CN103606514B - 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法 - Google Patents

基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法 Download PDF

Info

Publication number
CN103606514B
CN103606514B CN201310647163.4A CN201310647163A CN103606514B CN 103606514 B CN103606514 B CN 103606514B CN 201310647163 A CN201310647163 A CN 201310647163A CN 103606514 B CN103606514 B CN 103606514B
Authority
CN
China
Prior art keywords
graphene
substrate
pmma
gan
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310647163.4A
Other languages
English (en)
Other versions
CN103606514A (zh
Inventor
王东
闫景东
宁静
韩砀
柴正
张进成
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201310647163.4A priority Critical patent/CN103606514B/zh
Publication of CN103606514A publication Critical patent/CN103606514A/zh
Application granted granted Critical
Publication of CN103606514B publication Critical patent/CN103606514B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing

Abstract

本发明公开了一种基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法,主要解决现有技术对石墨烯转移耗时,铜衬底浪费的问题。其实现步骤是:(1)将a面碳化硅置于金属有机物化学气相淀积MOCVD反应室,通入镓源与氨气,生长a面GaN;(2)利用电子束蒸发在GaN上沉积Cu薄膜;(3)通入H2,对Cu薄膜热退火;(4)通入H2和CH4,通过化学气象淀积生长石墨烯;(5)在石墨烯表面旋涂光刻胶,并将其放入氢氧化钾溶液,借助激光加速腐蚀GaN中间层,再腐蚀去除掉下层Cu薄膜;(6)将薄膜腐蚀掉后所得的石墨烯光刻胶朝上置于绝缘衬底,风干后加热,再降温到室温后,放进丙酮中除掉上表面的光刻胶,完成石墨烯的转移。本发明具有转移时间短,节省Cu衬底的优点。

Description

基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法
技术领域
本发明属于微电子技术领域,涉及石墨烯的制造方法和转移方法,特别是基于氮化镓(GaN)衬底的化学气相沉积CVD外延生长石墨烯以及通过化学腐蚀衬底来转移石墨烯的方法,可用于CVD外延设备的石墨烯材料生长和转移。
技术背景
石墨烯是一种碳基二维晶体,具有极佳的物理化学性质。石墨烯表面的二维电子密度达到1013cm-2,电子的迁移率超过200000cm2V-1s-1,电子饱和漂移速度高达108cms-1。由于这些优异的电学性质,石墨烯具备了制造超高速电子器件的潜力,2010年,IBM公司成功研制出最高频率超过100GHz的石墨烯FET,到2011年已经超过200GHz,美国国防部先进计划预研局DARPA提出的碳基电子研究计划项目预计2013年制作出最高频率超过500GHz石墨烯场效应晶体管FET。可见,石墨烯已经成为目前国际科技界和产业界关注的焦点。
目前,石墨烯材料的制造方法很多,但是能够制造出大面积、高质量、晶圆级石墨烯的途径只有两种:一种是由过渡族金属催化分解甲烷(CH4)来进行化学气相沉积CVD生长石墨烯,具体原理是过渡族金属催化分解出碳,通过碳-金属的固相溶解——碳原子降温析出——碳原子结晶重构,从而在金属表面形成石墨烯,这种方法可以突破衬底尺寸限制,可用于制备大面积石墨烯;另一种是碳化硅(SiC)衬底高温热分解法,这种方法则是在高真空高温下分解SiC,Si蒸发,剩余C结晶重构形成石墨烯,可以得到平整的高质量石墨烯材料。但是,当第二种方法用于制造大面积石墨烯时,它所需的SiC衬底和热分解设备昂贵,制造过程可控性差,而对于已经进入应用阶段的石墨烯研究来说,制约其发展的关键问题是制造石墨烯的成本,以及制造出的石墨烯面积大小。所以,国内外普遍采用CVD外延和衬底转移技术制备大面积石墨烯。
石墨烯转移是大面积石墨烯应用研究的关键环节,转移技术是关乎其最终电化学性质的核心技术。目前,对于CVD法制造出的石墨烯,国际上普遍采用石墨烯上表面PMMA支撑——湿法腐蚀石墨烯下方金属——石墨烯转移至目标衬底的转移工艺。对于常用的金属衬底,如铜箔、镍箔等,湿法腐蚀一般需要4~24小时。这样的转移效率,如果仅作实验室研究和小批量器件研制是可以接受的,但其相对腐蚀速度随着面积的增加而减小,导致转移耗时过长,非常不利于大面积转移。另外,用于石墨烯生长的高质量金属箔需要专门购买,其产品参数受制于供应商提供的特定规格,要想改变金属衬底尺寸、晶向、几何形状等参数还需要额外的处理,不方便进行生长衬底的质量优化;而利用热蒸发、电子束蒸发等手段先在晶体衬底淀积一层金属薄膜,在淀积过程中可以自由控制金属膜厚、金属膜晶向等,减少不必要的浪费,有利于批量生产。但因非石墨烯接触面附着在其他衬底上,另外一面被石墨烯掩蔽,所以只有金属侧边与腐蚀液接触,有效接触面积极小,其腐蚀的时间大大增加,而且腐蚀效果明显变差,以至于造成石墨烯的电学性质退化。
发明内容
本发明的目的在于克服上述已有技术的不足,提供一种基于GaN衬底CVD外生长石墨烯的化学腐蚀转移方法,以提高石墨烯转移的效率和石墨烯的材料质量。此方法可以把石墨烯转移到任意目标衬底。
实现本发明目的技术关键是:采用非极性a面的GaN体系衬底上沉积铜膜,进而进行CVD外延生长石墨烯。利用GaN衬底侧向不同原子终止面和不同晶面的GaN衬底腐蚀特性不同,通过改变腐蚀溶液的溶质种类、浓度、温度等条件,实现石墨烯下方GaN衬底和金属的腐蚀。其实现步骤包括如下:
(1)将a面碳化硅6H-SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,向反应室通入镓源与氨气的混合气体,镓源流量为50-200μmol/min,氨气流量为1000-3000sccm,持续0.5-1小时,生长出厚度为1-3μm的a面GaN衬底;
(2)将反应室抽真空,在保证气压不高于10-6Torr的条件下,在GaN衬底上电子束蒸发沉积厚度为1-2μm的Cu薄膜;
(3)向反应室通入流量为1~20sccm的H2,升高反应室内温度至900~1000℃,对沉积的Cu薄膜进行热退火,退火时间为20~60min;
(4)向反应室通入流量为20~200sccm的H2和流量为2~20sccm的CH4,通过化学气象淀积CVD生长石墨烯10~20min;
(5)在反应室自然降温到室温后,取出生长样品,在石墨烯表面旋涂聚甲基丙烯酸甲酯PMMA,形成SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品;
(6)对所述SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品进行风干,并将风干后的样品放入浓度为0.5g/ml的氢氧化钾溶液中,通过腐蚀去除掉样品中的GaN层,使SiC衬底从叠层结构中剥离,形成Cu薄膜—石墨烯—PMMA的叠层样品;
(7)从氢氧化钾溶液中取出Cu薄膜—石墨烯—PMMA的叠层样品,使其PMMA面漂浮在浓度为50g/L-70g/L的(NH4)3(S2O4)2水溶液液面上,通过腐蚀去除掉样品中的最下层Cu薄膜,形成石墨烯—PMMA的叠层样品;
(8)将石墨烯—PMMA叠层样品从(NH4)3(S2O4)2水溶液中捞起,置于绝缘衬底上风干,再在120℃条件下加热30min,得到绝缘衬底—石墨烯—PMMA的叠层样品;
(9)将绝缘衬底—石墨烯—PMMA的叠层样品自然降温到室温,再放入丙酮中浸泡,利用丙酮去除掉样品表面的PMMA,形成绝缘衬底—石墨烯样品,实现石墨烯向绝缘衬底的转移;
(10)用无水乙醇漂洗绝缘衬底—石墨烯样品,最后用纯净氮气吹干,得到干净的绝缘衬底石墨烯。
本发明具有如下优点:
1.由于采用GaN上淀积金属薄层的方法,金属薄层厚度、几何形状都可以自由设置。
2.由于采用激光增强湿法腐蚀,使腐蚀时间大大减少,腐蚀温度显著降低到室温,避免了腐蚀过程对石墨烯材料的不良影响。
本发明的技术方案和效果可通过以下附图和实施例进一步说明。
附图说明
图1是本发明的石墨烯生长转移流程图;
图2是本发明的石墨烯转移前的剖面层结构。
具体实施方式
参照图1,本发明给出如下实施例:
实施例1:
步骤1,生长GaN衬底。
将a面碳化硅6H-SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,向反应室通入镓源与氨气的混合气体,镓源流量为50μmol/min,氨气流量为1000sccm,持续1小时,生长出厚度为1μm的a面GaN衬底。
步骤2,Cu薄膜淀积及退火处理。
将反应室抽真空,在保证气压不高于10-6Torr的条件下,在GaN衬底上电子束蒸发沉积厚度为1μm的Cu薄膜,向反应室通入流量为1sccm的H2,升高反应室内温度至900℃,对沉积的Cu薄膜进行热退火,退火时间为20min。
步骤3,生长石墨烯。
向反应室通入流量为20sccm的H2,加热反应室到生长温度950℃;保持H2流量不表,向反应室再通入流量为2sccm的CH4,通过化学气象淀积CVD生长石墨烯20min,得到SiC衬底—GaN—Cu薄膜—石墨烯的叠层结构样品。
步骤4,旋涂聚甲基丙烯酸甲酯PMMA。
在反应室自然降温到室温后,取出生长样品,用滴管在石墨烯表面滴满聚甲基丙烯酸甲酯PMMA,每平方厘米石墨烯上聚甲基丙烯酸甲酯PMMA不超过0.1ml;
将滴满聚甲基丙烯酸甲酯PMMA的样品放入旋转甩胶台旋转,并设定前10s转速为30r/min,后60s转速为300r/min,使聚甲基丙烯酸甲酯PMMA旋涂均匀,形成SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品,如图2所示。
步骤5,激光照射下碱溶液腐蚀GaN。
对所述SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品进行风干,并将风干后的样品放入浓度为0.5g/ml的氢氧化钾溶液中,使用波长为325nm的He-Cd激光器照射GaN,加速碱溶液对GaN层的腐蚀,去除掉样品中的GaN层,使SiC衬底从叠层结构中剥离,形成Cu薄膜—石墨烯—PMMA的叠层样品。
步骤6,用(NH4)3(S2O4)2溶液腐蚀去除Cu薄膜。
从氢氧化钾溶液中取出Cu薄膜—石墨烯—PMMA的叠层样品,使其PMMA面漂浮在浓度为50g/L的(NH4)3(S2O4)2水溶液液面上,通过腐蚀去除掉样品中的最下层Cu薄膜,形成石墨烯—PMMA的叠层样品。
步骤7,转移样品至SiO2衬底。
将石墨烯—PMMA叠层样品置于SiO2衬底上,先在室温下风干,再在120℃条件下加热30min,得到SiO2衬底—石墨烯—PMMA的叠层样品。
步骤8,彻底去除表层聚甲基丙烯酸甲酯PMMA
待SiO2衬底—石墨烯—PMMA的叠层样品自然降温到室温后,将其放入丙酮中浸泡,利用丙酮去除掉样品表面的PMMA,形成SiO2衬底—石墨烯样品,实现石墨烯向SiO2衬底的转移。
步骤9,样品清洁。
用无水乙醇漂洗SiO2衬底—石墨烯样品,最后用纯氮气吹干,得到干净的样品。
实施例2:
步骤A,生长GaN衬底。
将a面碳化硅6H-SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,向反应室通入镓源与氨气的混合气体,镓源流量为100μmol/min,氨气流量为2000sccm,持续40小时,生长出厚度为2μm的a面GaN衬底。
步骤B,Cu薄膜淀积及退火处理。
将反应室抽真空,在保证气压不高于10-6Torr的条件下,在GaN衬底上电子束蒸发沉积厚度为2μm的Cu薄膜,向反应室通入流量为10sccm的H2,升高反应室内温度至950℃,对沉积的Cu薄膜进行热退火,退火时间为20min。
步骤C,生长石墨烯。
向反应室通入流量为50sccm的H2,加热反应室到生长温度1000℃;保持H2流量不表,向反应室再通入流量为3sccm的CH4,通过化学气象淀积CVD生长石墨烯40min,得到SiC衬底—GaN—Cu薄膜—石墨烯的叠层结构样品。
步骤D,旋涂聚甲基丙烯酸甲酯PMMA。
在反应室自然降温到室温后,取出生长样品,用滴管在石墨烯表面滴满聚甲基丙烯酸甲酯PMMA,每平方厘米石墨烯上聚甲基丙烯酸甲酯PMMA不超过0.1ml;
将滴满聚甲基丙烯酸甲酯PMMA的样品放入旋转甩胶台旋转,并设定前10s转速为30r/min,后60s转速为300r/min,使聚甲基丙烯酸甲酯PMMA旋涂均匀,形成SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品,如图2所示。
步骤E,激光照射下碱溶液腐蚀GaN。
对所述SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品进行风干,并将风干后的样品放入浓度为0.5g/ml的氢氧化钾溶液中,使用波长为325nm的He-Cd激光器照射GaN,加速碱溶液对GaN层的腐蚀,去除掉样品中的GaN层,使SiC衬底从叠层结构中剥离,形成Cu薄膜—石墨烯—PMMA的叠层样品。
步骤F,用(NH4)3(S2O4)2溶液腐蚀去除Cu薄膜。
从氢氧化钾溶液中取出Cu薄膜—石墨烯—PMMA的叠层样品,使其PMMA面漂浮在浓度为60g/L的(NH4)3(S2O4)2水溶液液面上,通过腐蚀去除掉样品中的最下层Cu薄膜,形成石墨烯—PMMA的叠层样品。
步骤G,转移样品至蓝宝石衬底。
将石墨烯—PMMA叠层样品置于蓝宝石衬底上,先在室温下风干,再在120℃条件下加热30min,得到蓝宝石衬底—石墨烯—PMMA的叠层样品。
步骤H,彻底去除表层聚甲基丙烯酸甲酯PMMA
待蓝宝石衬底—石墨烯—PMMA的叠层样品自然降温到室温后,将其放入丙酮中浸泡,利用丙酮去除掉样品表面的PMMA,形成蓝宝石衬底—石墨烯样品,实现石墨烯向蓝宝石衬底的转移。
步骤I,样品清洁。
用无水乙醇漂洗蓝宝石衬底—石墨烯样品,最后用纯氮气吹干,得到干净的样品。
实施例3:
步骤一,生长GaN衬底。
将a面碳化硅6H-SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,向反应室通入镓源与氨气的混合气体,镓源流量为150μmol/min,氨气流量为3000sccm,持续0.5小时,生长出厚度为1.5μm的a面GaN衬底。
步骤二,Cu薄膜淀积及退火处理。
将反应室抽真空,在保证气压不高于10-6Torr的条件下,在GaN衬底上电子束蒸发沉积厚度为3μm的Cu薄膜,向反应室通入流量为20sccm的H2,升高反应室内温度至1000℃,对沉积的Cu薄膜进行热退火,退火时间为60min。
步骤三,生长石墨烯。
向反应室通入流量为100sccm的H2,加热反应室到生长温度950℃;保持H2流量不表,向反应室再通入流量为10sccm的CH4,通过化学气象淀积CVD生长石墨烯60min,得到SiC衬底—GaN—Cu薄膜—石墨烯的叠层结构样品。
步骤四,旋涂聚甲基丙烯酸甲酯PMMA。
在反应室自然降温到室温后,取出生长样品,用滴管在石墨烯表面滴满聚甲基丙烯酸甲酯PMMA,每平方厘米石墨烯上聚甲基丙烯酸甲酯PMMA不超过0.1ml;
将滴满聚甲基丙烯酸甲酯PMMA的样品放入旋转甩胶台旋转,并设定前10s转速为30r/min,后60s转速为300r/min,使聚甲基丙烯酸甲酯PMMA旋涂均匀,形成SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品,如图2所示。
步骤五,激光照射下碱溶液腐蚀GaN。
对所述SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品进行风干,并将风干后的样品放入浓度为0.5g/ml的氢氧化钾溶液中,使用波长为325nm的He-Cd激光器照射GaN,加速碱溶液对GaN层的腐蚀,去除掉样品中的GaN层,使SiC衬底从叠层结构中剥离,形成Cu薄膜—石墨烯—PMMA的叠层样品。
步骤六,形成石墨烯—PMMA的叠层样品。
从氢氧化钾溶液中取出Cu薄膜—石墨烯—PMMA的叠层样品,使其PMMA面漂浮在浓度为70g/L的(NH4)3(S2O4)2水溶液液面上,通过腐蚀去除掉样品中的最下层Cu薄膜,形成石墨烯—PMMA的叠层样品。
步骤七,将石墨烯—PMMA叠层样品置于玻璃衬底上,先在室温下风干,再在120℃条件下加热30min,得到玻璃衬底—石墨烯—PMMA的叠层样品。
步骤八,待玻璃衬底—石墨烯—PMMA的叠层样品自然降温到室温后,将其放入丙酮中浸泡,利用丙酮去除掉样品表面的PMMA,形成玻璃衬底—石墨烯样品,实现石墨烯向玻璃衬底的转移。
步骤九,用无水乙醇漂洗玻璃衬底—石墨烯样品,最后用纯氮气吹干,得到干净的样品。以上是本发明的最佳实施例,并不构成对本发明的任何限制,显然对于本领域的专业人员来说,在了解本发明内容和原理后,能够在不背离本发明的原理和范围的情况下,根据本发明的方法进行形式和细节上的各种修正和改变,但是这些基于本发明的修正和改变仍在本发明的权利要求保护范围之内。

Claims (3)

1.一种基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法,包括如下步骤:
(1)将a面碳化硅6H-SiC衬底置于金属有机物化学气相淀积MOCVD反应室中,向反应室通入镓源与氨气的混合气体,镓源流量为50-200μmol/min,氨气流量为1000-3000sccm,持续0.5-1小时,生长出厚度为1-3μm的a面GaN衬底;
(2)将反应室抽真空,在保证气压不高于10-6Torr的条件下,在GaN衬底上电子束蒸发沉积厚度为1-2μm的Cu薄膜;
(3)向反应室通入流量为1~20sccm的H2,升高反应室内温度至900~1000℃,对沉积的Cu薄膜进行热退火,退火时间为20~60min;
(4)向反应室通入流量为20~200sccm的H2和流量为2~20sccm的CH4,通过化学气相淀积CVD生长石墨烯10~20min,其生长工艺如下:
(4a)在H2的流量为20~200sccm的条件下,加热反应室到生长温度950~1100℃;
(4b)保持H2流量不变,向反应室通入流量为2~20sccm的CH4,H2和CH4的流量比例为10:1~2:1;
(5)在反应室自然降温到室温后,取出生长样品,在石墨烯表面旋涂聚甲基丙烯酸甲酯PMMA,形成SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品;
(6)对所述SiC衬底—GaN—Cu薄膜—石墨烯—PMMA的叠层结构样品进行风干,并将风干后的样品放入浓度为0.5g/ml的氢氧化钾溶液中,通过腐蚀去除掉样品中的GaN层,使SiC衬底从叠层结构中剥离,形成Cu薄膜—石墨烯—PMMA的叠层样品;
(7)从氢氧化钾溶液中取出Cu薄膜—石墨烯—PMMA的叠层样品,使其PMMA面漂浮在浓度为50g/L-70g/L的(NH4)3(S2O4)2水溶液液面上,通过腐蚀去除掉样品中的最下层Cu薄膜,形成石墨烯—PMMA的叠层样品;
(8)将石墨烯—PMMA叠层样品从(NH4)3(S2O4)2水溶液中捞起,置于绝缘衬底上风干,再在120℃条件下加热30min,得到绝缘衬底—石墨烯—PMMA的叠层样品;
(9)将绝缘衬底—石墨烯—PMMA的叠层样品自然降温到室温,再放入丙酮中浸泡,利用丙酮去除掉样品表面的PMMA,形成绝缘衬底—石墨烯样品,实现石墨烯向绝缘衬底的转移;
(10)用无水乙醇漂洗绝缘衬底—石墨烯样品,最后用纯氮气吹干,得到干净的绝缘衬底石墨烯。
2.根据权利要求1所述基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法,其中步骤(5)所述的在石墨烯表面旋涂聚甲基丙烯酸甲酯PMMA,按如下步骤进行:
(5a)用滴管在石墨烯表面滴满PMMA,每平方厘米石墨烯上PMMA不超过0.1ml;
(5b)将滴满PMMA的样品放入旋转甩胶台旋转,设定前10s转速为30r/min,后60s转速为300r/min,使PMMA旋涂均匀。
3.根据权利要求1所述基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法,其中所述步骤(8)的绝缘衬底,包括硅衬底、二氧化硅衬底、蓝宝石衬底以及玻璃衬底。
CN201310647163.4A 2013-12-03 2013-12-03 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法 Active CN103606514B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310647163.4A CN103606514B (zh) 2013-12-03 2013-12-03 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310647163.4A CN103606514B (zh) 2013-12-03 2013-12-03 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法

Publications (2)

Publication Number Publication Date
CN103606514A CN103606514A (zh) 2014-02-26
CN103606514B true CN103606514B (zh) 2016-01-13

Family

ID=50124730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310647163.4A Active CN103606514B (zh) 2013-12-03 2013-12-03 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法

Country Status (1)

Country Link
CN (1) CN103606514B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943601A (zh) * 2014-05-09 2014-07-23 浙江大学 一种具有铜-石墨烯复相的互连线及其制备方法
CN104900497A (zh) * 2015-06-15 2015-09-09 北京工业大学 一种在非金属衬底上直接生长石墨烯的方法
CN106816409A (zh) * 2017-03-09 2017-06-09 武汉华星光电技术有限公司 Tft基板中电极层的制作方法及柔性tft基板的制作方法
CN108314028A (zh) * 2018-03-15 2018-07-24 浙江大学 一种无聚合物湿法转移石墨烯方法
CN110828291A (zh) * 2018-08-13 2020-02-21 西安电子科技大学 基于单晶金刚石衬底的GaN/AlGaN异质结材料及其制备方法
CN110429026B (zh) * 2019-08-15 2022-05-06 西安电子科技大学 一种打开石墨烯带隙的方法
CN110702702B (zh) * 2019-09-06 2021-11-19 华东师范大学 一种定点转移二维材料到超薄低应力氮化硅悬空膜的方法
CN112489848A (zh) * 2020-12-07 2021-03-12 中国科学院长春光学精密机械与物理研究所 一种半导体辐射电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694474B (zh) * 2009-10-22 2012-10-10 浙江大学 一种纳米孔电学传感器
CN101872120B (zh) * 2010-07-01 2011-12-07 北京大学 一种图形化石墨烯的制备方法
KR101403989B1 (ko) * 2010-11-09 2014-06-10 포항공과대학교 산학협력단 그래핀 피복 강판 및 이의 제조 방법
KR101878740B1 (ko) * 2012-04-05 2018-07-17 삼성전자주식회사 금속 부식 방지 시스템
CN103132047B (zh) * 2012-12-31 2015-05-20 西安电子科技大学 一种激光辅助无损转移化学气相沉积石墨烯的方法

Also Published As

Publication number Publication date
CN103606514A (zh) 2014-02-26

Similar Documents

Publication Publication Date Title
CN103606514B (zh) 基于GaN衬底CVD外延生长石墨烯的化学腐蚀转移方法
CN103981507B (zh) 一种石墨烯制备方法
CN103224231B (zh) 一种石墨烯薄膜的转移方法
CN102102220B (zh) 金刚石(111)面上的石墨烯制备方法
US9691612B2 (en) Process for preparing graphene on a SiC substrate based on metal film-assisted annealing
CN104389016B (zh) 一种快速制备大尺寸单晶石墨烯的方法
CN104538526A (zh) 一种基于铜衬底的氮化物led外延片结构及其制备方法
CN108342716B (zh) 等离子体增强化学气相沉积制备二维材料的***及方法
CN101492835A (zh) 由绝缘衬底上超薄六方相碳化硅膜外延石墨烯的方法
CN102881654A (zh) 薄膜晶体管阵列基板及其制备方法、有源矩阵驱动显示装置
JP2010533633A5 (zh)
CN104393128B (zh) 一种使用SiC衬底的氮化物LED外延结构及其制备方法
CN105585011A (zh) 一种制备石墨烯的工艺
CN106006619A (zh) 一种特定尺寸的石墨烯的制备方法
CN103132047B (zh) 一种激光辅助无损转移化学气相沉积石墨烯的方法
CN105112999A (zh) 一种制备单晶石墨烯的方法
CN108950683B (zh) 一种高迁移率氮掺杂大单晶石墨烯薄膜及其制备方法
CN110963484A (zh) 基于掺杂层辅助的大面积高质量石墨烯无损转移方法
Kar et al. Growth, modulation and photoresponse characteristics of vertically aligned ZnO nanowires
TWI517265B (zh) 薄膜電晶體的製造方法
US11081336B2 (en) Method of making graphene and graphene devices
WO2017096626A1 (zh) 一种在石墨烯表面形成栅介质层及制备晶体管的方法
CN106629686A (zh) 一种制备石墨烯纳米带的方法
CN105483617A (zh) 一种在非硅衬底上制备Mg2Si薄膜的方法
CN108977887A (zh) 单晶氮化铟的生长方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant