CN103626150A - 一种含氮多孔炭的制备方法 - Google Patents

一种含氮多孔炭的制备方法 Download PDF

Info

Publication number
CN103626150A
CN103626150A CN201310581860.4A CN201310581860A CN103626150A CN 103626150 A CN103626150 A CN 103626150A CN 201310581860 A CN201310581860 A CN 201310581860A CN 103626150 A CN103626150 A CN 103626150A
Authority
CN
China
Prior art keywords
nitrogenous
porous charcoal
preparation
porous carbon
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310581860.4A
Other languages
English (en)
Inventor
黄玉安
王翼飞
赖文秋
怀旭
张可强
谭学锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201310581860.4A priority Critical patent/CN103626150A/zh
Publication of CN103626150A publication Critical patent/CN103626150A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明首先用氧化剂将多孔炭预氧化,而后以三聚氰胺/双氰胺为含氮前驱物,在密闭环境中采用化学气相沉积法在预氧化的多孔炭孔道内沉积含氮物种,制备得到含氮多孔炭;该方法解决了现有含氮多孔炭制备方法中产品含氮量不高、耗时等缺陷,所得含氮多孔炭的含氮量显著提高(最高可达17%at),工艺简单、易于工业化,原料来源丰富、生产成本低,所得含氮多孔炭产品性能优异,在吸附分离、催化、电极材料等领域有良好的应用前景。

Description

一种含氮多孔炭的制备方法
技术领域
本发明涉及一种含氮多孔炭的制备方法,更具体地涉及一种以预氧化的多孔炭为母体、三聚氰胺/双氰胺为原料,利用化学气相沉积反应,在密闭环境中将含氮物种沉积在多孔炭孔道内壁,制备得到含氮多孔炭材料,属于多孔材料领域。
背景技术
多孔材料如多孔炭,具有高表面积和发达的孔隙,被广泛用作吸附剂、催化剂载体、电池和超级电容器电极材料等,但常规多孔炭材料难以满足日益提高的性能需要,例如活性炭,虽然比表面积较高,但其孔径小(<2nm),不利于电解液的渗透和自由出入,用于超级电容器时(J.Power Sources,2006,161:730)其表面积利用率只有20-30%。从两个方面可以提高多孔炭材料的性能,一是提高多孔炭材料比表面积的同时尽可能的提高中孔率。常用的制备方法有:催化活化法、混合聚合物炭化法、有机溶胶-凝胶法和模板剂法等;二是从提高单位面积的性能出发,将多孔炭材料进行表面改性,常用的改性方式是掺杂氧、磷、硼、金属以及金属氧化物等。近年来,在多孔炭材料中掺杂氮元素制备的含氮多孔炭成为这方面的研究热点,文献较多。需要注意的是,掺杂氮元素以后,多孔炭材料的一些性质会发生改变:(1)改变多孔炭材料表面的pH值,一般是碱性增强,pH值升高;(2)提高多孔炭材料的导电性;(3)提高多孔炭材料作为载体或者本身氧化-还原反应的催化性能;(4)增强多孔炭材料作为载体与被负载催化剂的作用力,使得催化剂更容易分散,提高催化性能(Applied Catalysis,2008,B79:89)。
文献报道的掺杂氮的路线有两种,第一种方法是用含氮的前驱物制备多孔炭材料,在得到炭材料的同时掺杂氮元素。这种路线不需要另外的步骤,氮元素的含量可以达到30%,甚至更高。具体方法较多,可以参见有关综述(J.Nanosci.Nanotechnol.2005,5:1345.)。其中C.Pevida等人以气相二氧化硅为模板剂,以三聚氰胺与甲醛为原料,经过聚合、固化、炭化、氢氧化钠溶解除硅、洗涤等步骤制备了含氮多孔炭,氮含量最高为30%,比表面800m2/g,二氧化碳的吸附量可达2.25mmol/g,性能优异。Denisa Hulicova等人(Chem.Mater.2005,17:1241)用云母为模板剂,以三聚氰胺与甲醛为原料,用类似的方法制备得到了氮含量约为40%、表面积为400m2/g、电容特性优异的含氮中孔炭材料。第二种是先制备多孔炭材料,然后用含氮的化合物如尿素、铵盐、氨气等高温下改性(掺杂)制备得到(Carbon,2003,41:1925,Electrochem.Commun,2008,10:1105),在这种方法制备得到的含氮炭材料中,氮元素在其表面形成如胺基一类的基团,增强了炭材料的亲水性,使其在水性溶液中容易分散。由于是后续的改性,上述方法制备的炭材料掺杂的氮元素的量十分有限,一般小于5%,性能提高不明显。
C3N4中氮含量很高,是一种理想的含氮材料,具有多种奇异的物化特性。例如,C3N4具有半导体特性,带隙宽度约2.1eV,不负载活性组分即可在可见光波长范围光解水制氢气或者光降解有机染料;当作为载体负载活性金属如Pt、Pd、Au或Ag后,光催化活性显著提高[J.Am.Chem.Soc.,2009,131,1680.J. Phys.Chem.C,2009,113,4940.Nature Material,DOI:10.1038/NMAT2317.J. Phys.Chem.B,2010,114,9429.Langmuir,2009,25,10397.]。此外,多孔C3N4不负载活性组分即可活化CO2分子,利用这一特性可以将苯直接氧化制备苯酚,选择性60-100%,转化率约10-20%,性能良好[Angew.Chem.Int.Ed.,2007,46,2717.Angew.Chem.Int.Ed.2006,45,4467.]。制备得到的中孔C3N4如负载活性金属Fe、Pt等,在可见光范围即可光催化将苯转化为苯酚[J.Am.Chem.Soc.2009,131,11658.]。很明显,C3N4有着与传统多孔材料完全不同的特殊性质,这与其特殊的结构密切相关,C3N4中氮物种是三并三嗪环结构,与其它无机及有机多孔材料的电子结构有本质区别;在C3N4结构中存在一个由九个氮原子围成的类似酞菁结构的空穴,由于氮原子具有未成键电子,空穴可与多种金属原子配位形成具有特殊性能的材料,在催化领域有良好的应用潜力。
三聚氰胺、双氰胺是制备C3N4理想的前驱物,原料易得、安全无毒、经济性好,可以大规模制备C3N4;有文献报道以三聚氰胺为原料在半封闭坩埚内采用热解法制备了类石墨的g-C3N4,负载Ag后光降解有机染料性能良好(Langmuir 2009,25,10397.),不过这种g-C3N4无多孔结构,表面积很低,性能受限。从文献看,制备多孔C3N4都采用硬模板法(如SBA-15,球形纳米SiO2等),所用含氮化合物前驱物种类较多,由于使用模板剂形成孔和调节孔径,所得多孔C3N4还需强碱或氢氟酸除去模板剂,该方法操作繁琐、周期长,经济性较差。
为了得到氮含量高的含氮多孔炭,同时利用C3N4高含氮量、特殊结构等优异特性,本发明以廉价的三聚氰胺/双氰胺为原料,以预氧化的多孔炭为母体,根据三聚氰胺/双氰胺易升华(350℃以上)的特点,用蒸发-化学气相沉积法,先将三聚氰胺/双氰胺转化为蒸汽,而后依据合成C3N4的反应机理(J.Am.Chem.Soc.2003,125,10288),在处于同一相对密闭容器内的预氧化的多孔炭的孔道内壁沉积C3N4,制备得到含氮多孔炭材料。
发明内容
本发明的目的是为了提供一种制备含氮多孔炭的技术方法。
本发明的技术方案为:首先用氧化剂将多孔炭预氧化,而后将三聚氰胺/双氰胺与预氧化的多孔炭置于反应容器的两端,中间加一隔离物隔断,避免二者物理混合;将容器加盖自然密闭后置于加热炉中,在惰性气氛中加热至350-500℃,保温0.1-4h,而后升温至525-725℃,保温0.1-4h,自然冷却后即得含氮多孔炭产品。
上述步骤中所述氧化剂为双氧水、硝酸、高锰酸钾、高氯酸中的一种或数种的混合物,溶液的种类、浓度、体积以及静置反应时间可依据多孔炭本身的含氧量进行选择,多孔炭含氧量低的,选择氧化性强、浓度高、溶液体积多及静置时间长的条件,反之则选择氧化性弱、浓度低、溶液体积小的条件,实验发现氧化剂浓度为0.1-5M、体积为多孔炭体积的1-10倍、静置时间为1-24h时,效果较好。
上述步骤中所述三聚氰胺/双氰胺、预氧化的多孔炭的重量份数比为1:(0.1~10),可以依据掺氮量的要求变化二者的比例,三聚氰胺/双氰胺的比例较高时,含氮多孔炭材料的掺氮量较高,C3N4最高可达30%,此时含氮多孔炭的氮含量为17%at(原子数%);
上述步骤中所述三聚氰胺/双氰胺的比例不必特别限定,二者单独使用和混合使用都可以,其比例的变化对含氮多孔炭材料的结构影响不明显;
上述步骤中所述多孔炭可以使用市售的各种商业多孔炭,比如竹质活性炭、木质活性炭、果壳活性炭、煤制活性炭、中孔炭(介孔炭)、有序介孔炭、碳分子筛等等,不必限定其种类,选择不同的多孔炭可以调节最终含氮多孔炭材料中含氮量、孔径、孔结构及表面积。
上述步骤中所述在惰性气氛中加热是为了避免多孔炭在高温下的氧化,一般使用氮气、二氧化碳、氩气、氦气等,考虑经济因素,氮气是最合适的气体。
上述步骤中所述加热350-500℃,保温0.14h,这一步骤主要是将三聚氰胺/双氰胺加热升华,得到其蒸气并沉积到多孔炭的孔道内部;温度不宜过低或过高,否则会降低沉积效率,最终使得掺氮量不高;保温时间为0.14h,这主要是考虑沉积量和制备效率,过低则沉积量少,过高则耗时,降低制备效率;实验发现,0.14h的范围内,沉积量和制备效率适中,效果较好。
上述步骤中所述升温至525-725℃,保温0.14h,这一步骤主要是将沉积的三聚氰胺/双氰胺转化为C3N4,这一转化涉及很复杂的化学变化,主要是脱氨基得到类石墨结构的C3N4的过程,温度不宜过低或过高,过低脱氨基不完全,C3N4结构不完整,过高则生成的C3N4会升华或分解,实验发现525-725℃的温度比较合适;保温0.1-4h,这主要是考虑脱氨基的程度和制备效率量,过短则脱氨基不完全,过长则耗时,降低制备效率,实验发现,0.1-4h的范围内,效果较好。
制备得到的含氮多孔炭材料的性能用通常的方法表征,例如,在液氮温度下测定氮气的吸附等温线,根据BET以及BJH方法计算表面积和孔径分布。结果显示,多孔炭掺氮得到含氮多孔炭后,其表面积和总孔容等特性有所损失,所得含氮多孔炭中C3N4含量高(5~30%),氮含量最高可达17%at(原子数%)。用XPS测定含氮多孔炭材料中氮的物种,结果显示主要是吡啶、吡啶酮以及吡咯类型的氮元素。
综上所述,本发明的技术效果是明显的。本发明由三聚氰胺/双氰胺为含氮前驱物,多孔炭为母体,用气相沉积法制备含氮多孔炭材料的过程中,使用三聚氰胺/双氰胺含氮为前驱物,解决了现有掺氮方法中含氮量不高、制备耗时等不足,使得制备含氮多孔炭的含氮量高(最高可达17%at),工序简单,适合批量生产,易于工业化。而且原料来源丰富,生产成本低。用本发明方法制备的含氮多孔炭中C3N4含量高(5~30%),氮含量最高可达17%at(原子数%)。性能测试结果表明,制备得到的含氮多孔炭表面为碱性,二氧化硫吸附量显著增加,提高为掺氮前的3-5倍,最高到达1.8mmol/g以上;电容特性测试结果表明,含氮多孔炭的质量比电容增加明显,可为原来的3倍以上,最高达到280F/g,性能优异,可广泛用于吸附分离、催化、电极材料等领域。
附图说明
图1为实施例1所得含氮多孔炭产品的吸附/脱附等温线及从中得到的孔分布曲线
图2为实施例2所得含氮多孔炭产品的吸附/脱附等温线及从中得到的孔分布曲线
图3为实施例1所得含氮多孔炭产品元素分析中NIS的XPS谱图
具体实施方式
为了更清楚地说明本发明内容,用具体实施例说明如下,具体实施例不限定本发明内容范围,应当理解为仅仅是示例性的,本领域的技术人员可以在不背离本发明精神和范围的基础上对其进行改变和修改,所有这些修改和改变均包括在本发明范围内。
实施例1
将5g中孔炭与1倍体积的浓度为0.1M的双氧水溶液混合均匀,静置24h后过滤洗涤干燥得预氧化的中孔炭;称取50g三聚氰胺、5g预氧化的中孔炭,将二者置于反应容器的两端,中间加一隔离物分开;将容器加盖密封后置于加热炉中,在氮气气氛中加热至350℃,保温4h,而后升温至525℃,保温4h,自然冷却后即得含氮多孔炭,其表面积为1150m2/g,总孔容1.50cm3/g,平均孔径为4.1nm,中孔率为100%,含氮量为17at%(原子数%)。
实施例2
将5g有序中孔碳(CMK-3)与10倍体积的浓度为5M的硝酸溶液混合均匀,静置1h后过滤洗涤干燥得预氧化的CMK-3;称取5g三聚氰胺、5g预氧化的CMK-3,将二者置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在氮气气氛中加热至500℃,保温0.1h,而后升温至725℃,保温0.1h,自然冷却后即得含氮多孔炭,其表面积为1100m2/g,总孔容1.10cm3/g,平均孔径为3.8nm,中孔率为99%,含氮量为10at%(原子数%)。
实施例3
将10g竹制活性炭与5倍体积的浓度为2M的高锰酸钾溶液混合均匀,静置2h后过滤洗涤干燥得预氧化的竹制活性炭;称取1g三聚氰胺、10g预氧化的竹制活性炭,将三聚氰胺与多孔炭置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在二氧化碳气氛中加热至400℃,保温4h,而后升温至600℃,保温2h,自然冷却后即得含氮多孔炭,其表面积为610m2/g,总孔容0.403cm3/g,平均孔径为1.1nm,微孔率为78%,含氮量为7at%(原子数%)。
实施例4
将8g木制活性炭与3倍体积的浓度为3M的高氯酸溶液混合均匀,静置4h后过滤洗涤干燥得预氧化的木制活性炭;称取2g双氰胺、8g预氧化的木制活性炭,将二者置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在氩气气氛中加热至450℃,保温4h,而后升温至600℃,保温2h,自然冷却后即得含氮多孔炭,其表面积为830m2/g,总孔容1.10cm3/g,平均孔径为1.4nm,微孔率为59%,含氮量为8.1at%(原子数%)。
实施例5
将5g椰壳活性炭、2g木制活性炭与3倍体积的浓度为3M的硝酸溶液混合均匀,静置6h后过滤洗涤干燥得预氧化的椰壳活性炭;称取1g三聚氰胺和1g双氰胺、5g预氧化的椰壳活性炭,将二者炭置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在氦气气氛中加热至400℃,保温4h,而后升温至600℃,保温2h,自然冷却后即得含氮多孔炭,其表面积为950m2/g,总孔容0.74cm3/g,平均孔径为1.1nm,微孔率为79%,含氮量为8.3at%(原子数%)。
实施例6
将6g煤制活性炭与2倍体积的浓度为3M的高锰酸钾、1M的高氯酸溶液混合均匀,静置6h后过滤洗涤干燥得预氧化的煤制活性炭;称取2g三聚氰胺和1g双氰胺、6g预氧化的煤制活性炭,将二者置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在氮气、氩气气氛中加热至500℃,保温4h,而后升温至580℃,保温3h,自然冷却后即得含氮多孔炭,其表面积为530m2/g,总孔容0.42cm3/g,平均孔径为1.1nm,微孔率为73%,含氮量为7.1at%(原子数%)。
实施例7
将10g碳分子筛与2倍体积的浓度为3M的高锰酸钾混合均匀,静置6h后过滤洗涤干燥得预氧化的碳分子筛;称取5g三聚氰胺、10g预氧化的碳分子筛,将二者置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在氦气、氩气气氛中加热至400℃,保温4h,而后升温至600℃,保温2h,自然冷却后即得含氮多孔炭,其表面积为380m2/g,总孔容0.30cm3/g,平均孔径为0.43nm,微孔率为99%,含氮量为5.1at%(原子数%)。
实施例8
将4g超级活性炭与2倍体积的浓度为3M的高锰酸钾混合均匀,静置6h后过滤洗涤干燥得预氧化的超级活性炭;称取1g三聚氰胺、4g预氧化的超级活性炭,将二者置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在二氧化碳、氩气气氛中加热至450℃,保温2h,而后升温至725℃,保温4h,自然冷却后即得含氮多孔炭,其表面积为2580m2/g,总孔容1.50cm3/g,平均孔径为0.82nm,微孔率为82%,含氮量为10.3at%(原子数%)。
实施例9
将4g银仁活性炭与5倍体积的浓度为1.5M的高锰酸钾混合均匀,静置12h后过滤洗涤干燥得预氧化的银仁活性炭;称取12g三聚氰胺、4g预氧化的银仁活性炭,将二者置于反应容器的两端,中间加一陶瓷隔离物分开;将容器加盖密封后置于加热炉中,在二氧化碳、氦气气氛中加热至400℃,保温2.5h,而后升温至625℃,保温3h,自然冷却后即得含氮多孔炭,其表面积为680m2/g,总孔容0.70cm3/g,平均孔径为1.8nm,微孔率为53%,含氮量为9.3at%(原子数%)。

Claims (8)

1.一种含氮多孔炭的制备方法,其特征在于首先用氧化剂将多孔炭预氧化,而后以预氧化的多孔炭为母体,三聚氰胺/双氰胺为含氮前体原料,将二者置于中间隔断的密闭容器中,一定温度下在多孔炭孔道内壁化学气相沉积含氮物种,制备得到含氮多孔炭材料。 
2.根据权利要求1的一种含氮多孔炭的制备方法,该方法包括以下步骤: 
(1)将多孔炭用1-10倍体积,浓度为0.1-5M氧化剂的溶液浸泡1-24h,分离、洗涤、干燥后即得预氧化的多孔炭; 
(2)将三聚氰胺/双氰胺与预氧化的多孔炭置于容器的两端,中间加隔离物隔断,将容器加盖密闭后置于加热炉中,在惰性气氛中加热至350-500℃,保温0.1-4h,而后升温至525-725℃,保温0.1-4h,自然冷却后即得含氮多孔炭产品。 
3.根据权利要求1或2的一种含氮多孔炭的制备方法,其中氧化剂为双氧水、硝酸、高锰酸钾、高氯酸中的一种或数种的混合物。 
4.根据权利要求1或2的一种含氮多孔炭的制备方法,其中的三聚氰胺/双氰胺的比例不限,二者单独使用或混合使用都可。 
5.根据权利要求1的一种含氮多孔炭的制备方法,其特征在于所述多孔炭为竹质活性炭、木质活性炭、果壳活性炭、杏仁活性炭、煤制活性炭、中孔炭(介孔炭)、有序介孔炭、碳分子筛中的一种或数种的混合物。 
6.根据权利要求1或2的一种含氮多孔炭的制备方法,其特征在于所述三聚氰胺/双氰胺、多孔炭的重量份数比为1:(0.1~10),可以依据掺氮量的要求变化二者的比例。 
7.根据权利要求1或2的一种含氮多孔炭的制备方法,其特征在于所述的惰性气氛为氮气、二氧化碳、氩气、氦气中的一种或数种的混合物。 
8.根据权利要求1或2的一种含氮多孔炭的制备方法,其特征在于所述含氮多孔炭可用于吸附分离、催化、电极材料领域。 
CN201310581860.4A 2013-11-20 2013-11-20 一种含氮多孔炭的制备方法 Pending CN103626150A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310581860.4A CN103626150A (zh) 2013-11-20 2013-11-20 一种含氮多孔炭的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310581860.4A CN103626150A (zh) 2013-11-20 2013-11-20 一种含氮多孔炭的制备方法

Publications (1)

Publication Number Publication Date
CN103626150A true CN103626150A (zh) 2014-03-12

Family

ID=50207657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310581860.4A Pending CN103626150A (zh) 2013-11-20 2013-11-20 一种含氮多孔炭的制备方法

Country Status (1)

Country Link
CN (1) CN103626150A (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289247A (zh) * 2014-10-11 2015-01-21 中国科学院上海高等研究院 用于1,2-二氯乙烷催化裂解制备氯乙烯催化剂及其制备方法与应用
CN104353482A (zh) * 2014-11-06 2015-02-18 福建农林大学 一种g-C3N4/活性炭复合光催化剂及其制备方法和应用
CN104525119A (zh) * 2015-01-05 2015-04-22 福建农林大学 一种g-C3N4/ZnO/活性炭的功能性炭吸附材料及其制备方法
CN104689857A (zh) * 2015-03-26 2015-06-10 中国科学院青岛生物能源与过程研究所 氮掺杂多孔碳材料的制备方法以及含该材料的催化剂及用途
CN105374575A (zh) * 2015-01-14 2016-03-02 中国石油大学(华东) 一种表面功能化多孔碳超级电容器电极材料的制备方法
CN105597803A (zh) * 2015-12-14 2016-05-25 江南大学 一种介孔氮化碳光催化剂及其制备方法
CN106140093A (zh) * 2014-10-27 2016-11-23 现代自动车株式会社 活性炭及其制备方法
CN106404860A (zh) * 2016-08-30 2017-02-15 济南大学 一种氮化碳修饰三维石墨电极的制备方法及电致化学发光传感应用
CN106971863A (zh) * 2017-04-21 2017-07-21 华中科技大学 一种g‑C3N4/NiCo2S4复合材料、制备方法及其应用
WO2018099173A1 (zh) * 2016-12-02 2018-06-07 建添企业有限公司 以煤为原料制备氮掺杂多孔碳材料的方法
CN109420516A (zh) * 2017-08-28 2019-03-05 广州中国科学院沈阳自动化研究所分所 一种负载铂金属的氮化碳薄膜及其制备方法与应用
CN109809375A (zh) * 2019-03-28 2019-05-28 四川大学 一种三维结构电极及其制备方法
CN109821517A (zh) * 2019-04-09 2019-05-31 乐清市智格电子科技有限公司 一种粒子纳米微孔材料及其制备方法
CN110560121A (zh) * 2019-08-16 2019-12-13 徐州工程学院 一种二氧化碳辅助制备多孔氮化碳材料的方法及多孔氮化碳材料及其用途
CN110963477A (zh) * 2019-11-18 2020-04-07 吉林大学 氮掺杂多孔炭材料的制备方法和氮掺杂多孔炭材料
CN111203182A (zh) * 2020-01-17 2020-05-29 中国科学院宁波材料技术与工程研究所 一种吸附苯酚的改性活性炭及其制备方法与应用
CN111712316A (zh) * 2018-02-13 2020-09-25 卡尔冈碳素公司 化学吸附剂氧化法以及由其制备的吸附剂
US10953386B2 (en) * 2017-12-29 2021-03-23 Mannon Water (Singapore) PTE. LTD. Filtration media for removing chloramine, chlorine, and ammonia, and method of making the same
CN113244885A (zh) * 2021-04-25 2021-08-13 龙岩市华研活性炭科技有限公司 一种用于水族过滤吸附的改性活性炭及其制备方法
CN113636550A (zh) * 2021-07-14 2021-11-12 东北农业大学 一种一步法制备秸秆基富氮介孔碳的方法及其应用
CN113735133A (zh) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 一种改性纳米碳材料及其制备方法和应用
CN115007188A (zh) * 2022-06-28 2022-09-06 珠海格力电器股份有限公司 催化剂及消毒水制备装置
CN115159522A (zh) * 2022-07-21 2022-10-11 中南大学 一种电池负极材料用生物质氮硫或氮磷双掺杂活性炭材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823705A (zh) * 2009-03-04 2010-09-08 南京大学 一种高表面积含氮中孔碳材料的制备方法
CN102416337A (zh) * 2011-08-29 2012-04-18 重庆大学 一种氮掺杂碳纳米管燃料电池催化剂的制备方法
CN102553641A (zh) * 2010-12-08 2012-07-11 中国中化股份有限公司 一种含氮活性炭催化剂的制备方法
US20130157838A1 (en) * 2008-06-18 2013-06-20 Board Of Trustees Of The University Of Arkansas Doped-carbon composites, synthesizing methods and applications of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157838A1 (en) * 2008-06-18 2013-06-20 Board Of Trustees Of The University Of Arkansas Doped-carbon composites, synthesizing methods and applications of the same
CN101823705A (zh) * 2009-03-04 2010-09-08 南京大学 一种高表面积含氮中孔碳材料的制备方法
CN102553641A (zh) * 2010-12-08 2012-07-11 中国中化股份有限公司 一种含氮活性炭催化剂的制备方法
CN102416337A (zh) * 2011-08-29 2012-04-18 重庆大学 一种氮掺杂碳纳米管燃料电池催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于双喜: "氮掺杂植物基活性炭材料结构及其吸附性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 1, 15 January 2011 (2011-01-15), pages 016 - 421 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289247A (zh) * 2014-10-11 2015-01-21 中国科学院上海高等研究院 用于1,2-二氯乙烷催化裂解制备氯乙烯催化剂及其制备方法与应用
CN106140093B (zh) * 2014-10-27 2020-04-28 现代自动车株式会社 活性炭及其制备方法
CN106140093A (zh) * 2014-10-27 2016-11-23 现代自动车株式会社 活性炭及其制备方法
CN104353482A (zh) * 2014-11-06 2015-02-18 福建农林大学 一种g-C3N4/活性炭复合光催化剂及其制备方法和应用
CN104353482B (zh) * 2014-11-06 2016-04-27 福建农林大学 一种g-C3N4/活性炭复合光催化剂及其制备方法和应用
CN104525119A (zh) * 2015-01-05 2015-04-22 福建农林大学 一种g-C3N4/ZnO/活性炭的功能性炭吸附材料及其制备方法
CN104525119B (zh) * 2015-01-05 2016-09-07 福建农林大学 一种g-C3N4/ZnO/活性炭的功能性炭吸附材料及其制备方法
CN105374575A (zh) * 2015-01-14 2016-03-02 中国石油大学(华东) 一种表面功能化多孔碳超级电容器电极材料的制备方法
CN104689857B (zh) * 2015-03-26 2018-10-19 中国科学院青岛生物能源与过程研究所 氮掺杂多孔碳材料的制备方法以及含该材料的催化剂及用途
CN104689857A (zh) * 2015-03-26 2015-06-10 中国科学院青岛生物能源与过程研究所 氮掺杂多孔碳材料的制备方法以及含该材料的催化剂及用途
CN105597803A (zh) * 2015-12-14 2016-05-25 江南大学 一种介孔氮化碳光催化剂及其制备方法
CN105597803B (zh) * 2015-12-14 2017-11-03 江南大学 一种介孔氮化碳光催化剂及其制备方法
CN106404860A (zh) * 2016-08-30 2017-02-15 济南大学 一种氮化碳修饰三维石墨电极的制备方法及电致化学发光传感应用
WO2018099173A1 (zh) * 2016-12-02 2018-06-07 建添企业有限公司 以煤为原料制备氮掺杂多孔碳材料的方法
CN109071236A (zh) * 2016-12-02 2018-12-21 新奥石墨烯技术有限公司 以煤为原料制备氮掺杂多孔碳材料的方法
CN106971863A (zh) * 2017-04-21 2017-07-21 华中科技大学 一种g‑C3N4/NiCo2S4复合材料、制备方法及其应用
CN106971863B (zh) * 2017-04-21 2018-11-30 华中科技大学 一种g-C3N4/NiCo2S4复合材料、制备方法及其应用
CN109420516B (zh) * 2017-08-28 2021-08-06 广州中国科学院沈阳自动化研究所分所 一种负载铂金属的氮化碳薄膜及其制备方法与应用
CN109420516A (zh) * 2017-08-28 2019-03-05 广州中国科学院沈阳自动化研究所分所 一种负载铂金属的氮化碳薄膜及其制备方法与应用
US10953386B2 (en) * 2017-12-29 2021-03-23 Mannon Water (Singapore) PTE. LTD. Filtration media for removing chloramine, chlorine, and ammonia, and method of making the same
US11648533B2 (en) 2017-12-29 2023-05-16 Mannon Water (Singapore) PTE. LTD. Filtration media for removing chloramine, chlorine and ammonia, and method of making the same
EP3752277A4 (en) * 2018-02-13 2021-11-17 Calgon Carbon Corporation PROCESS FOR OXIDIZING CHEMICAL SORBANTS AND SORBANTS MANUFACTURED THEREOF
JP2021513455A (ja) * 2018-02-13 2021-05-27 カルゴン カーボン コーポレーション 化学的吸着剤の酸化方法およびそれにより製造された吸着剤
CN111712316A (zh) * 2018-02-13 2020-09-25 卡尔冈碳素公司 化学吸附剂氧化法以及由其制备的吸附剂
CN109809375A (zh) * 2019-03-28 2019-05-28 四川大学 一种三维结构电极及其制备方法
CN109821517A (zh) * 2019-04-09 2019-05-31 乐清市智格电子科技有限公司 一种粒子纳米微孔材料及其制备方法
CN110560121B (zh) * 2019-08-16 2022-06-10 徐州工程学院 一种二氧化碳辅助制备多孔氮化碳材料的方法及多孔氮化碳材料及其用途
CN110560121A (zh) * 2019-08-16 2019-12-13 徐州工程学院 一种二氧化碳辅助制备多孔氮化碳材料的方法及多孔氮化碳材料及其用途
CN110963477A (zh) * 2019-11-18 2020-04-07 吉林大学 氮掺杂多孔炭材料的制备方法和氮掺杂多孔炭材料
CN110963477B (zh) * 2019-11-18 2023-04-07 吉林大学 氮掺杂多孔炭材料的制备方法和氮掺杂多孔炭材料
CN111203182A (zh) * 2020-01-17 2020-05-29 中国科学院宁波材料技术与工程研究所 一种吸附苯酚的改性活性炭及其制备方法与应用
CN113735133A (zh) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 一种改性纳米碳材料及其制备方法和应用
CN113735133B (zh) * 2020-05-29 2023-03-24 中国石油化工股份有限公司 一种改性纳米碳材料及其制备方法和应用
CN113244885A (zh) * 2021-04-25 2021-08-13 龙岩市华研活性炭科技有限公司 一种用于水族过滤吸附的改性活性炭及其制备方法
CN113636550A (zh) * 2021-07-14 2021-11-12 东北农业大学 一种一步法制备秸秆基富氮介孔碳的方法及其应用
CN115007188A (zh) * 2022-06-28 2022-09-06 珠海格力电器股份有限公司 催化剂及消毒水制备装置
CN115159522A (zh) * 2022-07-21 2022-10-11 中南大学 一种电池负极材料用生物质氮硫或氮磷双掺杂活性炭材料及其制备方法
CN115159522B (zh) * 2022-07-21 2023-04-18 中南大学 一种电池负极材料用生物质氮硫或氮磷双掺杂活性炭材料及其制备方法

Similar Documents

Publication Publication Date Title
CN103626150A (zh) 一种含氮多孔炭的制备方法
CN102923688B (zh) 一种氮掺杂碳材料的制备方法及其应用
CN105017529B (zh) 一种多级孔结构共价三嗪类骨架微孔聚合物的制备方法
Zhu et al. Nitrogen-doped porous carbons from bipyridine-based metal-organic frameworks: Electrocatalysis for oxygen reduction reaction and Pt-catalyst support for methanol electrooxidation
CN108067278A (zh) 一种非贵金属多孔氮掺杂碳电催化剂的制备方法
CN109622054B (zh) 一种半导体纳米粒子/碳点多孔整体催化剂的制备方法和应用
CN103964412A (zh) 一种氮掺杂多孔结构碳材料的制备方法
CN106362719B (zh) 一种改性活性炭和制备方法及其应用
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
CN106876730A (zh) 氮掺杂多孔碳担载的非贵金属电催化剂制备及电催化应用
Yuan et al. Transesterification of dimethyl oxalate with phenol over nitrogen-doped nanoporous carbon materials
CN107597162B (zh) 一种具有双功能氧催化性能的富含CNTs和Co颗粒的氮掺杂碳材料及其制备方法和应用
CN106423251A (zh) 一种负载型钯催化剂的制备方法
Nouruzi et al. Selective catalytic generation of hydrogen over covalent organic polymer supported Pd nanoparticles (COP-Pd)
CN111151299B (zh) 一种醇铜配合物催化剂及其制备方法与在乙炔氢氯化反应中的应用
CN108262034A (zh) 一种催化剂及其制备方法及在常压低温合成氨中的应用
CN109647408B (zh) 一种基于Co-MOF的多孔复合自支撑催化剂的制备方法和应用
CN111036195B (zh) 催化剂及2,5-呋喃二甲酸的制备方法
CN109384750B (zh) 一种催化加氢5-羟甲基糠醛制备2,5-二甲基呋喃的方法
CN104167296B (zh) 一种用于超级电容器的纳米电极材料的制备方法
Aleksandrzak et al. Enhancement of photocatalytic hydrogen evolution with catalysts based on carbonized MOF-5 and gC 3 N 4
Tang et al. Protein-Zn (II) networks derived N-doped porous carbon-supported ZnS for photothermally catalytic CO2 conversion
Zhe-qin et al. A high-performance nitrogen-rich ZIF-8-derived Fe-NC electrocatalyst for the oxygen reduction reaction
Quílez-Bermejo et al. Easy enrichment of graphitic nitrogen to prepare highly catalytic carbons for oxygen reduction reaction
CN110540196A (zh) 一种硼氮共掺杂多孔石墨烯及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140312