 可调温的四效除干燥***
CN202126078U (zh) 微循环重力式热管换热装置
Mohammed et al. Indirect evaporative cooling for buildings: A comprehensive patents review
WO2020187010A1 (zh) 一种冷热双蓄型房间空调装置
JP2012225517A (ja) 輻射冷暖房装置及び除加湿冷暖房システム
CN102288050B (zh) 降膜-满液复合型管式间接蒸发冷却器
EP3354993A1 (en) Cabinet for housing part of a heat pump
KR100526758B1 (ko) 하이브리드 냉각탑
JP6043051B2 (ja) 高負荷空調システム
KR100896805B1 (ko) 항온항습 기능을 갖는 증기식 공기조화기
CN201199078Y (zh) 空调器
CN206991213U (zh) 计算机的散热装置
JP2000105087A (ja) 冷却装置
CN103574996A (zh) 闭式立管间接蒸发冷却高温冷水机组
KR200315236Y1 (ko) 하이브리드 냉각탑
CN212511483U (zh) 一种薄型空调室内换热***
CN203629157U (zh) 一种闭式立管、直接蒸发冷却组合的高温冷水机
RU100188U1 (ru) Система теплоснабжения здания

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant