CN103682317A - 一种Li2MnO3纳米线及其制备方法和应用 - Google Patents

一种Li2MnO3纳米线及其制备方法和应用 Download PDF

Info

Publication number
CN103682317A
CN103682317A CN201310721584.7A CN201310721584A CN103682317A CN 103682317 A CN103682317 A CN 103682317A CN 201310721584 A CN201310721584 A CN 201310721584A CN 103682317 A CN103682317 A CN 103682317A
Authority
CN
China
Prior art keywords
nano wire
mno
li2mno3
nanowire
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310721584.7A
Other languages
English (en)
Inventor
魏明灯
吴小敏
费海龙
李亚峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201310721584.7A priority Critical patent/CN103682317A/zh
Publication of CN103682317A publication Critical patent/CN103682317A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种Li2MnO3纳米线及其制备方法和应用,采用熔盐法在较低温度下合成Li2MnO3纳米线,其直径为5-25nm,长度为几百纳米到几微米。所述的Li2MnO3纳米线作为锂电池正极。一维纳米材料是一种良好的锂电池电极材料,本发明首次提供了一种制备高纯度的Li2MnO3纳米线的方法,其操作简便、成本低、纯度高、性能优异,重现性好。

Description

一种Li2MnO3纳米线及其制备方法和应用
技术领域
本发明属于锂电池正极材料制备领域,具体涉及一种Li2MnO3纳米线及其制备方法和应用。
背景技术
自上世纪锂电池开发成功以来,锂电池已经得到了广泛的应用,但是要得到循环性能好,比容量高等电化学性能好的锂电池正极材料一直以来是科学家的研究重点。现在工业上常用的正极材料,如LiCoO2、LiNiO2、LiMnO2,他们的容量都不高,只有120 mAh/g左右。随着纳米材料的兴起,一维纳米材料被认为是一种很有前景的锂离子电极材料,而正极材料是锂离子电池的瓶颈。目前还未有制备Li2MnO3纳米线的相关专利报道。
发明内容
本发明的目的在于提供一种Li2MnO3纳米线及其制备方法和应用,首次提供了一种制备高纯度的Li2MnO3纳米线的方法,其操作简便、成本低、纯度高、性能优异,重现性好。
为实现上述目的,本发明采用如下技术方案:
一种Li2MnO3纳米线的直径为5-25nm,长度为几百纳米到几微米。
采用熔盐法在较低温度下合成Li2MnO3纳米线。包括以下步骤:
(1)将0.2g氟化锰与10g硝酸钠混合后磨匀,于540℃煅烧3小时,水洗、无水乙醇过滤各3次,70℃烘干4小时,得到Mn2O3前驱体纳米线;
(2)将0.1gMn2O3前驱体纳米线与5g硝酸锂混合后磨匀,再按步骤(1)的反应条件煅烧、水洗、醇洗和烘干,得到高纯度的Li2MnO3纳米线。
所述的氟化锰是由氢氟酸和碳酸锰反应得到。
所述的Li2MnO3纳米线作为锂电池正极。
锂电池组装:按质量比:Li2MnO3纳米线:聚四氟乙烯:超级碳=7:2:1混合研磨后,均匀地涂在0.25 cm2的铝箔上做正极,参比电极和对电极均为金属锂,电解质由1M LiPF6的EC+DMC+EMC溶液;所有组装过程均在手套箱里进行;所述的EC+DMC+EMC溶液中EC、DMC、EMC的体积比为1:1:1。
本发明的显著优点在于:首次提供了一种制备高纯度的Li2MnO3纳米线的方法,其操作简便、成本低、纯度高、性能优异,重现性好,用此高纯度Li2MnO3纳米线作锂电池正极得到的锂电池具有很高的比容量,在电流密度为0.02 Ag-1下充放电27圈后,放电容量达到了159 mAh/g。
附图说明
图1是Li2MnO3纳米线的SEM图(a)和TEM图(b)。 
图2是Li2MnO3纳米线电极材料的放电曲线(c)和放电比容量(d)。
具体实施方式
本发明用简单的熔盐法在较低温度下合成了直径为5-25nm 左右,长度为几百纳米到几微米左右的高纯度的Li2MnO3纳米线。
用此高纯度Li2MnO3纳米线作锂电池正极得到的锂电池具有很高的比容量,在电流密度为0.02 Ag-1下充放电27圈后放电容量达到了159 mAh/g,其他的同行都是在很低的电流密度下呈现更低的比容量。
高纯度Li2MnO3纳米线的制备方法是将0.2g氟化锰(用氢氟酸和碳酸锰反应得到)与10g硝酸钠混合后磨匀,于540℃煅烧3小时,水洗、无水乙醇过滤各3次,70℃烘干4小时,得到Mn2O3前驱体纳米线,然后将其0.1g与5g 硝酸锂混合后磨匀再按上述同样的步骤及反应条件即得到高纯度Li2MnO3纳米线。
锂电池组装:按质量比Li2MnO3纳米线:聚四氟乙烯:超级碳=7:2:1混合研磨后均匀地涂在0.25 cm2的铝箔上做正极,参比电极和对电极均为金属锂,电解质由1M LiPF6的EC+DMC+EMC (EC/DMC/EMC=1/1/1 v/v) 溶液。所有组装过程均在手套箱里进行。
从(a)图中可以看出,Li2MnO3纳米线的长度大概在几百纳米到几微米之间范围内,直径大约5-25纳米;从(b)图中可以看出Li2MnO3纳米线的结晶度很高;从(c)图中可以看出,Li2MnO3纳米线电极材料放电比容量先升后降,首圈放电比容量高达160 mAh/g;从(d)图中可以看出, 在电流密度为0.02 Ag-1下充放电27圈后放电容量达到了159 mAh/g,而且循环性能很好。 
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种Li2MnO3纳米线,其特征在于:所述的Li2MnO3纳米线的直径为5-25nm,长度为几百纳米到几微米。
2.一种制备如权利要求1所述的Li2MnO3纳米线的方法,其特征在于:采用熔盐法在较低温度下合成Li2MnO3纳米线。
3.根据权利要求2所述的Li2MnO3纳米线的制备方法,其特征在于:包括以下步骤:
(1)将0.2g氟化锰与10g硝酸钠混合后磨匀,于540℃煅烧3小时,水洗、无水乙醇过滤各3次,70℃烘干4小时,得到Mn2O3前驱体纳米线;
(2)将0.1gMn2O3前驱体纳米线与5g硝酸锂混合后磨匀,再按步骤(1)的反应条件煅烧、水洗、醇洗和烘干,得到高纯度的Li2MnO3纳米线。
4.根据权利要求3所述的Li2MnO3纳米线的制备方法,其特征在于:所述的氟化锰是由氢氟酸和碳酸锰反应得到。
5.一种如权利要求1所述的Li2MnO3纳米线的应用,其特征在于:所述的Li2MnO3纳米线作为锂电池正极。
6.根据权利要求5所述的Li2MnO3纳米线的应用,其特征在于:锂电池组装:按质量比:Li2MnO3纳米线:聚四氟乙烯:超级碳=7:2:1混合研磨后,均匀地涂在0.25 cm2的铝箔上做正极,参比电极和对电极均为金属锂,电解质由1M LiPF6的EC+DMC+EMC溶液;所有组装过程均在手套箱里进行;所述的EC+DMC+EMC溶液中EC、DMC、EMC的体积比为1:1:1。
CN201310721584.7A 2013-12-25 2013-12-25 一种Li2MnO3纳米线及其制备方法和应用 Pending CN103682317A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310721584.7A CN103682317A (zh) 2013-12-25 2013-12-25 一种Li2MnO3纳米线及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310721584.7A CN103682317A (zh) 2013-12-25 2013-12-25 一种Li2MnO3纳米线及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN103682317A true CN103682317A (zh) 2014-03-26

Family

ID=50319146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310721584.7A Pending CN103682317A (zh) 2013-12-25 2013-12-25 一种Li2MnO3纳米线及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN103682317A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022277A (zh) * 2014-05-16 2014-09-03 武汉理工大学 Li2MnO3纳米线及其制备方法和应用
CN104084202A (zh) * 2014-07-14 2014-10-08 北京工业大学 一种Ag/Mn2O3纳米线催化剂的熔融盐原位制备法及应用
CN111172743A (zh) * 2020-01-16 2020-05-19 浙江大学 一种低温快速制备复合金属氧化物纳米薄膜材料的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099508A1 (en) * 2000-06-22 2006-05-11 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
CN1817800A (zh) * 2006-01-26 2006-08-16 合肥工业大学 一种锂离子电池用系列纳米锂锰氧化物的合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060099508A1 (en) * 2000-06-22 2006-05-11 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
CN1817800A (zh) * 2006-01-26 2006-08-16 合肥工业大学 一种锂离子电池用系列纳米锂锰氧化物的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMIN WU等: "Facile synthesis of Li2MnO3 nanowires for lithium-ion battery cathodes", 《NEW JOURNAL OF CHEMISTRY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022277A (zh) * 2014-05-16 2014-09-03 武汉理工大学 Li2MnO3纳米线及其制备方法和应用
CN104022277B (zh) * 2014-05-16 2016-01-06 武汉理工大学 Li2MnO3纳米线及其制备方法和应用
CN104084202A (zh) * 2014-07-14 2014-10-08 北京工业大学 一种Ag/Mn2O3纳米线催化剂的熔融盐原位制备法及应用
CN104084202B (zh) * 2014-07-14 2016-04-13 北京工业大学 一种Ag/Mn2O3纳米线催化剂的熔融盐原位制备法及应用
CN111172743A (zh) * 2020-01-16 2020-05-19 浙江大学 一种低温快速制备复合金属氧化物纳米薄膜材料的方法
CN111172743B (zh) * 2020-01-16 2021-10-19 浙江大学 一种低温快速制备复合金属氧化物纳米薄膜材料的方法

Similar Documents

Publication Publication Date Title
Xi et al. Comparative study of the electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 and LiNi0. 8Co0. 1Mn0. 1O2 cathode materials for lithium ion batteries
JP5812190B2 (ja) リチウムイオン二次電池用活物質及びリチウムイオン二次電池
Hou et al. Drastic enhancement in the rate and cyclic behavior of LiMn2O4 electrodes at elevated temperatures by phosphorus doping
CN103367730A (zh) 活性物质和锂离子二次电池
KR101364398B1 (ko) 나노구조 형태의 리튬 티탄 산화물
JP6237331B2 (ja) 非水電解質二次電池用正極活物質の前駆体とその製造方法、及び非水電解質二次電池用正極活物質とその製造方法
CN103762350B (zh) 一种用于锂电的钛系负极材料及其制备方法
JP2017134972A (ja) 二次電池用負極活物質の製造方法
US10847788B2 (en) Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same
Akhilash et al. Synthesis of Li1. 5Ni0. 25Mn0. 75O2. 5 cathode material via carbonate co-precipitation method and its electrochemical properties
KR101910979B1 (ko) 음극 활물질, 그의 제조방법, 상기 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지
Wu et al. Scalable and general synthesis of spinel manganese-based cathodes with hierarchical yolk–shell structure and superior lithium storage properties
JPWO2015004856A1 (ja) リチウム二次電池用混合活物質、リチウム二次電池用電極及びリチウム二次電池
KR101907240B1 (ko) 전극재료의 제조방법 및 상기 방법으로 제조된 전극재료
CN103682317A (zh) 一种Li2MnO3纳米线及其制备方法和应用
WO2013125798A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
Zhou et al. Hierarchical LiNi 0.5 Mn 1.5 O 4 micro-rods with enhanced rate performance for lithium-ion batteries
JP2015115244A (ja) リチウム二次電池用正極、リチウム二次電池、バッテリーモジュール、及びバッテリーモジュールを搭載した自動車
Jiang et al. One-pot hydrothermal synthesis of LiMn 2 O 4 cathode material with excellent high-rate and cycling properties
Guo et al. The role of sulfate ions coming from source materials on the properties of Li1. 05Mn2O4 cathode for lithium ion batteries
JP2013062183A (ja) 電池用活物質、非水電解質電池および電池パック
JP2020510281A (ja) 高出力特性を有する負極活物質及びそれを含むリチウム二次電池
JP2016062806A (ja) 負極活物質、ナトリウムイオン電池およびリチウムイオン電池
Li et al. Nickel-modified and zirconium-modified Li2MnO3 and applications in lithium-ion battery
Cui et al. Electrospinning synthesis of novel lithium-rich 0.4 Li 2 MnO 3· 0.6 LiNi 1/3 Co 1/3 Mn 1/3 O 2 nanotube and its electrochemical performance as cathode of lithium-ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140326